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Abstract

The Trefftz discontinuous Galerkin (TDG) method provides natural well-balanced (WB) and
asymptotic preserving (AP) discretization since exact solutions are used locally in the basis func-
tions. However, one difficult point may be the construction of such solutions which is a necessary
first step in order to apply the TDG scheme. This works deals with the construction of solutions
to Friedrichs systems with relaxation with application to the spherical harmonics approximation of
the transport equation (the so-called PN models). Various exponential and polynomial solutions
are constructed. Two numerical tests on the P3 model illustrate the good accuracy of the TDG
method. They show that the exponential solutions lead to accurate schemes to capture boundary
layers on a coarse mesh and that a combination of exponential and polynomial solutions is efficient
in a regime with vanishing absorption coefficient.

1 Introduction
Trefftz methods use exact solutions of a given partial differential equation (PDEs) as basis functions
for the numerical approximation. Nevertheless, despite their great potential for the improvement of
Finite Element Methods (FEM) solvers [34] or for the enrichment of Discontinuous Galerkin (DG)
approximations [33], Trefftz methods are scarcely used nowadays [24]. One reason is the limited
number of different Trefftz basis functions available in the literature. Indeed, for Trefftz methods,
one has to construct new basis functions for every different class of PDEs: only after this task is
accomplished, then it is possible to measure the gain in accuracy with respect to more conventional
methods, or to incorporate them in general FEM or DG solvers [9, 11, 17, 23, 29]. One of the difficulty
when applying the TDG method is therefore to find solutions to the system considered. Our objective
in this work is precisely to contribute to this global program by constructing new exact solutions to
general Friedrichs systems with relaxation, in view of their use as basis functions for an original Trefftz
Discontinuous Galerkin (TDG) method. The Friedrichs systems with have in mind can be seen as
extensions of wave like models already treated in [18, 29]. With respect to the literature on Trefftz
methods, we introduce a new generic non-zero relaxation matrix which is representative of dissipation
mechanisms often encountered in complex physics.

More specifically, the model problem throughout this work writes as(
A0∂t +A1∂x +A2∂y

)
u(t,x) = −R(x)u(t,x), (1)

where the space coordinates is x = (x, y), the real matrices are symmetric A1 = AT1 , A2 = AT2 ,
R(x) = R(x)T ∈ Rm×m is piecewise constant per cell and the vectorial unknown is u ∈ Rm. The
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matrix on the right hand side may strongly depend on the space variable x. This model can be
motivated as an angular discretization of a linear Boltzmann equation which is a transport/kinetic
equation where the physics is modeled with linear interaction relaxation operators (4). We adopt a
convention, which comes from the physics of transfer or neutron propagation [22], that the matrices
A1 and A2 have a block structure

A1 = c

(
0 A
AT 0

)
∈ Rm×m, A2 = c

(
0 B
BT 0

)
∈ Rm×m, (2)

where A, B ∈ Rme×mo are constant rectangular matrices (me + mo = m). The coefficient c > 0 is
a constant non dimensional wave velocity. For the purposes of mathematical manipulation, the first
matrix is A0 = εIm ∈ Rm×m where Im ∈ Rm×m is the identity matrix and 0 < ε ≤ 1 indicates a
possible rescaling of the time variable. If the relaxation matrix on the right hand side is zero, then our
model is the same as in [18, 29, 15]. The originality of our methods comes from the non zero relaxation
matrix. A natural structure which models relaxation mechanisms is R + Rt ≥ 0. In our work, we
follow closely the convention proposed in [22] by taking

R =

(
R1 0
0 R2

)
∈ Rm×m, (3)

where R1 and R2 are both diagonal matrices R1 := diag(εσa, σt, ..., σt) ∈ Rme×me , R2 := σtImo ∈
Rmo×mo , with Imo the identity matrix of Rmo×mo . For transfer models [22] σa ≥ 0 is the absorption
coefficient and σs ≥ 0 is the scattering coefficient. The weighted sum of the scattering and absorption
coefficients will be denoted as

σt := σεt := εσa +
σs
ε
, σa, σs ∈ R+.

When the scaling parameter ε → 0, the model problem admits a diffusion limit [22, 8]. General
references which provide accurate numerical methods for the diffusion limit are [3, 8, 19, 27] for
asymptotic-preserving methods and [13, 20, 21, 26] for well-balanced methods. In principle, Trefftz
method may be very efficient in the diffusion limit since the exact solutions in the cell have a perfect
balance between the transport terms (matrices A1 and A2) and the relaxation (matrix R). A simple
proof that the Trefftz scheme is indeed Asymptotic Diffusion Preserving can be found in [31].

The relaxation matrix R(x) can be discontinuous as well in applications. This is typical of the
physics of transfer at the interface between two different materials and of neutron propagation: in the
application illustrated at the end of this work, the unknown u comes from an angular discretization of
a populations of neutrons and relaxation coefficients model the interaction of neutrons with matter;
the issue is that this matter is different on both sides of an interface. Boundary layers may occur
when σa, σs vary significantly and that the transport equation tends to a diffusion limit when σs is
high. These two phenomena are challenging for numerical methods and the research is active in the
scientific community. The literature is scarce on numerical methods for boundary layers. It has been
highlighted in [31] that TDG method naturally leads to schemes adapted to such problems.

Some aspects of the constructive methods developed hereafter are strongly related to the particular
relaxation matrix (3), however the general strategy can be adapted to different relaxation matrices.

This paper is organized as follows. In Section 2, the Friedrichs system with relaxation is constructed
as the angular discretization of a kinetic equation: in the literature it is called the PN model and
its main properties are given; these properties are directly connected to invariance principles which
are common to many different models. In Section 3, we determine Trefftz families of exponential
exponential and polynomial solutions to our model problem. An interesting property is that some
of the exponential solutions degenerate when σa → 0, meaning that they become linear dependent
for σa = 0. The relation between the degenerative exponentials and the polynomials is studied with
the Birkhoff/Abu-Shumays method which is based on an exact property of the underlying kinetic
equation (4). Next, in Section 4, the stationary solutions (polynomials and exponentials) are explicitly
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calculated for the P1 and P3 models. In the final Section, a numerical example with boundary layers is
provided for the P3 model in Section 5: in terms of accuracy, it shows an important improvement with
respect to more standard DG methods. Another test problem illustrates the advantage of the method
for a test problem in a diffusion regime. These numerical examples illustrate the fundamental interest
of using TDG methods whence classical polynomial based numerical methods have low accuracy for a
given problem.

2 Principles of a PN model and some properties
PN models have their own physical interest for the angular modeling of kinetic equations. In the
context of this work, they also have the virtue that it makes possible to construct a system like (1) of
arbitrary size, and to explain the structure in relation with invariance principles. In what follows we
restrict the presentation to the most fundamental aspects and provide two basic examples which are
the P1 model and the P3 model.

Let us consider the spherical approximation of the transport equation which reads

∂tf(t,x,Ω) + Ω · ∇f(t,x,Ω) = −σa(x)f(t,x,Ω) + σs(x) (|f | − f(t,x,Ω)) , (4)

where f is the distribution function, t the time variable, x ∈ Rd the space variable, Ω the direction
and |f | = 1

4π

∫
S2 f(t,x,Ω′)dΩ′ is the mean of f . The absorption and scattering coefficients model the

interaction with the matter. Start from the spherical harmonics written for simplicity as (ϕn(Ω))n≥1

with the orthonormal relation 〈ϕn(Ω), ϕn′(Ω)〉 = δn,n′ The idea is to plug a truncated representation

fm(t,x,Ω) =

m∑
n=1

un(t,x)ϕn(Ω)

in (4) and to consider the moment system

〈∂tfm(t,x,Ω), ϕn(Ω)〉+ 〈Ω · ∇fm(t,x,Ω), ϕn(Ω)〉

= −σa(x) 〈fm(t,x,Ω), ϕn(Ω)〉+ σs(x) 〈|fm|, ϕn(Ω)〉 − σs(x) 〈fm, ϕn(Ω)〉 , 1 ≤ n ≤ m.

One obtains a system like (1) but in dimension 3. The unknown is u = (u1, . . . , um). The total size
of the system is the sum of the number of even moments (related to the spherical harmonics) and
the number of odd moments (related to the spherical harmonics), that is m = me + mo. Using the
more natural notation ϕn = Yl,m for spherical harmonics (the highest degree is N ≥ l ≥ 0), one has
m = 1

2 (N+1)(N+2), me = 1
4 (N+1)2, mo = 1

4 (N+1)(N+3). This is the reason of the denomination
PN model. Additional properties of PN models can be noted. For convenience we briefly recall what
can be found in the references [16, 22, 32]. These properties are deeply related to invariance principles.
a) In practice, the PN model is rarely applied for even values of N (see for example [16, Section 2] for
a discussion on the benefits of considering N odd) and it is therefore natural to consider only the case
N odd in our analysis.
b) In [22], it is proved that the decoupling between even moments and odd moments yields a block
structure like (2).
c) Provided σa and σs are invariant with respect to z, then the system is invariant by translation
with respect to z. So it is possible to make the assumption that the solution does not depends on the
variable z that is ∂zu = 0.
d) It is possible to assume that the solution has a mirror symmetry with respect to the plan xy. In
three dimensions, it can be interpreted as pure reflective conditions at the top and bottom boundaries
of the domain, as illustrated Figure 1. This assumption equates some moments, so reduces the size of
the system.
e) Finally, a PN model has to satisfy some rotational invariance principles. With the assumptions
c) and d) this rotational invariance is expressed in the plan xy. The plan xz may also be a possible
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Ω1 = (sinφ cosψ, sinφ sinψ, cosφ)T

Ω2 = (sinφ cosψ, sinφ sinψ,− cosφ)T

ψ

φ

Figure 1: Representation of directions Ω1 and Ω2. If u is an even function of cosφ then u(t,x,Ω1) =
u(t,x,Ω2).

choice [7, 8], however the rotation matrix associated with the spherical harmonics is more difficult to
calculate [6, 25, 32]. The matrix representations of the rotation operators in the basis of spherical
harmonics is needed [6, 12, 32]

U(α, β, γ) ∈ Rm
3D×m3D

, (5)

where α, β and γ denotes rotation around the axes Oz, Oy and Oz respectively. To simplify the matrix
U we consider a rotation θ in the plan xy only and denote

Uθ := U(0, 0, θ) ∈ Rm
3D×m3D

. (6)

Let y(Ω) denotes the vector made of the spherical harmonics arranged in a particular order, see [30,
Section 4-1.1]. Then the matrix U represents the orthogonal transformations on y(Ω). That is for an
orthogonal matrix Q ∈ R3×3 one has

y(QΩ) = U(α, β, γ)y(Ω), (7)

where α, β and γ are the angles of the rotation associated with the matrix Q in R3. For an explicit
formula of the matrix Uθ, see [30, Section 4.1.3.2].

Proposition 2.1. Assume a) to e). Then the PN model written as (1) is invariant under rotation.
More precisely, if u(t, x, y) is solution to (1) then the function Uθu(t, x cos θ+y sin θ,−x sin θ+y cos θ),
θ ∈ [0, 2π), is also solution to (1).

We can now give some properties which can be proved for a general PN model satisfying a) to
e). The verification is more tedious, this is why we just admit these properties without detailing the
proofs which however can be found in [30, Section 4.1]. However it is straightforward to verify all
these properties on 2 examples which are explicitly given at the end of this section. The first one is
the P1 model (m = 3), refer to Subsection 2.1. The second example is the P3 model (m = 10), refer
to Subsection 2.2.

Proposition 2.2 (Invertibility of AAT and BBT ). The symmetric matrix AAT is invertible and all
its eigenvalues are strictly positive.
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Proposition 2.3 (Eigenvalues of (AAT )−1R1). The eigenvalues µi of the matrix (AAT )−1R1 are
strictly positive when σa > 0 and non negative when σa = 0.

An important property will be the degeneracy of the lowest eigenvalue as σa → 0.

Proposition 2.4. Assume σs > 0. The lowest eigenvalue of (AAT )−1R1 is such that µ1→0 as σa → 0.

Finally, one can count the number of distinct couples of eigenvalue/eigenvector of the matrix
(AAT )−1R1. This gives the total number of stationary exponential solutions in 1D (see the proof of
Theorem 3.1).

Proposition 2.5. The eigenvectors of (AAT )−1R1 ∈ Rme×me form a basis of Rme .

Next we give the P1 model which is the simplest example which satisfies all these properties. The
matrix A reads A =

(
1, 0

)
and of course the matrix AAT = 1 is invertible.

2.1 The P1 model
For the P1 model m = 3, me = 1, mo = 2 and the matrices A1, A2, R and Uθ are

A1 =
1√
3

0 1 0
1 0 0
0 0 0

 , A2 =
1√
3

0 0 1
0 0 0
1 0 0

 ,

R =

σa 0 0
0 σt 0
0 0 σt

 , Uθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

The straightforward extension in 3D can be found in [30][page 49].

2.2 The P3 model
For the P3 model one has m = 10, me = 4, mo = 6 and the matrices read [22]

A =


0 1√

3
0 0 0 0

1√
5

0
√

3
14 − 1√

70
0 0

0 − 1√
15

0 0
√

6
35 0

0 1√
5

0 0 − 1√
70

√
3
14

 , B =


1√
3

0 0 0 0 0

0 1√
5

0 0 − 1√
70
−
√

3
14

− 1√
15

0 0
√

6
35 0 0

− 1√
5

0
√

3
14

1√
70

0 0

 ,

R1 =


εσa 0 0 0
0 σt 0 0
0 0 σt 0
0 0 0 σt

 , R2 = σtImo ,

(8)
where Imo is the identity matrix of Rmo×mo . The matrices A1 and A2 are given by (2). The rotation
matrix is provided in [30][formula (4.20) page 53]. Even if tedious, it is elementary to check that all
the properties hold.

3 Construction of local exact solutions
In order to develop a TDG method for (1), one needs to construct good basis functions which are exact
solutions to the system. For the kind of problem we have in mind, it is always possible to assume that
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all matrices are piecewise constants. We propose 3 different methods to construct stationary basis
functions.
1) The first method construct exponential functions. It has strong reminiscence to case solutions [10]
to the transport equation [19, 4, 5]. The Theorem 3.1 shows how to construct exponential solutions
when σa ≥ 0 which can be used as basis functions. This is based on the eigenvalues and eigenvectors
of a particular spectral problem.
2) The second method is more a complement on the first one. It is based on the secular equation which
gives information about the eigenvalues of the spectral problem.
3) The third one shows how the Birkhoff and Abu-Shumays approach can be used to deduce polynomial
solutions of a general PN model. An important restriction is vanishing absorption σa = 0.

A 4th one generalizes the construction to non stationary solutions. It is postponed in the appendix
since it is somehow a simple extension.

3.1 Exponential solutions
Take a constant vector d = (cos θ, sin θ) for a given angle 0 ≤ θ < 2π. The general idea is to plug the
Ansatz

u(x) = reλd
Tx, r 6= 0 (9)

in the stationary equation (1). One gets the spectral problem

λ (cos θA1 + sin θA2) r = −Rr.

That is λ is seen as an eigenvalue of the matrix −R in the metric associated to the matrix M =
cos θA1 + sin θA2. Both matrices are real symmetric, however M is highly degenerated because in
general it has positive, negative and vanishing eigenvalues. Indeed it is already the case for A1 for the
P1 model. However it is possible to construct the general solutions by carefully studying the structure
(2) and (3) of the matrices.

Theorem 3.1. Consider the system (1-3) with the result of Propositions 2.1 and 2.2. Let σt > 0
and w1, ...,wme ∈ Rme be the eigenvectors of the matrix (AAT )−1R1 associated with the eigenvalues
µ1, ..., µme . Let χi = −

√
µi
σt
ATwi ∈ Rmo , zi = (wT

i ,χ
T
i )T ∈ Rm and dk = (cos θk, sin θk)T ∈ R2. Let

Uθk be the rotation matrix (6). Then the exponential functions

(vi)k(x) = Uθkzie
1
c

√
σtµid

T
k x, i = 1, ...,me, (10)

are stationary solutions to the system.

Proof. We search for solutions under the form (9), that is with slightly different notations

ṽ(x) = z̃eλd
T
k x ∈ Rm, (11)

with dk = (cos θk, sin θk)T , λ ∈ R and z̃ ∈ Rm. Using Proposition 2.1 the function v(x, y) =
U−θk ṽ(x cos θk − y sin θk, x sin θk + y cos θk) is also a solution to the PN model. It can be written
under the form

v(x, y) = zeλx ∈ Rm, (12)

z ∈ Rm. Inserting (12) in (1) gives after removing the exponentials λA1z = −Rz. We use the
decomposition z = (wT ,χT )T ∈ Rm where w ∈ Rme and χ ∈ Rmo . Using the particular form of the
matrix A1 and R, one has {

λcAχ = −R1w,

λcATw = −R2χ.
(13)
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Multiplying the second equation by λcA and then using the first equation on the right hand side with
R−1

2 = 1
σt
Imo gives λ2c2AATw = σtR1w. From Proposition 2.2 the matrix AAT is invertible therefore

one obtains the reduced spectral equation

(AAT )−1R1w =
λ2c2

σt
w. (14)

If w ∈ Rme is an eigenvector of the matrix (AAT )−1R1 associated with the eigenvalue µ (µ ≥ 0
from Proposition 2.3), one can take λ = ±√σtµ/c. First we consider the case λ =

√
σtµ/c, the case

λ = −√σtµ/c will be discuss later. The second equation in (13) gives χ = −
√
µ/σtA

Tw ∈ Rmo . One
concludes that the one dimensional function v(x) = ze

1
c

√
σtµx is solution to the PN model. Applying

a rotation as in Proposition 2.1 gives the solutions (10). Moreover, considering λ = −√σtµ/c is
equivalent to take −dk in (10). We conclude that all the solutions (9) or (11) are given by (10). Finally,
from Proposition 2.5 there existsme distinct pairs (µi,wi) solution of the eigenproblem associated with
the matrix (AAT )−1R1. This completes the proof.

Examples of such exponential solutions are constructed in Section 4 for the P1 and the P3 models .

3.2 Secular equation
Exponential solutions require the eigenvalues and eigenvectors of the matrix (AAT )−1R1. If σs = 0,
then R1 = εσaIme is a diagonal matrix: then (AAT )−1R1 is a symmetric matrix. But on the contrary,
the matrix (AAT )−1R1 is non symmetric in the general case σs 6= 0, and so, it can be difficult to solve
directly this eigenvalue problem (see however some formulas in [16, Lemma 2]). Here we describe an
alternative method based on the solution of a secular equation [2, 28]. The key observation is that the
departure of R1 to diagonal matrices is a rank one matrix.

Technically, in our case, one can construct the secular equation making the distinction between
eigenvectors which have a zero first component and eigenvectors which have a non zero first component.
First case: eigenvectors with a zero first component. Take wi an eigenvector of (AAT )−1

associated with the eigenvalue λi and assume that its first component of wi is null. In this case
R1wi = σtwi. So wi is also an eigenvector of (AAT )−1R1 associated with the eigenvalue λ = σtλi.
Second case: eigenvectors with a non zero first component. Now take w an eigenvector
of the matrix (AAT )−1R1 associated with the eigenvalue λ and make the assumption that its first
component of w is non zero. One starts from R1w = AATλw: diagonalizing the matrix AAT = PDPT

(PTP = Ime) and using R1 := Imeσt − σs
ε e1e

T
1 , e1 = (1, 0, ..., 0)T ∈ Rme , one gets

λDw̃ =
(
Imeσt −

σs
ε

vvT
)
w̃, (15)

where w̃ = PTw and v = PTe1 is the vector of the first component of all eigenvectors of the matrix
AAT . The key is that the matrix vvT in (15) can be seen as a rank one perturbation of diagonal
matrices. One has

(
σtIme − λD

)
w̃ = σs

ε vvT w̃, so

w̃ =
(
Imeσt − λD

)−1σs
ε

vvT w̃. (16)

Multiplying by vT on both sides give

vT w̃ =

(
vT
(
Imeσt − λD

)−1σs
ε

v

)
vT w̃.

Because vT = eT1 P and w̃ = PTw one has vT w̃ = eT1 w. By assumption the first component of w
is non zero, that is vT w̃ 6= 0. One can simplify vT w̃ on both sides of the equality. It yields a scalar
equation

1 =
σs
ε

vT (Imeσt − λD)−1v.

7



Setting f(λ) = 1 + σs
ε vT (λD − Imeσt)−1v, one gets what is called the secular equation

f(λ) = 0. (17)

Denoting D = diag(d1 > 0, ..., dme > 0), the function f can be written

f(λ) = 1 +
σs
ε

me∑
i=1

v2
i

λdi − σt
.

Lemma 3.2. The function f has a pole at σt/di if and only if vi 6= 0. It is a monotone function. For
each pole, f admits a root on the left side of the pole.

Proof. It is sufficient to compute the derivative f ′(λ) = −σsε
∑
i di

v2i
(λdi−σt)2 < 0 and to notice that

f(−∞) = 1.

From (16) and denoting C = vT w̃ 6= 0 one has w̃ = C
(
Imeσt − λD

)−1
σs
ε v. Therefore, once one

has the eigenvalue λ, one deduces the associated eigenvector w.

Example 3.3 (P1 model). It is a follow up of Example 2.1. One has AAT = 1
3 . The eigenvalue is

d1 = 1
3 associated with the eigenvector w1 = 1. The function f reads

f(λ) = 1 +
σs

ε(λd1 − σt)
.

This function admits one roots λ1 = 3εσa which is also the only eigenvalue of the scalar matrix
(AAT )−1R1 = 3εσa.

Example 3.4 (P3 model). An illustration of the secular equation is provided in Figure 2 for the P3

model. One can verify on (23) that two vectors have a zero first component and two vectors have a
non zero first component. It yields two poles and two roots.

-10 10 20 30

-15

-10

-5

5

10

15

-10 10 20 30

-15

-10

-5

5

10

15

Figure 2: Representation of the function f for the P3 model. On the left σa = σs = 1, on the right
σa = 0, σs = 1.

3.3 Harmonic polynomial solutions with Birkhoff and Abu-Shumays work
So far we have constructed solutions with an exponential structure (9), we call them exponential
solutions. If all eigenvalues µi are non zero in the representation formula (10), the intuition tells
that such functions are linear independent for different directions dk. However if σa = 0, then the
situation is very different since the µ1 = 0 (Proposition 2.4) so the exponential factor degenerates
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(equal to 1). It may result in linear dependent functions. Unfortunately this is exactly what shows
up, and this is a important issue in view of implementation because linearly dependent basis functions
yield singular matrices after discretization. With this regard the situation is the same as the one
described in [17] for plane wave basis of the Helmholtz equation when the frequency tends to zero:
in the cited reference, the authors show that convenient rescaling of the exponential functions yield
special polynomial functions. In our case, we describe an abstract method, based on the Birkhoff
and Abu-Shumays approach, which constructs polynomial solutions for σa = 0. Another method in
nature closer to the Gittelson, Hiptmair and Perugia method [17] can be found in [30]. Hereafter, we
present the general principles of the Birkhoff and Abu-Shumays work on the transport equation with
a particular symmetry hypothesis which simplifies a lot the proof. A general proof with tools coming
from the theory of potential is in the cited reference, together with an extension to the case σa > 0
using hypergeometric functions. This is complemented by an original result in Theorem 3.7 which
shows that projection of the kinetic function onto harmonic polynomial preserves the structure.

Take q(x, y) which is harmonic polynomial ∆q(x, y) = 0. The series of all harmonic polynomials
can be generated as follows: firstly set q1(x, y) = 1, then consider the series for l ≥ 1

q2k(x) =
1

k!
<((x− x0) + i(y − y0))k and qkl+1(x) =

1

k!
=((x− x0) + i(y − y0))k (18)

Define the function which depends on a given harmonic polynomial q

f(x, y,Ω) :=

∞∑
k=0

(−1

σs

)k(
Ω · ∇

)k
q(x, y), l ≥ 0,

where Ω := (sinφ cosψ, sinφ sinψ, cosφ)T ∈ R3 with ψ ∈ [0, 2π) and φ ∈ [0, π). Actually the series
is finite and the function f is a polynomial with respect to x and y: its degree is deg(q) which is the
degree of the polynomial q. The terms of the series can be evaluated with the following formula.

Lemma 3.5. One has(
Ω · ∇

)k
q(x, y) =

( sinφ

2

)k(
e−ikψ(∂x + i∂y)k + eikψ(∂x − i∂y)k

)
q(x, y), k ≥ 1. (19)

Proof. Indeed since ∂zq = 0 one has(
Ω · ∇

)
q(x, y) = sinφ

(
cosψ∂x + sinψ∂y

)
q(x, y) =

sinφ

2

(
eiψ(∂x − i∂y) + e−iψ(∂x + i∂y)

)
q(x, y).

Therefore (
Ω · ∇

)k
q(x, y) =

( sinφ

2

)k k∑
p=0

Cpke
ipψ(∂x − i∂y)pe−i(k−p)ψ(∂x + i∂y)k−pq(x, y),

=
( sinφ

2

)k k∑
p=0

Cpke
i(2p−k)ψ(∂x − i∂y)p(∂x + i∂y)k−pq(x, y).

But since q(x, y) is harmonic one has (∂x − i∂y)(∂x + i∂y)q(x, y) = 0. Therefore, all the terms in the
sum vanish except the first and the last. One finally finds the claim.

Proposition 3.6 ([4]). For σa = 0, the function f(x, y,Ω) is solution to the stationary transport
equation (4).

Proof. By definition one has
(
Ω · ∇

)
f(x, y,Ω) =

∑∞
k=0

(
−1
σs

)k(
Ω · ∇

)k+1

q(x, y). That is

(
Ω · ∇

)
f l(x, y,Ω) = σsq(x, y)− σs

∞∑
k=0

(−1

σs

)k(
Ω · ∇

)k
q(x, y).

Using Lemma 3.5, one gets q = |f |.

9



Our main result below explains the interest of the previous result for PN models. We note ΠN the
orthogonal projection onto the space of harmonic functions of degree less than m = 1

2 (N + 1)(N + 2).

Theorem 3.7. Assume σa = 0. Take m = 1
2 (N + 1)(N + 2) ≥ deg(q). Then the function

fN (x, y) =< y(Ω)ΠNf(x, y,Ω) >∈ Rm
3D

,

is solution to the ΠN model and is harmonic polynomial with respect to x, y, with degree deg(q).

Proof. Let y(Ω) be the collection of spherical harmonics (see for example [22, Appendix A]) up to
order m = 1

2 (N + 1)(N + 2). Since m ≥ deg(q), the function ΠNf(x, y,Ω) can be decomposed on the
spherical harmonics of degree less than m, namely ΠNf(x, y,Ω) = yT (Ω)fN (x, y). One starts from〈

y(Ω)
(
Ω · ∇

)
f(x, y,Ω)

〉
= σs

(
− 〈y(Ω)f(x, y,Ω)〉+ 〈y(Ω)〉 〈f(x, y,Ω)〉

)
.

It yields 〈
y(Ω)

(
Ω · ∇

)
yT (Ω)fN (x, y)

〉
+

〈
y(Ω)

(
Ω · ∇

) ∑
k≥m+1

(−1

σs

)k(
Ω · ∇

)k
q(x, y)

〉

= σs

(
−
〈
y(Ω)yT (Ω)fN (x, y)

〉
+ 〈y(Ω)〉

〈
yT (Ω)fN (x, y)

〉 )
.

Using (19), the second term can be decomposed as an sum of terms proportional to
〈
y(Ω)(sinφ)ke±ikψ

〉
.

Now y(Ω) is made of harmonic polynomials of maximal degree less than m while e±ikψ is an exponen-
tial with degree ≥ m+2: so the integral with respect to ψ make the product to vanish. The remaining
terms are rewritten as

3∑
i=1

〈
Ωiy(Ω)yT (Ω)

〉
∂xifN (x, y) = σs

(
−
〈
y(Ω)yT (Ω)

〉
+ 〈y(Ω)〉

〈
yT (Ω)

〉 )
fN (x, y).

Using the orthonormality < yyT >= Im, one recognizes the stationary version of the full 3D PN model
for σa = 0, where Ai =

〈
Ωiy(Ω)yT (Ω)

〉
.

We refer to [16, 30] for additional details. By retaining the components of fN which satisfy addi-
tional invariance principles (mainly points c) and d) in Section 2), one gets polynomial solutions to
model (1).

4 Application to P1 and P3

In this section, we give explicitly the stationary solutions to the P1 and P3 models.

4.1 The P1 model
We recall that the matrices read

A =
(

1√
3

0
)
, B =

(
0 1√

3

)
, R1 = εσa, R2 =

(
σt 0
0 σt

)
. (20)

We are interested in the stationary solutions to the P1 model. Such solutions have already been
calculated in [31]. We start with the exponential solutions when σa > 0.

Proposition 4.1. Take dk = (cos θk, sin θk)T ∈ R2. The following functions are solution to the P1

model
vk =

( √
σt

−√εσadk

)
e

1
c

√
3εσaσtd

T
k x, σt = εσa +

σs
ε
. (21)

10



Proof. We use the Theorem 3.1. From the definition of the matrices A and R1 (20) associated with
the P1 model, one has (AAT )−1R1 = 3εσa. This matrix has one eigenvalue µ1 = 3εσa associated with
the eigenvector w1 = 1. Taking the notations from Theorem 3.1, one has z1 = (1,−

√
εσa
σt
, 0)T . Using

the definition of the rotation matrix Uθk (see Example 2.1 or [30, Section 4.1.3.2]) and multiplying the
solution by

√
σt give the functions (21). The proof is complete.

Now, we describe all polynomial solutions when σa = 0.

Proposition 4.2. Take σa = 0. Let q be any harmonic polynomial. The following function is a
solution to the P1 model

vk =

( σs
ε q

− c√
3
∇q

)
. (22)

Proof. It can be deduced from the Birkhoff and Abu-Shumays method. However a direct proof is
immediate. Using the definition (20) of the matrices A, B and R associated with the P1 model one
gets c√

3
∂xv1 = −σtv2 and c√

3
∂yv1 = −σtv3. Using σt = σs

ε completes the proof.

One notices that a direct verification that harmonic polynomial of any order are solutions to P1

for σa = 0. This is a consequence of Theorem 3.7.

4.2 The P3 model
First, we calculate the stationary exponential solutions.

Proposition 4.3. Take dk = (cos θk, sin θk)T ∈ R2. The following functions are solutions to the P3

model

v1(x) =



0

−
√

30 cos 2θk
0√

30 sin 2θk√
14 cos θk

−
√

14 sin θk√
15 cos 3θk
− cos θk
sin θk

−
√

15 sin 3θk


e

1
c

√
7
3σtd

T
k x, v2(x) =



0√
2 sin 2θk√

6√
2 cos 2θk

0
0

−
√

3 sin 3θk
−
√

5 sin θk
−
√

5 cos θk
−
√

3 cos 3θk


e

1
c

√
7σtd

T
k x,

v3(x) =



√
σt

14
√

15
ρ+

ε
√
σtσa sin 2θk
ε
√
σtσa√

3

ε
√
σtσa cos 2θk

− 1
630
√

2
υ−τ+ sin θk

− 1
630
√

2
υ−τ+ cos θk

− ε
2
√

21
σaυ

− sin 3θk
ε

2
√

35
σaυ

− sin θk
ε

2
√

35
σaυ

− cos θk
− ε

2
√

21
σaυ

− cos 3θk



e
1
cυ
−
√

σt
18d

T
k x, v4(x) =



√
σt

14
√

15
ρ−

ε
√
σtσa sin 2θk
ε
√
σtσa√

3√
σtσa cos 2θk

−
√
ε

630
√

2
υ+τ− sin θk

−
√
ε

630
√

2
υ+τ− cos θk

−
√
ε

2
√

21
σaυ

+ sin 3θk√
ε

2
√

35
σaυ

+ sin θk√
ε

2
√

35
σaυ

+ cos θk

−
√
ε

2
√

21
σaυ

+ cos 3θk



e
1
cυ

+
√

σt
18d

T
k x,

(23)

with σt = εσa + σs
ε and where we use the following notations κ =

√
605ε2σ2

a + 14εσaσt + 245σ2
t ,

υ± =
√

55εσa + 35σt ±
√

5κ, τ± =
√

5εσa + 35
√

5σt ± 5κ, ρ± = (υ±)2 − 110εσa.
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Proof. With the definitions (8) of the matrices A and R1, one finds that the matrix (AAT )−1R1

admits the following eigenvalues µ1 = 7
3σt, µ2 = 7σt, µ3 = (υ−)2

18 and µ4 = (υ+)2

18 , and the following
eigenvectors

w1 =


0
1
0
0

 , w2 =


0
0√
3

1

 , w3 =


−11
√

5εσa+7
√

5σt+κ
14
√

3ε

0
− σa√

3

σa

 , w4 =


−11
√

5εσa−7
√

5σt+κ
14
√

3ε

0
− σa√

3

σa

 .

See, for example, [30, Section 4.1.3.2]. After easy simplifications, and considering the correct scaling,
one finds the functions (23).

Remark 4.4. For σa = 0, then v− = µ3 = 0 and the exponential functions associated to the third
family degenerate. See also the Figure 2. This phenomenon is essentially the same one observed in
[17] for the Helmholtz equation in the low frequency regime.

Proposition 4.5. Take σa = 0. The following polynomial functions are solutions

v1(x) =



1
0
0
0
0
0
0
0
0
0


, v2(x) =



σtx
0
0
0
0
− c√

3

0
0
0
0


, v3(x) =



σty
0
0
0
− c√

3

0
0
0
0
0


,

v4(x) =



σ2
t xy
2c2√

15

0
0

−σtc√
3
x

−σtc√
3
y

0
0
0
0
0



, v5(x) =



1
2σ

2
t (x2 − y2)

0
0

2c2√
15

σtc√
3
y

−σtc√
3
x

0
0
0
0
0



(24)

Proof. Three different proofs are possible.
- The first one is by far the simplest one: it relies on injecting the formulas (24) into the Friedrichs
system (1) and to verify they are exact.
- The second one is to consider the Birkhoff and Abu-Shumays method with q = 1, x, y, xy and x2−y2

and to perform additional calculations to determine the components of the vectorial function f3 in
Theorem 3.7.
- A third fully constructive method which is however heavier is in Morel’s PhD thesis [30].

5 Numerical illustration
Various h-convergence results (theoretical and numerical) are available in the literature for TDG meth-
ods for time harmonic equations [11, 15, 17]. For time harmonic wave equation, p-convergence is ana-
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lyzed in [23]. For the family of Friedrichs systems evaluated in this work, h-convergence can be found
in [29, 31, 30].

The validation of the new basis functions that is proposed below is based more on the notion of
adaptivity, which is different than h or p-convergence. Adaptivity is perhaps a more relevant concept
for the industrial use of numerical methods. In what follows we consider a coarse mesh, and compare
the results obtained with TDG with results obtained with a more traditional polynomial based DG
method.

5.1 A test problem with a boundary layer
In this test, taken from [31], a two dimensional test with discontinuous coefficients is studied. The
numerical method is a Discontinuous Galerkin method with the Trefftz exact solutions computed so
far. The structure of the numerical code is classical: assemble matrix and right hand side, invert
matrix, display results. It is described in [30].

The domain is Ω = [0, 1]2 and we define Ω1 (resp. Ω2) as Ω1 = [0.35, 0.65]2 (resp. Ω2 = Ω \ Ω1).
We take ε = 1, c = 1 and

σa = 2× 1Ω1
(x), σs = 2× 1Ω2

(x) + 105 × 1Ω1
(x).

The absorption coefficient has compact support in Ω1 while the scattering coefficient is discontinuous
and takes a high value in Ω1. Referring to the initial model (1), these coefficients involve a truly
discontinuous matrix R. Even if we consider random meshes, the interface between Ω1 and Ω2 is a
straight line. The geometry and parameters of this test are represented in Figure 3.

Ω1

σa = 2
σs = 105

Ω2

σa = 0
σs = 2

u = (1, 0, 0)T u = (0, 0, 0)T

Periodic

Periodic
In

te
rf

ac
e

Interface

Figure 3: On the left: Domain and boundary condition for the two dimensional boundary layers test.
On the right: representation of adaptive directions at the interface. In this example: the 3 equi-
distributed directions (25) in each cell except at the interface where the directions are locally adapted
into (26).

This test has already been performed for the two dimensional P1 model [31]. We focus here on the
P3 model. For the directions, we consider three possible choices. With 3 basis functions per cell, we
may consider the following equi-distributed directions

d1 = (1, 0)T , d2 = (cos
2π

3
, sin

2π

3
)T , d3 = (cos

4π

3
, sin

4π

3
)T . (25)

With 4 basis functions per cell, we may consider the following equi-distributed directions

d1 = (1, 0)T , d2 = (0, 1)T , d3 = (−1, 0)T , d4 = (0,−1)T . (26)
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With 5 basis functions per cell, we may consider the following equi-distributed directions

d1 = (1, 0)T , d2 = (cos
2π

5
, sin

2π

5
)T , d3 = (cos

4π

5
, sin

4π

5
)T ,

d4 = (cos
6π

5
, sin

6π

5
)T , d5 = (cos

8π

5
, sin

8π

5
)T .

(27)

As pointed in [31], the choice of directions at the interface plays an important role to correctly capture
the boundary layers. In particular, it seems essential to locally get the one dimensional direction
perpendicular to the interface associated with the boundary layer. Therefore, we make the special
choice of directions (26) at the interface. Such directions are well adapted if one considers the one
dimensional problem at the interface. A graphical illustration of the adaptive directions at the interface
is provided on the right of Figure 3. As stated previously, when σa = 0 the degenerative exponentials
are replaced with polynomials. With our parameters, the number of polynomials used in the basis
functions is equal to the number of directions.

Figure 4: Representation of the first variable for the P3 model. Top left: reference solution. Top
center: DG scheme with 10 basis functions per cell. Top right: DG scheme with 30 basis functions per
cell. Bottom left: TDG scheme with 12 basis functions per cell. Bottom right: TDG scheme with 20
basis functions per cell. For the TDG scheme, the directions at the interface are locally adapted into
the 4 directions (26).

The reference solution is calculated on a 200 × 200 random mesh with the 3 directions (25) and
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adaptive directions (26) at the interface. We compare the following cases on a coarse 20× 20 mesh

• The DG method with constant basis functions only (= finite volume) for a total of 10 basis
functions per cell.

• The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis functions per
cell.

• The TDG method with the basis functions (23)-(24) depending on the 3 directions (25), for a
total of 12 basis functions per cell, and on the 4 directions (26) at the interface.

• The TDG method with the basis functions (23)-(24) depending on the 5 directions (27), for a
total of 20 basis functions per cell, and the 4 directions (26) at the interface.

The results given in Figure 4 are very similar to the P1 case tested in [31]. One notices a better
approximation of the solution for the TDG method with less degrees of freedom compared to the
standard DG scheme.

If the TDG method gives such good result, it is in fact because the correct exponential solutions (i.e.
with the right directions) are locally used in the boundary layers. Actually, an enrichment strategy,
where the DG basis is locally (in the boundary layers) enriched with some exponential solutions,
would give similar result on this numerical test [30, Section 5-4.3.2]. The same kind of idea is used,
for example, in the context of the so-called extended finite element method (XFEM) [1, 14].

5.2 A test problem in the regime σa = 0

For the P3 model we compare the results obtained with the DG and TDG method on a 80× 80 mesh.
The time step is ∆t = T/80. We consider four different simulations:

• The limit solution which is the fundamental solution of the 2D heat equation.

• The DG method with constant basis functions only (= finite volume) for a total of 10 basis
functions per cell.

• The DG method with affine basis function (that is 1, x and y) for a total of 30 basis functions
per cell.

• The TDG method initially with the basis made of three directions for the exponential functions.
But the degenerate exponential function (that is v3 in (23)) is systematically removed. Instead
it is replaced by the first three polynomial functions v1,2,3 in (24) That is the TDG method
applied to the P3 model uses a combination of exponential and polynomial basis functions. For
an implementation with five directions, one replaces the degenerate exponentials with v1,2,3,4,5.

The results presented in Figure 5 illustrate that the DG method with only constant basis functions
is too diffusive. On the contrary, one recovers a good approximation with the TDG method. This
illustrates the good behavior of TDG approximations for such problems. The DG scheme with affine
basis functions is also accurate, but with the disadvantage of using approximately three times more
basis functions than the TDG scheme.

6 Conclusion
We have presented various ways to construct exact solutions to a family of Friedrichs systems with
relaxation, which in this study comes from an angular approximation of the transport equation with
linear relaxation. Two families of exact stationary solutions were proposed. The first one contains
exponential factors and is valid for σa > 0. The second one contains polynomial terms and is valid
for σa = 0. In practice, for σa = 0, one may use a combination of both. A general procedure to
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Figure 5: Top left: limit solution. Top right: DG-P0=FV solution with 10 basis functions per cell.
Bottom left: DG-P1 solution with 30 basis functions per cell. Bottom right: TDG solution with 12
basis functions per cell.

construct basis functions with time dependence is sketched in the appendix. All these exact functions
can be generalized in 3D. The SN can be treated with a similar approach, except that the invariance
by rotation is discrete for equi-distributed velocity directions, not continuous as for the PN model.

The validation proposed in this work is based on the comparaison of the results of the classical DG
code with the one of a TDG code. Actually it is the same code, only the new basis functions have been
introduced and the matrix and right hand side recomputed accordingly. For the results presented, the
TDG method shows improved accuracy with respect to the traditional DG method.

A comprehensive numerical analysis of the better accuracy of TDG for the problems discussed is
probably beyond what is permitted by the available mathematical theory so far. It should be the
subject of further research.

A Time dependent solutions
We give some possible ways to get time dependent solutions to the PN model. These solutions can
also be used as basis functions for the TDG method when considering space-time mesh. Many other
time dependent solutions can be constructed starting from [10, 5].
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• A first possibility is to consider one dimensional solution under the form

v(t, x) = q(t, x)eλx,

where q(t, x) ∈ Rm is polynomial vector in x ant t. A concrete example is given in [31, Proposition
4.2] for the case of the P1 model. Then one can use the rotational invariance of the PN model
and gets the following solutions

v(t,x) = Uθq(t, x cos θ + y sin θ)eλ(x cos θ+y sin θ). (28)

Another possibility is to search directly for two dimensional solutions under the form

v(t,x) = p(t,x)eλ(x cos θ+y sin θ), (29)

where p(t,x) ∈ Rm is polynomial vector in x, y ant t. Note that the functions obtained with
(29) may differ from the functions (28). A complete example is given in [30, Section 5.2.2] for
the P1 model.

• Another possibility is to consider time dependent solutions under the form

v(t,x) = g(x)eαt, (30)

with α ∈ R. One can inject this solution in the PN model (1). One gets after removing the
exponentials (

A1∂x +A2∂y + (R+ εαIm)
)
g(x) = 0,

where Im is the identity matrix of Rm×m. The function g(x) is very similar to the stationary
solutions already calculated in Section 3.1. The matrix R is just replaced by the matrix R̃ :=
R+ εαIm.

For example, if one takes α such that σa + εα > 0, then g(x) is one of the exponential solutions
(10). In particular, if α > 0, the functions (30) naturally degenerate toward non trivial time
dependent solutions when σa → 0. This is one asset of the functions (30).
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