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Abstract

This paper proposes the integration and analysis of a closed-loop model of the

baroreflex and cardiovascular systems, focused on a time-varying estimation of

the autonomic modulation of heart rate in Brugada syndrome (BS), during ex-

ercise and subsequent recovery. Patient-specific models of 44 BS patients at

different levels of risk (symptomatic and asymptomatic) were identified through

a recursive evolutionary algorithm. After parameter identification, a close match

between experimental and simulated signals (mean error = 0.81%) was observed.

The model-based estimation of vagal and sympathetic contributions were consis-

tent with physiological knowledge, enabling to observe the expected autonomic

changes induced by exercise testing. In particular, symptomatic patients pre-

sented a significantly higher parasympathetic activity during exercise, and an

autonomic imbalance was observed in these patients at peak effort and during

post-exercise recovery. A higher vagal modulation during exercise, as well as an

increasing parasympathetic activity at peak effort and a decreasing vagal con-

tribution during post-exercise recovery could be related with symptoms and,

thus, with a worse prognosis in BS. This work proposes the first evaluation of

the sympathetic and parasympathetic responses to exercise testing in patients
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suffering from BS, through the recursive identification of computational models;

highlighting important trends of clinical relevance that provide new insights into

the underlying autonomic mechanisms regulating the cardiovascular system in

BS. The joint analysis of the extracted autonomic parameters and classic elec-

trophysiological markers could improve BS risk stratification.

Keywords: Autonomic nervous system, Brugada syndrome, computational

model, recursive identification

1. Introduction

Brugada syndrome (BS) is an inherited disorder presenting a distinctive

electrocardiographic (ECG) pattern associated with an elevated risk for sudden

cardiac death (SCD) [1]. Major cardiac events in this population typically occur

at rest and mainly at night, suggesting that the autonomic nervous system5

(ANS) function, and more specifically the parasympathetic activity, may play

a relevant role in the pathophysiology, arrhythmogenesis and prognosis of the

disease [2, 3, 4].

However, previous studies on the ANS function of BS patients have led to

conflicting results, particularly when based on long-term measurements. Krit-10

tayapong et al. concluded that BS patients showed a decreased heart rate

variability (HRV) and vagal tone at night compared to controls; as well as a

lower diurnal and higher overnight heart rate (HR) when symptomatic patients

were compared to asymptomatic subjects and controls [5]. Likewise, Hermida

et al. found significantly lower HRV values at night on symptomatic patients15

[6]; and Pierre et al. observed a decreased HRV in BS patients, with respect

to healthy subjects [7]. Results from Tokuyama et al. also showed a signifi-

cant HRV reduction on BS patients with respect to controls, as well as on both

sympathetic and parasympathetic tones and on their circadian variation over

24 hours [8].20

In a previous study from our team [9], although symptomatic BS patients

showed a decreased heart rate variability and complexity at night, with re-
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spect to asymptomatic subjects, no significant differences were observed be-

tween groups on sympathetic and parasympathetic modulations. On the other

hand, in Nakazawa et al., results showed higher vagal and reduced sympathetic25

tones in symptomatic BS patients [10]. Likewise, in a recent work from Be-

har et al., symptomatic subjects showed an increased parasympathetic activity

during both daytime and nighttime, when compared to asymptomatic patients

[11]. Finally, HRV analysis in Kostopoulou et al. did not reveal any significant

difference between BS patients and controls [12].30

Thus, in order to better characterize autonomic modulation, standard ma-

neuvers such as exercise testing can be applied. Exertion causes a sympathetic

activation that, together with a parasympathetic inhibition, increases HR, a

reliable indicator to evaluate cardiac autonomic function [13]. Conversely, post-

exercise cardiodeceleration is adjusted by parasympathetic activation and sym-35

pathetic withdrawal [14]. Indeed, some studies have already reported the po-

tential of exercise testing in BS [15, 16, 17, 18]. Amin et al. [19] found a higher

parasympathetic reactivation during early recovery after exertion in BS patients

with prior ventricular fibrillation events. Likewise, Makimoto et al. concluded

that a higher vagal activity after exercise was related to the occurrence of cardiac40

events in BS [20].

Although classical temporal and spectral markers are widely used in clini-

cal practice for ANS analysis [21], conventional methods have failed to estimate

sympathetic and parasympathetic responses to exercise, even in healthy subjects

[22], but also in Brugada syndrome patients [18, 23]. Nevertheless, since compu-45

tational models can directly represent interactions between the cardiovascular

system (CVS) and the ANS, model-based reasoning could provide useful knowl-

edge to support autonomic response interpretation in BS. Indeed, in a previous

work, we already reported the feasibility of the application of such computa-

tional models to reproduce cardiovascular data acquired during head-up tilt50

testing on a healthy subject and on a BS patient [24]. However, the identifi-

cation method applied to the system-level models used in this work could only

explain the mechanical, circulatory and autonomic sympathetic functions of the
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cardiovascular system. To tackle this limitation, high-frequency oscillations in-

duced by the parasympathetic regulation of the ANS can be estimated through55

recursive identification.

Therefore, in this work we propose a novel approach based on the recursive

identification of a previously developed and validated closed-loop mathemati-

cal model of the baroreflex and cardiovascular systems, in order to estimate the

time-varying sympathetic and parasympathetic contributions to HR modulation60

during exercise and subsequent recovery on Brugada patients. Patient-specific

models were adjusted for 44 BS patients with different levels of risk (13 symp-

tomatic and 31 asymptomatic) so as to reproduce their HR during exercise

testing and, thus, analyze their underlying autonomic function. The paper is

organized as follows: in section 2, the experimental protocol and data under65

study are presented, the computational model is described and the recursive

identification method is explained. In section 3, the results of applying the de-

scribed methods are presented and discussed. Conclusions are finally specified

in section 4.

2. Material and Methods70

2.1. Study population

The standard 12-lead ECG recordings from 44 patients diagnosed with BS

who took part in a physical stress test were collected during a multicentric

study conducted in the Cardiology department of the Rennes University Hospi-

tal (France). Participants were enrolled in 6 French hospitals located in Rennes,75

Saint Pierre de la Reunion, Nantes, Bordeaux, Brest and La Rochelle. The study

protocol was approved by the respective local ethics committees and all patients

provided written informed consent before participation.

In accordance with current guidelines [25], BS was diagnosed when a coved

ST-segment elevation (≥ 0.2 mV) was identified in at least one right precordial80

lead (V1 and/or V2) located in the 2nd, 3rd or 4th intercostal space, in the

presence or absence of sodium-channel-blocking agent.
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In order to characterize populations with different levels of risk, patients

were classified as symptomatic or asymptomatic, based on their medical his-

tory. Thirteen patients presented documented symptoms of ventricular origin:85

syncope (61.5%), cardiac arrest (38.5%) and dizziness (15.4%), whereas the re-

maining 31 patients were considered as asymptomatic.

Patients age ranged from 19 to 74 years old (45.07 ± 12.59 years old) and

33 (75%) were males. Cardioverter Defibrillator (ICD) implantation had been

performed in 6 of 31 (19.4%) asymptomatic patients, based on a positive Elec-90

trophysiological study (EPS) test, whereas all symptomatic patients were ICD

carriers. Among 31 patients (11 were symptomatic) in whom genetic screening

was performed, an SCN5A mutation was found in 13 (41.9%), from whom 6

were symptomatic.

Table 1 summarizes the clinical characteristics of patients included in the95

study. Since all between-groups differences, apart from ICD implantation, were

statistically non-significant, similar baseline characteristics were assumed be-

tween populations.

Table 1: Clinical characteristics of BS patients.

Symptomatic Asymptomatic p-value

(n=13) (n=31)

Age, years old 43.62 ± 14.51 45.68 ± 11.90 0.322

Male sex, n (%) 11 (84.6%) 22 (71%) 0.355

ICD implantation, n (%) 13 (100%) 6 (19.4%) <0.001

SCN5A mutation, n (%) 6 (46.2%) 5 (25%) 0.311

Values are mean ± standard deviation or number of observations (%).

Comparisons are based on Mann-Whitney U non-parametric tests.

2.2. Experimental protocol and data

Participants underwent a triangular exercise test recommended by the Amer-100

ican Heart Association [26], which was performed on a cyclo ergometer (Ergoline
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900 Egamed, Piestany, Slovakia) and divided in the following phases, repre-

sented in Fig. 1:

• Exercise phase:

– Warm-up phase: for men, initial load of 50 watts (W); for women,105

initial load of 30 W, both for 2 minutes.

– Incremental exercise phase: for men, initial load of 80 W for 2 minutes

and then incrementing 20 W every 2 minutes; for women, initial load

of 50 W, increasing 20 W every 2 minutes. For each patient, the

load was increased until it reached the 80% of his/her theoretical110

maximum heart rate, defined by the formula MHR = 220−age [27].

• Recovery phase: for men, fixed load of 50 W; for women, fixed load of 30

W, both for 3 minutes.

ECG data were acquired with the Holter monitor (ELA medical, Sorin

Group, Le Plessis Robinson, France) at a sampling frequency of 1000 Hz. From115

these signals, R-wave peaks were identified from the lead presenting the highest

signal-to-noise ratio (SNR), by means of a noise-robust wavelet-based algorithm

[28], in order to obtain the intervals of consecutive R-wave peaks (RR-interval

series).

Since the result is a non-uniformly sampled signal, a cubic-spline interpola-120

tion was applied to RR-interval series, to obtain regularly sampled data at a rate

of 10 Hz, which was the model sample rate chosen so as to obtain a reasonable

recursive identification computational cost.

2.3. Computational model

Based on our previous works in cardiovascular modeling [29, 30, 31, 24],125

the proposed model was composed of two coupled submodels representing the

cardiovascular system (CVS) and the baroreceptors reflex system (BRS), con-

nected through the HR resulting from the BRS submodel and the systemic

arterial pressure coming from the CVS.
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Figure 1: Representative example of RR-interval series observed during exercise testing. The

test was divided in three phases: warm-up, incremental exercise and recovery. Due to differ-

ences in exercise durations for each patient, recursive identifications were separately performed

at the beginning and at the end of the test (exercise and recovery analysis, respectively). Ex-

ercise analysis included the warm-up phase and the first 3 minutes of incremental exercise;

while recovery analysis was based on the last minute of exertion before peak effort and the

recovery phase.

2.3.1. Cardiovascular system130

As illustrated in Fig. 2, the hemodynamic effects of exercise testing were

represented by implementing the cardiovascular model defined in [32].

Volumes (V ) from each cardiac chamber are obtained from the integral of

their respective net flows (Qin − Qout). Blood pressure (P ) is then computed

from the pressure-volume relationships associated with systole (Pes) and dias-135

tole (Ped), and a periodic function (e(t)) drives the transition between these

relationships as follows [32]:

P (V, t) = e(t)Pes(V ) + (1− e(t))Ped(V ) , (1)

Pes(V ) = E · (V − Vd) , (2)

Ped(V ) = P0 · (exp[λ(V − V0)]− 1) , (3)

e(t) = A · exp[−B · ((t− ts)− C)2] . (4)

E refers to the systolic elastance and Vd is the dead volume, respectively

representing the slope and intercept of the linear pressure-volume relationship140
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Figure 2: Closed-loop model of the cardiovascular system. E: elastance; R: resistance; P:

pressure; V: volume; sys: systemic; pul: pulmonary; pv: pulmonary vein; pa: pulmonary

artery; pu: pulmonary valve; av: aortic valve; tc: tricuspid valve; mt: mitral valve; ao: aorta;

vc: venae cavae; LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle.

associated with systole. During diastole, this relationship is non-linear and is

described by a gradient (P0), a curvature (λ) and a volume at zero pressure

(V0). Eq. 4 defines the transition between diastolic and systolic dynamics,

modulated by a Gaussian function with amplitude A, width B and center C;

and ts refers to the cardiac cycle onset, determined by the HR resulting from145

the BRS submodel.

Atria were not included in the model since they minimally contribute to

main cardiac trends. However, in order to account for relevant ventricular in-

teractions, ventricles were coupled through the septum, represented as a flexible

common wall between left and right ventricles. The left ventricle (LV) free wall150

volume (VLV f ) and the right ventricle (RV) free wall volume (VRV f ) are defined

as [32]:
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VLV f = VLV − Vspt , (5)

VRV f = VRV + Vspt . (6)

where Vspt, VLV and VRV are respectively the septum, LV and RV volumes.

Then, the septum volume results from linking the septum pressure (Pspt) to the

difference between left and right ventricular pressures [32]:155

Pspt = PLV − PRV , (7)

Pspt = e(t)Espt · (Vspt − Vd,spt) + (1− e(t))P0,spt(exp[λ(V − V0)]− 1). (8)

Diodes simulate the one-way direction of blood when passing through valves

located at the inlet and exit of ventricles. Pressures on the peripheral circulation

systems are calculated as a linear relationship between their volume and vascular

elastance, following eq. 2. Finally, flows between chambers are obtained from

the equation Q = ∆P
R , where ∆P is the pressure gradient between two chambers160

and R accounts for the corresponding vascular resistance connecting them.

2.3.2. Baroreflex model

Sympathetic and parasympathetic efferent responses to arterial blood pres-

sure regulation were modeled based on a widely used approach [33, 34], repre-

sented in Fig. 3.165

The systemic arterial pressure registered at the CVS submodel was used as

the input pressure for the baroreflex system which, in turn, modulated the HR

used as input of the CVS submodel, thus defining the closed-loop model.

Baroreceptors dynamical properties are represented by a first-order transfer

function, whose gain and time constant are KB and TB . Then, cardiovascular170

control is represented, in both sympathetic and vagal branches, by a sigmoidal

function and delays DS and DV , respectively. Sympathetic and parasympa-

thetic contributions are modulated by two time-varying variables, ZS and ZV ,
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Figure 3: Diagram of the baroreflex model for cardiovascular regulation. From the arterial

pressure registered at the systemic circulation (Pao), the baroreflex system controls heart rate

(HR) and other cardiovascular variables (θ), such as ventricular contractility or elastance,

systemic resistance and venous dead volume. KB : baroreceptors gain, TB : baroreceptors

time constant, DV : vagal delay, ZV : exogenous vagal modulation, KV : vagal gain, TV : vagal

time constant, V : vagal modulation, DS : sympathetic delay, ZS : exogenous sympathetic

modulation, KS : sympathetic gain for HR regulation, TS : sympathetic time constant for HR

regulation, S: sympathetic modulation for HR modulation, HR0: instrinsic heart rate, Kθ:

sympathetic gain for contractility, elastance, resistance and venous dead volume regulation,

∆θ: sympathetic modulation for contractility, elastance, resistance and venous dead volume

regulation.

to account for the influence of exogenous phenomena and collect all the variabil-

ity caused by sources other than blood pressure fluctuations (central modulation,175

respiration, etc.).

For chronotropic regulation, each efferent pathway is finally modeled with a

first-order filter, characterized by a gain (KV , KS) and a time constant (TV , TS).

The output HR is the result of adding the contributions of both sympathetic

(S) and vagal (V ) branches to the intrinsic heart rate (HR0):180

HR = HR0 + S − V. (9)

Finally, other sympathetic branches control ventricular contractility or elas-

tance (E), systemic resistance (R) and venous dead volume (V V d) through a
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first-order filter characterized by the sympathetic time constant TS and the gain

related to each branch Kθ, where θ ∈ {E,R, V V d}. Being θ0 the baseline re-

sponse and ∆θ the baroreflex regulation, the output response for each regulated185

variable is defined as:

θ = θ0 + ∆θ. (10)

2.4. Recursive identification

All model parameters other than ZS and ZV were fixed based on the litera-

ture [32, 33, 35], in order to reduce identification computational cost and focus

the estimation on autonomic modulation. Their values are provided as Sup-190

plementary material (Tables I and II). Although the identification of a greater

amount of model parameters may modify results in absolute value, the same

autonomic tendencies throughout the test are expected.

As illustrated in Fig. 4, at each step i of the recursive algorithm, parameters

ZS and ZV were identified on a time interval TI of duration largely inferior to195

the RR-interval series length TTOT (TI << TTOT ). At each step, simulated

(RRsim) and experimental (RRexp) signals were compared in order to minimize

the error function εRR(i), defined as:

εRR(i) =

(i+1)TL∑
te=iTL

|RRsim(te)−RRexp(te)| +

iTL+TI∑
te=iTL

|RRsim(te)−RRexp(te)|, i ∈ [0, · · · , N ] (11)

where te is the time elapsed since the onset of the identification period, TL

corresponds to the overlap time between each interval and N = bTTOT /TLc200

is the number of identification intervals. The time windows involved in the

recursive identification algorithm are also represented in Fig. 4.

The overlap time duration TL was set equal to the parasympathetic time

constant (TV ) to capture rapid fluctuations due to vagal response; whereas
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Figure 4: Diagram of the recursive identification algorithm and time windows involved. TL:

overlap window; TI : identification window; εRR(i): error function. For visualization purposes,

TL and TI temporal supports were enlarged in this figure and do not illustrate representative

time windows.

interval TI was set as the sympathetic time constant (TS) in order to take into205

account the low frequency component causing RR-interval series slow variations.

As in previous works of our team [36, 37], the best set of {ZS , ZV } pa-

rameters for each patient was identified on each interval i, through an approach

based on evolutionary algorithms [38]. The initial population, or first set of can-

didate optimization solutions, was randomly generated. For the following steps,210

assuming limited parameter variations between intervals, the initial population

was set equal to that obtained from the previous interval i − 1. Although this

approach limits parameter variations, mutation probability was set to pm = 0.2

in order to stimulate the exploration of the entire search space and prevent from

convergence to local minima.215

These recursive identifications were separately performed during exercise

and recovery. Since each patient test differed in the incremental exercise phase

duration and the shortest case in our clinical series lasted less than 5 minutes, as
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represented in Fig. 1, for exercise analysis, only the warm-up phase and the first

3 minutes of incremental exertion were identified. Then, for recovery analysis,220

the last minute of exertion and the first 3 minutes of recovery, were assessed.

In order to quantify identification performance, the error between simulated

and experimental RR-interval series for both exercise (eexercise) and recovery

(erecovery) phases was expressed in percentage and computed as:

εX =
1

n

n∑
i=1

|100 · RRsim(i)−RRexp(i)
RRexp(i)

|, (12)

where n is the number of samples being compared andX ∈ {exercise, recovery}.225

Due to identification errors caused by initialization, the first minute of warm-up

was removed from exercise analysis, as well as the first 30 seconds of the last

minute of exertion were eliminated from recovery analysis.

2.5. Statistical analysis

The identified time-varying sympathetic (S) and parasympathetic (V ) con-230

tributions to exercise and subsequent recovery were then compared between

symptomatic and asymptomatic patients, by Mann-Whitney U non-parametric

tests. In order to compare the last minute of exertion and recovery, all patients

were synchronized with respect to the peak effort instant.

The autonomic response to exercise testing was also analyzed by fitting linear235

regression models to the estimated S and V of each patient, for the last minute

of warm-up, the first, second and third minutes of incremental exercise, the last

30 seconds of exertion, and the first, second and third minutes of recovery.

3. Results and Discussion

Based on visual inspection and error results (eexercise = 1.10 ± 0.54%,240

erecovery = 0.52± 0.16%), a satisfactory agreement was observed between sim-

ulated signals and real data, leading to errors always inferior to 3.5%. Fig.

5 and 6 illustrate examples of simulated and experimental RR-interval series
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during the last minute of warm-up and the first 3 minutes of incremental exer-

cise (eexercise = 1.7%), and during the last 30 seconds of effort and the first 3245

minutes of recovery (erecovery = 0.32%).

0 0.5 1 1.5 2 2.5 3 3.5 4

time (min)

400

600

800

1000

1200

R
R

(m
s)

Experimental RR

Simulated RR

Figure 5: Simulated (orange) and experimental (black) RR-interval series during the last

minute of warm-up and the first 3 minutes of incremental exercise (eexercise = 1.7%). The

dashed vertical line delimits the end of warm-up and subsequent incremental exercise onset.

Figure 6: Simulated (orange) and experimental (black) RR-interval series during the last 30

seconds of exercise and the first 3 minutes of recovery (erecovery = 0.32%). The dashed

vertical line delimits the peak effort and subsequent recovery onset.

Fig. 7 shows the mean vagal and sympathetic contributions of the auto-

nomic response to exertion, for symptomatic and asymptomatic patients. In

both groups, vagal modulation remained low along the whole exercise phase

and decreased as the test progressed. Conversely, sympathetic contribution in-250

creased during exercise, and specially after warm-up. Moreover, symptomatic

patients presented significantly higher parasympathetic values around the sec-

ond minute of incremental exercise, and mainly at the end of warm-up, where

this group also presented significantly higher sympathetic values.

These results are in agreement with those found in the literature, where a255
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Figure 7: Mean estimation of vagal (V ) and sympathetic (S) contributions, for symptomatic

(orange) and asymptomatic (black) patients, during exercise. Dashed vertical lines delimit the

end of warm-up and subsequent incremental exercise onset. Pointed boxes indicate those seg-

ments where significant differences between groups (∗p < 0.05) were found. Dashed horizontal

lines represent the standard deviations for each group.

higher vagal modulation has been observed in symptomatic BS patients [11, 10].

Although some significant differences were also found after 1 minute of incre-

mental exercise, the largest and most significant segment was observed at the

end of warm-up. Moreover, sympathetic activity in this phase was also found

to be higher in symptomatic patients, contrary to tendencies found in previ-260

ous publications based on classical spectral markers [8, 10]. Nevertheless, many

studies on cardiac autonomic function based on classic approaches have failed to

represent the sympathetic response to exercise testing, even in healthy subjects

[22], since the LF component does not provide an index of sympathetic tone but

rather reflects a complex interplay among many factors including the sympa-265

thetic and parasympathetic contributions to ANS. Similarly, our previous works

based on conventional time-frequency methods failed to estimate the autonomic

response to exercise testing in this population [18, 23]. Thus, model-based rea-

soning may provide better estimations of the sympathetic and parasympathetic
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contributions to HR modulation during exercise.270

In Fig. 8, the mean vagal and sympathetic contributions during recovery,

for symptomatic and asymptomatic patients, are represented. After the peak

effort, an increase in parasympathetic activity, as well as a decrease in sympa-

thetic modulation can be observed for both groups. Although no statistically

significant differences related to symptomatic status were found on the vagal275

modulation, at the end of the second minute of recovery, symptomatic patients

presented significantly lower sympathetic values. These findings concur with a

previous work where a lower sympathetic activity was reported in symptomatic

patients [10].

Figure 8: Mean estimation of vagal (V ) and sympathetic (S) contributions, for symptomatic

(orange) and asymptomatic (black) patients, during post-exercise recovery. Dashed vertical

lines delimit the end of exertion and subsequent recovery onset. The pointed box indicates

the segment where significant differences between groups (∗p < 0.05) were found. Dashed

horizontal lines represent the standard deviations for each group.

Finally, the slopes from the adjusted linear regression models were compared280

between symptomatic and asymptomatic populations. Since no statistically sig-

nificant results were obtained for these slopes during exercise analysis, Table 2

summarizes, for each analyzed period during recovery, the mean ± standard de-
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viation values obtained for each group of patients, together with their associated

p-values.285

Table 2: Mean ± standard deviation slopes for sympathetic and parasympathetic contribu-

tions (in Hz), and associated p-values, from symptomatic and asymptomatic patients, at peak

effort and during different periods of recovery after exertion (*p <0.05). Comparisons are

based on Mann-Whitney U non-parametric tests.

Symptomatic Asymptomatic p-val

(n=13) (n=31)

Peak effort (30 sec)

Sympathetic 0.09 ± 0.30 -0.03 ± 0.25 0.26

Parasympathetic 0.09 ± 0.22 -0.11 ± 0.25 0.03*

Recovery (1st min)

Sympathetic -0.21 ± 0.26 -0.18 ± 0.27 0.72

Parasympathetic 0.15 ± 0.29 0.15 ± 0.25 0.82

Recovery (2nd min)

Sympathetic -0.22 ± 0.22 -0.02 ± 0.35 0.05

Parasympathetic -0.03 ± 0.18 0.16 ± 0.33 0.04*

Recovery (3rd min)

Sympathetic 0.13 ± 0.40 -0.11 ± 0.51 0.12

Parasympathetic 0.26 ± 0.46 -0.01 ± 0.51 0.11

Symptomatic and asymptomatic patients showed significant differences in

vagal modulation, when compared at peak effort and during the second minute

of recovery. Fig. 9 illustrates the mean slope for symptomatic and asymptomatic

populations at peak effort and during recovery, highlighting those segments

where significant differences were found.290

Although results show non-negligible standard deviations, on average, the

simulated vagal contribution was consistent with physiological knowledge on

asymptomatic patients, decreasing at peak effort and increasing throughout

post-exercise recovery. However, significant alterations were noted on symp-

tomatic patients, showing a mean positive slope at peak effort and a descending295
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Figure 9: Mean linear regression models adjusted to the estimation of vagal modulation at

peak effort and during post-exercise recovery, for symptomatic (orange) and asymptomatic

(black) patients. Dashed vertical lines delimit the analyzed periods and segments presenting

statistically significant differences between populations are noted (*p <0.05).

trend during the second minute of recovery.

Thus, these findings provide further evidence for the role of autonomic im-

balance in the pathophysiology of BS. However, since this study is based on a

relatively small population of 44 BS patients, the moderately significant differ-

ences found between analyzed groups should be interpreted carefully. Indeed,300

the fact that corrected p-values would lead to non-significant results, indicates

that reliable physiological interpretations should be extracted by means of larger

clinical series. Moreover, the analyzed population presents a significant imbal-

ance between symptomatic and asymptomatic groups; although this is a com-

mon scenario in BS, where symptoms refer to recovered SCD or syncope and,305

thus, they are usually found in a small amount of patients. Indeed, most previ-

ously reported studies on BS autonomic function are based on clinical series of

similar, or even smaller, sizes [5, 6, 10, 7, 12, 8], as well as most works reporting

the identification of computational models are based on small populations. Fi-

nally, the identifiability of estimated parameters could not be analyzed in this310

work. Although several methods have been proposed for identifiability analy-

sis, they become mathematically intractable with increasing model complexity.

Since the proposed model is based on several complex non-linear equations, the

use of classic knowledge-based identifiability methods had to be discarded.

Nevertheless, the implemented model-based approach provides the first time-315
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varying autonomic estimation in the context of BS, highlighting the relevance of

exercise testing in order to unmask significant changes in ANS modulation that

may not be captured at daytime, during a regular ECG examination. Indeed,

this altered autonomic cardiac system dynamics during post-exercise recovery,

when vagal contribution is predominant, concurs with previous studies reporting320

an increase in Brugada-like ECG changes induced during vagal stimulation [39],

as well as with the fact that most life-threatening cardiac arrhythmias in BS

occur at rest and during sleep, when parasympathetic activity is predominant

[40, 2]. Furthermore, the results confirm previous findings where symptomatic

BS patients showed a higher vagal modulation [11, 10, 8] with respect to asymp-325

tomatic patients, supporting the idea that increased vagal responses could be

related to a worse prognosis in Brugada syndrome.

4. Conclusions

Conventional methods have been proved insufficient for autonomic function

analysis. Therefore, in this work, we propose an original model-based approach330

to characterize ANS dynamics in response to exertion. It is based on a recur-

sively identified closed-loop model of the baroreflex and cardiovascular systems,

introducing: i) patient-specific model parameter recursive identifications and ii)

estimations of the time-varying sympathetic and parasympathetic modulations

of the heart rate.335

The model was evaluated with data from 44 BS patients, acquired during

exercise testing, to compare the autonomic function of symptomatic and asymp-

tomatic BS populations. Results show a close match between experimental and

simulated signals. Moreover, estimations of sympathetic and parasympathetic

components were consistent with physiological knowledge, showing the feasibil-340

ity of the model to reproduce realistic autonomic responses to exercise.

According to results, a significantly higher parasympathetic activity was

observed in symptomatic patients during warm-up and incremental exercise,

providing further evidence for the role of vagal contribution in BS progno-
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sis. Moreover, during post-exercise recovery, parasympathetic modulation on345

symptomatic patients indicated an autonomic imbalance. Thus, this original

approach enables to unmask indicators capturing cardiovascular and autonomic

dynamics, never before studied in BS, that may be useful for risk stratification.

We believe that a robust BS risk stratification should be based on a combination

of both classical electrophysiological features, but also on this kind of markers350

providing an improved estimation of the autonomic activity.

More extensive evaluations including a wider range of parameters, a greater

population of patients, as well as the possibility of adjusting parameters based

on not only the HR, but also the blood pressure, should be performed in the

future. Furthermore, the proposed model could be enriched by including a355

representation of cardiorespiratory interactions [33].

Nevertheless, this paper presents the first model-based approach towards the

evaluation of the time-varying autonomic response to exertion in BS patients,

showing results that indicate trends of clinical relevance and, thus, provide a

step forward towards the understanding of the disease.360
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A. Hernández, Sex-specific analysis of the cardiovascular function, 1st Edi-

tion, Springer International Publishing, 2018, Ch. 7b: Gender differences450

in the autonomic response to exercise testing in Brugada syndrome.

[24] M. Calvo, V. Le Rolle, D. Romero, N. Behar, P. Gomis, P. Mabo, A. I. Her-

nandez, Analysis of a cardiovascular model for the study of the autonomic

response of brugada syndrome patients, in: Engineering in Medicine and

23

Acc
ep

ted
 m

an
us

cri
pt



Biology Society (EMBC), 2016 IEEE 38th Annual International Conference455

of the IEEE, 2016, pp. 5591–5594.

[25] S. G. Priori, C. Blomström-Lundqvist, A. Mazzanti, N. Blom, M. Borggrefe,

J. Camm, P. Elliott, D. Fitzsimons, R. Hatala, G. Hindricks, et al., Task

force for the management of patients with ventricular arrhythmias and the

prevention of sudden cardiac death of the european society of cardiology460

(esc). 2015 esc guidelines for the management of patients with ventricular

arrhythmias and the prevention of sudden cardiac death: the task force

for the management of patients with ventricular arrhythmias and the pre-

vention of sudden cardiac death of the european society of cardiology (esc)

endorsed by: Association for european paediatric and congenital cardiology465

(aepc), Europace 17 (2015) 1601–1687.

[26] R. J. Gibbons, G. J. Balady, J. T. Bricker, B. R. Chaitman, G. F. Fletcher,

V. F. Froelicher, D. B. Mark, B. D. McCallister, A. N. Mooss, M. G.

O’Reilly, et al., Acc/aha 2002 guideline update for exercise testing: sum-

mary article: a report of the american college of cardiology/american heart470

association task force on practice guidelines (committee to update the 1997

exercise testing guidelines), Journal of the American College of Cardiology

40 (8) (2002) 1531–1540.

[27] S. Fox 3rd, W. Haskell, Physical activity and the prevention of coronary

heart disease, Bulletin of the New York Academy of Medicine 44 (8) (1968)475

950–965.

[28] J. Dumont, A. I. Hernandez, G. Carrault, Improving ecg beats delineation

with an evolutionary optimization process, IEEE Transactions on Biomed-

ical Engineering 57 (3) (2010) 607–615.

[29] A. I. Hernandez, V. Le Rolle, D. Ojeda, P. Baconnier, J. Fontecave-Jallon,480

F. Guillaud, T. Grosse, R. G. Moss, P. Hannaert, S. R. Thomas, Integration

of detailed modules in a core model of body fluid homeostasis and blood

24

Acc
ep

ted
 m

an
us

cri
pt



pressure regulation, Progress in Biophysics and Molecular Biology 107 (1)

(2011) 169–182.

[30] V. Le Rolle, D. Ojeda, A. I. Hernández, Embedding a cardiac pulsatile485

model into an integrated model of the cardiovascular regulation for heart

failure followup, IEEE transactions on biomedical engineering 58 (10)

(2011) 2982–2986.

[31] H. M. Romero-Ugalde, D. Ojeda, V. L. Rolle, D. Andreu, D. Guiraud, J.-L.

Bonnet, C. Henry, N. Karam, A. Hagege, P. Mabo, G. Carrault, A. I. Her-490

nandez, Model-based design and experimental validation of control modules

for neuromodulation devices, Biomedical Engineering, IEEE Transactions

on 63 (7) (2015) 1551–1558.

[32] B. W. Smith, J. G. Chase, R. I. Nokes, G. M. Shaw, G. Wake, Minimal

haemodynamic system model including ventricular interaction and valve495

dynamics, Medical engineering & physics 26 (2) (2004) 131–139.

[33] V. Le Rolle, A. I. Hernández, P.-Y. Richard, G. Carrault, An autonomic

nervous system model applied to the analysis of orthostatic tests, Modelling

and Simulation in Engineering 2008 (2008) 2.

[34] M. Ursino, E. Magosso, Acute cardiovascular response to isocapnic hypoxia.500

i. a mathematical model, American Journal of Physiology-Heart and Cir-

culatory Physiology 279 (1) (2000) H149–4165.

[35] A. I. Hernandez Rodriguez, Fusion de signaux et de modèles pour la
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