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Abstract  

CFTR protein regulates electrolyte and fluid transport in almost all tissues with 

exocrine function, including male reproductive tract. Mutation of CFTR gene causes cystic 

fibrosis (CF), which affects the function of several organs, and impairs male fertility. The role 

of CFTR protein in different compartments of male reproductive tract (testis, epididymis, 

sperm) as well as an impact of CFTR mutation(s) on male fertility phenotype is discussed in 

relation with the choice of optimal technique for Assisted Reproductive Techniques (ART) 

management.   

  

Résumé 

La protéine CFTR est un canal chlore régulant le transport de fluides et d'électrolytes dans 

presque tous les tissus ayant une fonction exocrine, y compris les voies génitales masculines. 

Des mutations du gène codant pour cette protéine sont responsables de la mucoviscidose, 

maladie génétique la plus fréquente en Europe, et de l'aplasie congénitale des canaux 

déférents. Le rôle joué par la protéine CFTR dans les différents compartiments de l’appareil 

génital mâle (testicule, épididyme, gamète) ainsi que l’impact d’une mutation CFTR sur le 

phénotype de fertilité masculine et sa prise en charge thérapeutique sont discutés dans cette 

revue. 
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Introduction 

The CFTR gene codes for a cAMP-dependent protein kinase-activated chloride 

channel, which belongs to the family of ATP-binding cassette transporters [1]. CFTR protein 

regulates electrolyte and fluid transport in almost all tissues with exocrine function, in 

particular in lung and pancreas. Mutation in CFTR gene leads to cystic fibrosis (CF), the most 

common autosomal recessive disease in Caucasian populations. Among CFTR mutations, 

F508del is the most frequent which is responsible for the two third of cases in worldwide [2]. 

The mutation is a deletion of three nucleotides spanning positions 507 and 508 of the CFTR 

gene on chromosome 7, which ultimately results in the loss of a single codon for the amino 

acid phenylalanine. CF affects the function of several organs, in particular the trachea, lung, 

pancreas and several tissues of the reproductive system [3].  

Being expressed in the apical membrane of epithelial cells, CFTR regulates many 

aspects of epithelial physiology, such as maintaining epithelial surface hydration and 

regulating luminal pH [4]. Defects in chloride, bicarbonate and water secretion, leading to 

increased viscosity of the luminal compartment, were proposed as the primary cause of CF 

(cited from [3]). Moreover, recent data suggests the implication of CFTR protein in the 

regulation of tight junction assembly and differentiation of epithelial cell [3]. CFTR also 

seems to be involved in the regulation of lipid metabolism. Although the underlying 

mechanisms are poorly understood [5], current evidence indicates the expression of defective 

CFTR has profounder effect on fatty acid, cholesterol and sphingolipid metabolism, as well as 

on the membrane phospholipid composition [6].  

In this review the current knowledge on CFTR protein in different compartments of 

male reproductive system will be discussed in relation with the impact of CFTR mutation on 

several sperm characteristics, functional activity of germ cells and the choice of optimal ART 

technique in CF patients. 

 

CFTR protein is present in male reproductive tract from various species 

CFTR protein is highly expressed in male reproductive tract, being detected in the 

human fetus at the early developmental stages [7-12]. 

In the testis of rodents the CFTR RNA messenger has been found in developing germ 

cells, and CFTR protein in the Sertoli cells [13-15]. 
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CFTR protein has been also unveiled in the epithelial cells lining the epididymis, and 

vas deferens [3]. Interestingly, in the epididymis, CFTR shows the region-specific expression, 

being the most prominent in the distal regions (corpus and cauda) [9]. 

CFTR protein was also detected in mouse and human sperm [16]. 

 

CFTR impacts male gamete formation and functionality on different levels 

CFTR depletion in mice induces an impaired male fertility phenotype. Male mice 

exhibit the reduced testicular size, and present the signs of epididymis immaturity such as 

smaller organ weight, reduction in tubule diameter, increase of epithelial cell height in the 

initial segment and reduction in the expression of markers of epithelial cell differentiation [3]. 

The sperm from both CF mice and CF patients exhibits the decrease of motility and 

capacitation [17,18]. This suggests that CFTR protein impacts different steps of functional 

male gamete formation, which progresses in separate compartments of male reproductive tract 

such as the testis, epididymis and vas deferens.    

Studies on rodents demonstrated that in the epididymis CFTR regulated the secretion 

of chloride and bicarbonate ions [19], while in the testis CFTR has been shown to maintain 

water homeostasis through its interaction with aquaporin 9 (AQP9) [20] or through direct 

diffusion of water. The latter is supported by osmotic gradient generated by ion secretion [21]. 

Thus, in both testis and epididymis CFTR provides establishment of specific fluid 

environment for germ cell differentiation and maturation. CF mutation of the CFTR gene 

leads to abnormal luminal environment associated with blockage or agenesis of the 

epididymis and vas deferens [3, 19]. 

Besides, inhibition of CFTR in somatic Sertoli cells from the testis or depletion of 

extracellular HCO3
- is thought to reduce FSH-stimulated, sAC-dependent cAMP production, 

and phosphorylation of CREB, the key transcription factor in spermatogenesis. Indeed, 

alteration of CFTR protein leads to a diminution of CREB and protamine 2 levels [22], 

suggesting a possible impact on sperm nuclear integrity at the post-meiotic stages of 

spermatogenesis, particularly at the step of histone-protamine exchange, which is essential for 

sperm head condensation and DNA stabilization. 

Otherwise, CFTR has been demonstrated to be involved in regulating of tight 

junctions in the seminiferous tubules of the testis and in the epididymis.  In the seminiferous 

tubules this seems to engage NFκB/COX-2/PGE2 pathway, because the downregulation of 

CFTR is accompanied by activation of NFκB, upregulation of COX-2 and downregulation of 
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tight junction proteins. Interestingly, such molecular events were observed in a 

cryptorchidism mouse model [23]. In the epididymis, CFTR regulates tight junction assembly 

and epithelial cell differentiation, being expressed in Wolffian ducts before ZO-1 protein. 

CFTR colocalizes with ZO-1 and modulates the expression of proliferation and differentiation 

genes that are under the control of the ZO-1–ZONAB pathway. The epididymal tubules of 

cftr-/- and cftrF508del/F508del mice have reduced ZO-1 levels, increased ZONAB nuclear 

expression, and decreased epithelial cell differentiation, as illustrated by the reduced 

expression of apical AQP9 and V-ATPase [3]. 

Thus, the defective CREB phosphorylation in CF testis along with the ablation of tight 

junctions and abnormal specific microenvironment in both the testis and epididymis, are 

likely among harmful factors that contribute to reduced number of both Sertoli and germ cells 

[24-25] and germ cell malformations in CF patients [26,27].  

CFTR protein in sperm cells is thought to be important for the activation of the HCO3-

-dependent soluble adenylyl cyclase (sAC) and downstream cAMP/PKA signaling pathway, 

involved in both sperm motility and capacitation [16].   

 

CF mutation is associated with lipid profile abnormalities: Possible relationship 

with sperm parameters.   

At the systemic level the prominent feature of CF is the abnormalities in both serum 

and tissue lipid profiles [5]. This results from the defect in the intestinal handling of nutrients 

and creates a certain state of essential fatty acid and fat-soluble vitamin deficiency [28]. 

Multiple studies performed on cellular and animal models of CF as well as on CF-affected 

individuals and obligate heterozygous have shown alterations in fatty acid composition, 

particularly in the omega-6 and omega-3 PolyUnsaturated Fatty Acid (PUFA). Decreased 

levels of linoleic acid (LA; 18:2n-6), docosahexaenoic acid (DHA; 22:6n-3) and normal to 

increased levels of arachidonic acid (AA; 20:4n-6) have frequently been reported in CF 

plasma, cells and tissues [28,29].  

Sperm cells are unique in many respects including structure and function. Their 

plasma membrane is different from other cells of the body in lipid composition, because of 

the extremely high level of PUFA. Apart sperm cells, such high level of PUFA is found in the 

retina and certain brain areas only. PUFA are known to contribute to membrane fluidity and 

flexibility [30].  
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In human and bull sperm cells the highest concentrations of PUFA (especially DHA) 

are found in the head and tail [31]. High levels of DHA are thought to contribute to sperm cell 

mobility, fusogenicity and special permeability characteristics, required for reaching and 

fusing with oocyte [30]. This notion is supported by studies from rabbit, boar and human 

sperm, which demonstrated the positive correlation of DHA levels and sperm mobility [32-

34]. Besides, classical studies in rodents suffering from essential fatty acid deficiency 

demonstrate a very severe impairment of the spermatogenic tissues [35].  

Though lipid metabolism parameters (such as DHA levels) in the germ cells from CF 

individuals are currently unknown [36], the decrease of motility and capacitation is common 

feature of CF mice [18] and CF patients sperm [17]. Of note is that acquiring the ability to 

move forward and to reach, recognize and bind to the oocyte sperm cells obtain during 

epididymal transit. In both caput and corpus epididymis sperm membrane undergoes 

pronounced modifications after the interaction with proteins and lipids secreted from the 

epididymal epithelium. As result, mature sperm reveals increased membrane fluidity and 

motility due to the increase of PUFA and decrease of cholesterol levels. As recently 

demonstrated in infertile Dicer1 KO mice with immotile sperm, both cholesterol and PUFA in 

the epididymis exert the direct effect on sperm maturation and fertility [34].  

It seems likely that fatty acid deficiency is among the factors affecting CF male 

reproductive tract, while the experimental data are still partial. Thus, in vitro studies in CF 

cellular models revealed the disorganization and the decrease of thickness of Sertoli-cell 

derived membranes, supporting the notion on the profound impact of CFTR on membrane 

phospholipid composition [29, 37]. Moreover, significant disorganization of acrosome and 

head plasma membrane spermatozoa (Fig.1) was detected in heterozygous F508del-CFTR 

individuals (data from our laboratory). This is in good agreement with recent study, which 

demonstrated severely affected sperm head morphology after shifting from optimal lipid 

concentrations [38]. Such abnormalities could be due to epididymal dysfunction of both lipid 

and fluid homeostasis. Therefore, CFTR seems to impact different steps of male gamete 

formation (Fig.2). 

 

Clinical features 

98% of men heterozygous for CF present the Congenital Bilateral Absence of the Vas 

Deferens (CBAVD) - a severe defect making sperm excretion impossible, so that after being 

formed in the testis, the sperm cells are retained in the CF epididymis.  This suggests that the 
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males showing an isolated CBAVD might present a rough or purely genital form of that 

disease [39].  

Observation of a CF fetus suggest that CBAVD happened by secondary atresia of the 

vas deferens which take form normally, then involuted probably because of a permeability 

defect of their lumen [7]. Indeed, no obstruction was detected in both the epididymis and vas 

deferens of human CF fetuses [7,40]. Besides, in pre-pubertal boys with CF, epididymal 

abnormalities are less common than in adult CF patients [3]. This suggests that the 

progressive atrophy of these tissues occurs relatively late during development, reaching its 

maximum in adulthood [3]. Because of the tight association of reproductive and kidney 

system during embryonal development, revealing of CFTR mutations in CBAVD males with 

normal kidney suggests that CFTR dysfunction alters the vas deferens after its separation 

from the kidney system [41]. 

CBAVD is clinically diagnosed when impalpable vas deferens on scrotal examination 

are associated to testes of normal or subnormal size. Its diagnosis needs also biological and 

ultrasound explorations, through the discovery of an azoospermia associated to a lowering of 

the biochemical seminal markers from an epididymal and vesicular origin. Acidic pH, a sperm 

volume <1.5 ml and a very decreased fructose are often observed. However, CF-associated 

CBAVD must be distinguished from the CBAVD associated with kidney anomalies 

(unilateral, kidney agenesis, pelvian kidney, etc.) which show no relationship whatsoever with 

CF [41].  

 

Genetic aspects  

While the most frequent mutation of the CFTR gene is the F508del-CFTR mutation, 

which causes 60% of cases of cystic fibrosis, more than two thousand variants are described 

on the CFTR gene, among them 306 are characterized as CF-causing mutations (CFTR2 

database) Nearly 50% of patients suffering from CBAVD were carrying a frequent and severe 

heterozygous mutation, the F508del-CFTR, present as genetic polymorphism in 3 to 4% of 

the general population [42]. As CF is an autosomal recessive disease (affecting one child out 

of 2 500 to 3 000 with a heterozygous frequency of 1/25), men affected by CBAVD are often 

carrying another anomaly on the second allele, consisting either of another mild mutation or 

of a particular polymorphism aggravating the effect of the first mutation (Fig. 3a). It may 

concern another mutation (R117H is one of the most frequent), or a particular polymorphism 

aggravating the effect of the first mutation. This is the case of the 5T allele due to a polyT 
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polymorphism located in intron 8 of the CFTR gene, whose frequency in CBAVD patients is 

up to six times higher than in the general population [43]. 

The particularity of the 5T allele is to lead to an abnormal maturation of the ARN 

messengers with the excision of exon 9 at the same time as that of introns 8 and 9, which 

results into the synthesis of a truncated protein, therefore inefficient (Fig. 3b). There is a 

variability in the efficiency of the splicing mechanism, among different individuals and 

between different organs of the same individual. Within the same patient, there exists 

variability in the ARN maturation of the CFTR gene according to the tissues, with a less good 

efficiency in the epididymal epithelium than in that of the respiratory tracts [44]. This may 

explain why patients carrying this 5T allele, associated with a mutation on the other allele, 

would be only affected by CBAVD without showing obvious pulmonary signs.  

 

Impact on ART management  

CFTR patients need to proceed with ICSI (Intra Cytoplasmic Sperm Injection). The 

existence of a heterozygous mutation in the patient makes it imperative genetic counseling for 

the partner. Indeed, it is necessary to also find in the patient the presence of a mutation in the 

CFTR gene to establish the risk of transmission of a CF to the child. The prognosis for 

progeny is therefore strongly linked to the genetic status of their partner, whose risk to be 

heterozygous is of 1/25 in case of absence of CF in the family medical background. When the 

two members of the couple are carrying a CFTR gene anomaly, a prenatal diagnosis or a pre-

implantation diagnosis can be proposed. Paradoxically, the situation is more complicated 

when no CFTR anomaly has been found in the partner, which leaves in that case, a residual 

risk as the partner may be carrying a rare and potentially serious mutation leading to a 

possible CF (Fig. 3a). 

Two surgical techniques are currently practiced: Microsurgical Epididymal Sperm 

Aspiration (MESA) and testicular biopsy or TESE (TEsticular Sperm Extraction). In our 

clinical personal experience in our center in Rennes, TESE seems to be more effective [17] in 

CBAVD patients. Indeed, the important rearrangements of sperm cells took place in the 

epididymis. This concerns not only membrane modifications (as described above), but also 

nuclear ones. Ramos and collaborators [45], observed a sperm DNA fragmentation rate 

almost twice as low in the testis as in the epididymis (9.3% vs 17.4%, respectively). 

Moreover, the spermatozoa, whose DNA is fragmented, release a lot of free radicals (ROS: 

Reactive Oxygen Species). These ROS may have a detrimental effect, causing partial 
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fragmentation of the DNA of mature spermatozoa but also affect membrane integrity. Thus, 

by privileging TESE, one would recover fewer spermatozoa, which are often immobile 

comparing to epididymal spermatozoa. In rewards, TESE – recovered spermatozoa seem to be 

morphologically less distorted, supported by efficient Sertoli cells [46]. However as a result of 

CFTR mutations, patients with CBAVD had a significantly increased risk of miscarriage and 

stillbirth and a reduced rate of live birth compared with patients with non-CBAVD [47]. 

 

 

Conclusion 

CFTR provides establishment of adequate environment for germ cell development in 

the testis and maturation in the epididymis, which is achieved through the maintenance of 

both fluid and lipid homeostasis. Atresia of Vas deferens in heterozygous CF patients leads to 

the retaining of sperm cells in epididymal compartment with abnormal composition. This may 

aggravate a detrimental effect of CF mutation on the integrity of sperm cells. Therefore for 

ART management, testicular biopsy is recommended over microsurgical epididymal sperm 

aspiration. 
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Figure Legends: 

Figure 1: Electron micrograph reveals acrosomal membrane defects  in spermatozoa of CF patient 

comparing to normal patient . 

 

Figure 2: Hot points of CFTR mutations on male reproductive tract. 

 

Figure 3: Phenotypic variability in CBAVD patients according the type of CFTR mutation. 










