Synthesis of C9,C10-diheteroarylated phenanthrenes via palladium-catalyzed C-H bond activations

Bilel Bouzayani, ${ }^{[a, b]}$ Ridha Ben Salem, ${ }^{*[b]}$ Jean-François Soulé, ${ }^{[a]}$ and Henri Doucet*${ }^{*[a]}$

Abstract

The reactivity of positions C9 and C10 of 9- or 10bromophenanthrenes in palladium-catalyzed direct heteroarylations was investigated. A wide variety of heteroarenes such as thiazoles, (benzo)thiophenes, (benzo)furans, pyrroles, selenophenes or imidazopyridazines was successfully introduced at phenanthrene C9-position via palladium-catalyzed direct arylations, using 0.5-0.1 $\mathrm{mol} \%$ of phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst. Then, C10-bromination of the 9 -heteroarylated phenanthrenes, followed by a second palladium-catalyzed direct heteroarylation gives access to symmetrical and non-symmetrical 9,10-di(heteroaryl)phenanthrenes.

Introduction

Phenanthrene is one of the most stable fused aromatics with a high resonance energy, employed as unit for the preparation of conjugated systems with a high energy gap [1]. Among phenanthrene derivatives, those bearing heteroarenes at positions C9 and/or C10 are of considerable interest for material chemistry as they are employed as building blocks for access to compounds with photochromic,[2a,2b] molecular rotor [2c] or fluorescence properties [2d]. It is well known that phenanthrene in the presence of N-bromosuccinimide or bromine affords selectively 9 -bromophenanthrene in high yield, without significant formation of 9,10-dibromophenanthrene [3a,3b]; (Scheme 1). A similar reactivity was observed with other polyaromatic compounds such as a dibenzofluoranthene [3c]. Therefore, the development of simple and reliable routes, using readily accessible 9 -bromophenanthrene derivatives as building block, for access to (poly)functionalized phenanthrenes is highly desirable.

[^0]

Scheme 1. Synthesis of 9-bromophenanthrene

Currently, 9- and 10-heteroarylated phenanthrenes are generally prepared via Pd-catalyzed Suzuki or Negishi couplings [4]. However, these reactions require the preliminary preparation of an organometallic (or boron) derivative of an aryl derivative, and provide an organometallic salt (MX) as by-product. Since two decades, the Pd-catalyzed direct (poly)heteroarylation, via C-H bond activation of several polyaromatic compounds using aryl halides as aryl source has emerged as a powerful alternative method for the preparation of bi- and poly-(hetero)aryls [5,6]. Compared to the more classical Suzuki, Stille, or Negishi Pdcatalyzed reactions, [7] C-H bond functionalization reactions are often more attractive, as no prior preparation of an organometallic derivative is required, reducing the number of steps to prepare these compounds. However, so far only a few examples of Pd-catalyzed heteroarylations of 9halophenanthrenes, via the $\mathrm{C}-\mathrm{H}$ bond activation of heteroarenes, have been described [8]. Li et al. employed a mixture of $2 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ associated to $4 \mathrm{~mol} \% \mathrm{PPh}_{3}$ for the coupling of 9 bromoanthracene with imidazo[1,2-a]pyrimidine [8a]; whereas, Gryko et al. performed this reactions in the absence of phosphine ligand [8e]. Similarly, Fagnou et al. employed a mixture of $2 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $4 \mathrm{~mol} \%$ of PCy_{3} to promote the coupling of 9 -bromoanthracene with a thiazole derivative [8c]. In 2015, Langer et al. reported the coupling of 9 bromoanthracene with an imidazole derivative using $5 \mathrm{~mol} \%$ of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ catalyst in the presence of 1.2 equiv. of Cul , and 0.3 equiv. of PivOH as additive and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base [8d]. A few examples of metal-catalyzed heteroarylations of phenanthrenes, proceeding via base deprotonation of (benzo)oxazoles or (benzo)thiazoles, have also been reported [9]. It should be mentioned that for all these procedures, the substrate scope was not studied in detail, as only one or two specific heteroarenes were employed. Moreover, to our knowledge, the Pd-catalyzed direct 9,10-diheteroarylation of phenanthrene has not been described yet.

Here, we wish to report on the access i) to a wide variety of 9heteroarylated phenanthrenes using Pd-catalyzed direct arylation reactions, and ii) to symmetrical and non-symmetrical 9,10-diheteroarylated phenanthrenes via successive Pdcatalyzed direct heteroarylations (Scheme 2).

NBS: N-bromosuccinimide

Scheme 2. Access to 9,10-diheteroarylated phenanthrenes via successive Pdcatalyzed direct heteroarylations

Results and Discussion

In 2003, de Vries et al. reported that, when $\mathrm{Pd}(\mathrm{OAc})_{2}$ is employed as the catalyst precursor, at elevated temperature, soluble palladium (0) colloids or nanoparticles are formed, which are very efficient catalysts in the Suzuki or Heck reactions [10]. From 2008, we have reported that the coupling of aryl bromides with several heteroaromatics with a variety of aryl halides proceed nicely under the de Vries conditions [11], but we had not employed phenanthrene derivatives. First, we examined the reactivity of a set or heteroarenes for coupling with 9bromophenanthrene using our previously reported phosphinefree Pd-catalyst conditions [11]. Starting from, a slight excess of 2-isobutylthiazole (1.3 equiv.) with respect to 9bromophenanthrene, in the presence of 0.5 or $0.1 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, KOAc as the base, and DMA as the solvent at $150^{\circ} \mathrm{C}$, the desired product 1 was obtained in 96% and 94% yields, respectively (Scheme 3). No formation of side-products was detected in the course of this reaction.

Then, the reactivity of a set of heteroarenes for reaction with 9bromophenanthrene, under the same conditions, was examined. The reaction of 4 -methylthiazoles bearing ethyl or isopropyl substituents at C2-position with 9-bromophenanthrene in the presence of $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst gave 2 and 3 in 97% and 96% yields, respectively. In the presence of thiophene derivatives bearing pentyl, chloro, cyano or acetyl substituents at C2-position, the regioselective arylation at thienyl C5-position was observed affording 4-7 in 80-94\% yields (Scheme 3). A C2substituted thiophene derivative containing also a chlorosubstituent at C4-position was tolerated affording 8, without
cleavage of the $\mathrm{C}-\mathrm{Cl}$ bond. The mono-arylation of thiophene with 9 -bromophenanthrene was also examined. The desired product 9 could be selectively obtained in 86% yield, using 2 equiv. of this heteroarene. A thiophene derivative bearing acetal- and bromo-substituents at C2- and C4-positions gave the corresponding coupling product 10 without deprotection of the acetal unit and without cleavage of the thienyl $\mathrm{C}-\mathrm{Br}$ bond. From benzothiophene, the regioselective C2-arylation was observed affording 11 in 82% yield. Then, the reactivity of a set of furan derivatives was examined. From furan derivatives bearing methyl, nbutyl, butyryl, ester or methyl acetate substituents at C2-position, the desired (phenanthren-9-yl)furan derivatives 1216 were obtained in $81-90 \%$ yields. The reaction of 2 equiv. of 1 -methylpyrrole or selenophene with 9-bromophenanthrene, under the same reaction conditions, was also successful to afford 17 and 18 in 78% and 54% yields, respectively.

$$
\xrightarrow[\mathrm{OMA} \mathrm{KOAc}]{\mathrm{Pd}(\mathrm{OAc})_{2} 0.5 \mathrm{~mol} \%}
$$

$$
1.3 \text { equiv. }
$$

$$
\begin{aligned}
& \text { DMA, KOAc, } \\
& 150^{\circ} \mathrm{C}, 16 \mathrm{~h}
\end{aligned}
$$

$$
\mathrm{Y}=\mathrm{CH} \text { or } \mathrm{N}
$$

$$
\mathrm{Z}=\mathrm{O}, \mathrm{~S}, \mathrm{NMe} \text { or } \mathrm{Se}
$$

$\mathrm{R}^{1} \mathrm{R}^{2} \quad$ Yield (\%) $\begin{array}{lllll}\mathrm{iBu} H & 1 & \text { Yield (\%) } \mathrm{ma}^{*} & \mathrm{R}^{1} & \mathrm{R}^{2} \quad \text { Yield (\%) }\end{array}$ Et Me 297 iPr Me 3 Cl H CN H 694 $\begin{array}{llll}\mathrm{COMeH} & 7 & 93 \\ & \end{array}$ COMe CI 85 H H 9 86**

R^{1}	R^{2}	Yield (\%)	
$n \mathrm{Bu}$	H	$\mathbf{1 2} 89$	
COnPr	H	$\mathbf{1 3}$	81
$\mathrm{CO}_{2} \mathrm{Me}$	H	$\mathbf{1 4}$	83
$\mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})$	Me	H	$\mathbf{1 5} 87$
Me	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathbf{1 6}$	90

[^1]
11 82\%

17 78\%**

18 54\%**

Scheme 3. Pd-catalyzed direct heteroarylations of 9-bromophenanthrenes with heteroarenes

The C3-arylation of both imidazo[1,2-a]pyridine and imidazo[1,2a]pyrimidine with 9 -bromophenanthrene, using again $0.5 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, also proceeded with complete regioselectivity affording 19 and 20 in very high yields (Schema 4, a). The reaction is not limited to the arylation at α-position of an heteroelement of heterocycles. For example, the coupling of $9-$ bromophenanthrene with 2 -ethylbenzofuran gave the β-arylated benzofuran derivative 21 in 83% yield; and from 3,5dimethylisoxazole, the C4-arylated compound 22 was obtained in 62\% yield (Schema 4, b).
a)

b)

Scheme 4. Pd-catalyzed direct heteroarylations of 9-bromophenanthrenes with imidazopyridine, imidazopyrimidine, a benzofuran and an isoxazole

In order to determine the electronic influence of heteroarene substituents on the reaction rate, a competition experiment was performed (Scheme 5). Using an equimolar mixture of furan derivatives bearing nbutyl and butyryl C2-substituents, the formation of products 12 and 13 in 55:45 ratio was observed, revealing that an electron-donating substituent on furan slightly favors the reactions.

Ratio 12:13 55:45
Scheme 5. Competition reaction for Pd-catalyzed direct heteroarylation of 9bromophenanthrene

In order to prepare symmetrical and non-symmetrical C9,C10diheteroarylated phenanthrenes, which might be useful for the preparation of photochromic compounds,[2a,2b] the reactivity of 2-ethyl-4-methyl-5-(phenanthren-9-yl)thiazole 2 with N bromosuccinimide (NBS) was studied (Scheme 6). At room temperature, a poor conversion of 2 and a low yield in the desired 10-bromophenanthrene derivative 23 was observed; whereas, the reaction performed at $50^{\circ} \mathrm{C}$ during 3 h afforded 23 in a high 93% yield. A similar yield in 24 was obtained by reaction of 3 with NBS. From 2-chloro-5-(phenanthren-9yl)thiophene 4, under the same reaction conditions, the $10-$ bromo-substituted phenanthrene $\mathbf{2 5}$ was obtained in 67% yield.

Scheme 6. Reaction of $\mathbf{2}$ and $\mathbf{4}$ with N-bromosuccinimide

Then, the Pd-catalyzed direct heteroarylation of 23 at $\mathrm{C} 10-$ position with 2-isobutylthiazole was investigated (Scheme 7). Our first attempt using $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst afforded the target product 26 in low yield due to a poor conversion of 23. On the other hand, the use of $2 \mathrm{~mol} \%$ of the thermally more stable catalyst $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ [12] gave 26 in higher 58% yield with a good conversion of 23 . From 23 and 2 -nbutylfuran, the phenanthrene derivative 27 bearing furan and thiazole units
at C9 and C10 positions was obtained in 54\% yield. The reaction of 24 with a set of thiophenes, and with a furan derivative also provided the desired 9,10-diheteroarylated phenanthrenes $\mathbf{2 8 - 3 1}$ in $52-59 \%$ yields. Finally, the reaction of 24 with 2-isopropyl-4-methylthiazole gave access to the symmetrical $\quad 9,10$-bis(2-isopropyl-4-methylthiazol-5yl)phenanthrene 32 in 55% yield.

Scheme 7. Palladium-catalyzed direct heteroarylations of 10bromophenanthrene derivatives

Finally, the influence of an isopentyl substituent at C9-position of 10-bromophenanthrene on heteroarylation reaction was investigated (Scheme 8). 9-Bromo-10-isopentylphenanthrene 34 was prepared from 9-bromophenanthene via Suzuki coupling followed by bromination with NBS. The reaction of 34 with 2-isopropyl-4-methylylthiazole and thiophene afforded the desired C10-heteroarylated phenanthrenes bearing an isopentyl
substituent at C9 position 35 and 36 in 78% and 80% yields, respectively.

Scheme 8. Palladium-catalyzed direct heteroarylations of a bromophenanthrene derivative

Conclusions

In summary, we have demonstrated that using as little as 0.5 $\mathrm{mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst precursor, 9bromophenanthrene can be heteroarylated at C9-position, via a $\mathrm{C}-\mathrm{H}$ bond activation of heteroarenes. A wide variety of heteroarenes such as thiazoles, (benzo)thiophenes, selenophenes, (benzo)furans, pyrroles, imidazopyridazine or isoxazoles was successfully employed, and the reaction tolerated useful functional groups on the heteroarenes such as chloro, bromo, cyano, acetyl, butyryl, methyl acetate or ester substituents. This phosphine-free catalyst procedure is environmentally and economically attractive, as 1) there is no need to eliminate phosphine residues at the end of the reaction, 2) this $\mathrm{C}-\mathrm{H}$ bond functionalization reaction does not no require the preparation of an organometallic derivative, reducing the number of synthetic steps and the mass of waste products, 3) the major waste of theses couplings is the relatively non-toxic $\mathrm{AcOH} / \mathrm{KBr}$ instead of metallic salts with more classical metalcatalyzed coupling reactions. Moreover, the reaction of some of the 9 -heteroarylated phenanthrenes with N -bromosuccinimide provided the 10-bromophenanthrene derivatives, which were successfully employed for access to symmetrical or nonsymmetrical 9,10-di(heteroaryl)phenanthrenes. This methodology appears to be very promising for the sustainable synthesis of 9,10 -diheteroarylated phenanthrenes, and could certainly be applied to the preparation of some heteroarylated benzoanthracenes, pyrenes, chrysenes,
phenanthrophenantrenes or even coronene derivatives which are important structures in material chemistry.

Experimental Section

General

All reactions were performed in Schlenk tubes under argon. Potassium acetate 99+ was used. 9-Bromophenanthrene (98\%) was purchased from Alfa. DMA (99\%) was purchased from Acros. $\mathrm{Pd}(\mathrm{OAc})_{2}$, $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}$, 1.4-bis(diphenylphosphino)butane (98%) were purchased from Alfa Aesar. The heteroarenes and 9-bromophenanthrene were used without purification. NMR spectra were recorded on Bruker GPX (400 MHz) spectrometer in CDCl_{3} solutions. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26\right.$ and $\left.{ }^{13} \mathrm{C}: 77.0\right)$. Flash chromatography was performed on silica gel (230-400 mesh).

Preparation of the $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst [12]

An oven-dried 40 mL Schlenk tube equipped with a magnetic stirring bar under argon atmosphere, was charged with $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(182 \mathrm{mg}, 0.5$ mmol) and dppb ($426 \mathrm{mg}, 1 \mathrm{mmol}$). 10 mL of anhydrous dichloromethane were added, then, the solution was stirred at room temperature for twenty minutes. The solvent was removed in vacuum. The yellow powder was used without purification. ${ }^{31} \mathrm{P}$ NMR $(81 \mathrm{MHz}$, CDCl_{3}) $\delta=19.3$ (s).

General procedure for the synthesis of compounds 1-22

In a typical experiment, 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$), the heteroarene (1.3 or 2 mmol) (see schemes), KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$ were dissolved in DMA $(4 \mathrm{~mL})$ under an argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 16 h. Then, the solvent was evaporated and the product was purified by silica gel column chromatography.

2-Isobutyl-5-(phenanthren-9-yl)thiazole (1) [8c]

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-isobutylthiazole $(0.183 \mathrm{~g}, 1.3 \mathrm{mmol})$, $\mathbf{1}$ was obtained in $96 \%(0.304 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.74$ (dd, $\left.J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.67$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21 (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.74-$ 7.58 (m, 4H), 3.03 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,141.4,135.5,131.1,131.0$, 130.7, 130.4, 129.7, 128.8, 127.6, 127.3, 127.1, 127.0, 126.9, 126.2, 123.0, 122.6, 42.6, 29.9, 22.5.

2-Ethyl-4-methyl-5-(phenanthren-9-yl)thiazole (2)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4methylthiazole ($0.166 \mathrm{~g}, 1.3 \mathrm{mmol}$), 2 was obtained in 97% (0.294 g) yield as a yellow solid: mp 137-139 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.74 (dd, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $1.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.5,149.6$, 131.4, 131.2, 130.6, 130.5, 130.4, 128.8, 128.1, 127.9, 127.3, 127.0, $126.9,126.8,126.6,123.0,122.6,27.1,15.9,14.4$. elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NS}$ (303.42): C 79.17, H 5.65; found: C 79.04, H 5.34.

2-Isopropyl-4-methyl-5-(phenanthren-9-yl)thiazole (3)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-isopropyl-4methylthiazole ($0.183 \mathrm{~g}, 1.3 \mathrm{mmol}$), 3 was obtained in 96% (0.304 g) yield as a yellow solid: mp 129-131 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.79 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.75$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.58(\mathrm{~m}, 4 \mathrm{H}), 3.43$ (sept., $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 176.5,149.5,131.5,131.2,130.6,130.5,130.4,128.8,128.2$, 127.6, 127.3, 127.0, 126.9, 126.8, 126.7, 123.0, 122.6, 33.5, 23.4, 16.0. elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NS}$ (317.45): C 79.46, H 6.03; found: C 79.50, H 5.89.

2-Pentyl-5-(phenanthren-9-yl)thiophene (4)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-pentylthiophene $(0.200 \mathrm{~g}, 1.3 \mathrm{mmol}), 4$ was obtained in $80 \%(0.264 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.80 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.58 (dd, $J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05-8.00 (m, 2H), 7.80$7.67(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.92 (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.60-1.48 (sext., 4H), 1.11 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.5,139.3,131.7$, $131.6,131.4,131.0,130.3,129.0,128.9,127.5,127.1,127.0,126.9$ (*2), 126.8, 124.5, 123.1, 122.7, 31.7 (*2), 30.4, 22.8, 14.4. elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~S}$ (330.49): C 83.59, H 6.71; found: C 83.67, H 6.58.

2-Chloro-5-(phenanthren-9-yl)thiophene (5)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-chlorothiophene $(0.154 \mathrm{~g}, 1.3 \mathrm{mmol})$, 5 was obtained in $94 \%(0.276 \mathrm{~g})$ yield as a green solid: mp 116-119 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.72$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (dd, $J=$ $8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.5,131.1$, $130.8,130.7,130.4,130.2,129.8,129.4,128.9,127.3,127.1,127.0$, 126.9, 126.5, 126.4, 123.1, 122.6. elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{CIS}$ (294.80): C 73.34, H 3.76; found: C 73.17, H 3.58.

5-(Phenanthren-9-yl)thiophene-2-carbonitrile (6)

From 9-bromophenanthrene $(0.257 \mathrm{~g}, 1 \mathrm{mmol})$ and 2thiophenecarbonitrile ($0.142 \mathrm{~g}, 1.3 \mathrm{mmol}$), 6 was obtained in 92% (0.262 g) yield as a white solid: $\mathrm{mp} 169-172{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.7,137.6,130.8,130.7$, $130.2,130.0,129.0,128.5,128.0,127.9,127.3,127.2,125.9,123.2$, 122.7, 114.3, 109.4. elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{NS}$ (285.36): C 79.97, H 3.89; found: C 80.12, H 3.68.

1-(5-(Phenanthren-9-yl)thiophen-2-yl)ethan-1-one (7)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-acetylthiophene $(0.164 \mathrm{~g}, 1.3 \mathrm{mmol}), 7$ was obtained in $93 \%(0.281 \mathrm{~g})$ yield as a yellow solid: mp 158-160 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78$ (dd, $J=8.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (dd, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.60$ (m, 4H), $7.33(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 190.6,150.7,144.1,132.7,130.9,130.7,130.5,130.2,130.0$, 129.4, 129.0, 128.7, 127.6, 127.2, 127.1, 127.0, 126.2, 123.1, 122.6, 26.8. elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{OS}$ (302.39): C 79.44, H 4.67; found: C 79.58, H 4.39.

1-(4-Chloro-5-(phenanthren-9-yl)thiophen-2-yl)ethan-1-one (8)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 1-(4-chlorothiophen-2-yl)ethan-1-one ($0.209 \mathrm{~g}, 1.3 \mathrm{mmol}$), 8 was obtained in $52 \%(0.175 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.73$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (d, $J=7.7, \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (s, 1H), 7.82 (d, $J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.60(\mathrm{~m}, 5 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 189.8,143.4,142.4,132.6,130.9,130.8,130.7,130.5,130.0$, $129.2,127.9,127.3,127.2$ (*2), 127.1, 126.5, 125.3, 123.4, 122.7, 26.5. elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClOS}$ (336.83): C 71.32, H 3.89; found: C 71.50, H 3.99 .

2-(Phenanthren-9-yl)thiophene (9) [13]

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene $(0.168 \mathrm{~g}, 2$ $\mathrm{mmol})$, 9 was obtained in $86 \%(0.224 \mathrm{~g})$ yield as a green oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.82(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.37(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.65(\mathrm{~m}, 4 \mathrm{H})$, 7.53 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (dd, $J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, $J=$ $5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.9,131.3,131.2$, $131.1,130.8,130.3,129.2,128.9,127.8,127.4,127.1,127.0,126.9$, 126.8, 126.7, 125.7, 123.0, 122.9.

2-(4-Bromo-5-(phenanthren-9-yl)thiophen-2-yl)-1,3-dioxolane (10)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-(4-bromothiophen-2-yl)-1,3-dioxolane ($0.305 \mathrm{~g}, 1.3 \mathrm{mmol}$), $\mathbf{1 0}$ was obtained in 95% (0.390 g) yield as a yellow solid: mp 147-149 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 8.80 (dd, $J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.89(\mathrm{~m}, 3 \mathrm{H})$, 7.79-7.70 (m, 2H), 7.70-7.62 (m, 2H), 7.48 (s, 1H), $6.16(\mathrm{~s}, 1 \mathrm{H}), 4.30-$ 4.05 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.9,143.7,131.0,130.6$ (m), 130.1, 129.3, 128.1, 127.6, 127.4, 127.3, 127.2, 127.1, 126.0, 123.2, 122.7, 114.7, 110.2, 99.4, 65.6. elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrO}_{2} \mathrm{~S}$ (411.31): C 61.32, H 3.68 ; found: C 61.18, H 3.87 .

2-(Phenanthren-9-yl)benzo[b]thiophene (11) [14]

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and benzothiophene $(0.174 \mathrm{~g}, 1.3 \mathrm{mmol})$, 11 was obtained in $82 \%(0.254 \mathrm{~g})$ yield as a yellow solid: mp 149-151 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.83$ (dd, $J=8.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-$ $7.89(\mathrm{~m}, 4 \mathrm{H}), 7.80-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 142.2,140.3,140.2,131.2,131.1,130.9$, $130.7,130.4,129.6,129.0,127.3,127.1,126.9,126.8,126.7,124.6$, 124.4, 124.3, 123.7, 123.0, 122.6, 122.2.

2-Butyl-5-(phenanthren-9-yl)furan (12)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-butylfuran (0.161 g , $1.3 \mathrm{mmol}), 12$ was obtained in $89 \%(0.267 \mathrm{~g})$ yield as a white solid: mp $85-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.81(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.99$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.60(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.88 (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.57 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 155.9,151.5,131.6,130.9,130.1,129.7,128.9,127.8,126.9$ (m), 126.8, 126.7, 126.6, 126.5, 123.1, 122.6, 110.4, 106.7, 30.4, 28.1, 22.5, 14.0. elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}$ (300.40): C 87.96, H 6.71; found: C 87.80, H 6.49 .

1-(5-(Phenanthren-9-yl)furan-2-yl)butan-1-one (13)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 1-(furan-2-yl)butan-1one ($0.179 \mathrm{~g}, 1.3 \mathrm{mmol}$), 13 was obtained in $81 \%(0.254 \mathrm{~g})$ yield as a yellow solid: mp $114-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78$ (dd, $J=$ $8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.11 (s, 1H), 7.96 (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.09 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 189.5,157.1,152.4,130.9,130.8,130.7,129.2,129.1,128.8$, 127.8, 127.2, 127.1, 127.0, 126.0, 125.8, 123.2, 122.6, 118.5, 111.9, 40.5, 18.1, 14.0. elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$ (314.38): C 84.05, H 5.77; found: C 84.02, H 5.80 .

Methyl 5-(phenanthren-9-yl)furan-2-carboxylate (14)

From 9-bromophenanthrene $(0.257 \mathrm{~g}, 1 \mathrm{mmol})$ and methyl furan-2carboxylate ($0.164 \mathrm{~g}, 1.3 \mathrm{mmol}$), 14 was obtained in $83 \%(0.251 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.78(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H})$, 7.96 (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.3, 157.1, 144.0, 130.9, 130.7, 130.6, 129.2, 129.1, 128.8, 127.7, $127.2,127.1,126.9,126.0,125.9,123.1,122.6,119.6,111.6,52.0$. elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3}$ (302.33): C 79.46, H 4.67; found: C 79.34, H 4.50.

Methyl 2-(5-(phenanthren-9-yl)furan-2-yl)acetate (15)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and furfuryl acetate $(0.182 \mathrm{~g}, 1.3 \mathrm{mmol}), 15$ was obtained in $87 \%(0.275 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78$ (d, $\left.J=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.71$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.0,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78-7.60(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27$ (s, 2H), 2.19 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8$, 154.0, 149.4, 131.3, 130.8, 130.3, 129.5, 129.0, 127.7, 127.2 (m), 127.0, 126.7, 126.2, 123.1, 122.6, 112.5, 110.6, 58.4, 21.0. elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$ (316.36): C 79.73, H 5.10 ; found: C 79.48, H 4.89.

Methyl 2-methyl-5-(phenanthren-9-yl)furan-3-carboxylate (16)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and methyl 2-methylfuran-3-carboxylate ($0.182 \mathrm{~g}, 1.3 \mathrm{mmol}$), 16 was obtained in 90% $(0.284 \mathrm{~g})$ yield as a white solid: mp $159-161^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.60(\mathrm{~m}, 4 \mathrm{H})$, 7.06 (s, 1H), 3.94 (s, 3H), 2.79 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 164.6, 159.2, 151.1, 131.2, 130.8, 130.3, 129.2, 129.0, 127.5, 127.3, 127.0, 126.9, 126.8, 126.3, 125.9, 123.1, 122.6, 115.0, 110.2, 51.5, 14.0. elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$ (316.36): C 79.73, H 5.10; found: C 79.80, H 4.97.

1-Methyl-2-(phenanthren-9-yl)-pyrrole (17)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 1-methylpyrrole $(0.249 \mathrm{~g}, 2 \mathrm{mmol}), 17$ was obtained in $78 \%(0.200 \mathrm{~g})$ yield as a yellow solid: mp 136-138 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.79(\mathrm{dd}, \mathrm{J}=8.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (s, 1H), 7.78-7.56 (m, 5H), 6.88 (dd, $J=2.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.32(\mathrm{~m}$, $2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.4,132.2,131.4$, $130.4,130.3,129.9,129.8,128.8,127.0,126.9,126.8$ (2C), 126.6, 122.8, 122.5, 122.4, 110.0, 107.6, 34.5. elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}$ (257.34): C 88.68, H 5.88; found: C 88.69, H 5.82 .

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and selenophene (0.262 $\mathrm{g}, 2 \mathrm{mmol}), 18$ was obtained in $54 \%(0.166 \mathrm{~g})$ yield as a green oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.81$ (d, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.75$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.38(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ 7.92 (m, 2H), 7.79-7.63 (m, 4H), 7.54-7.47 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 148.1,133.1,131.5,131.4,131.1,130.7,130.2,130.0,129.8$, 129.0, 128.9, 127.1 (*2), 126.9, 126.8, 126.7, 122.9, 122.7. elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Se}$ (307.25): C 70.36, H 3.94; found: C 70.24, H 4.14.

3-(Phenanthren-9-yl)imidazo[1,2-a]pyridine (19) [8e]

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and imidazo[1,2a]pyridine ($0.153 \mathrm{~g}, 1.3 \mathrm{mmol}$), 19 was obtained in $90 \%(0.265 \mathrm{~g})$ yield as a white solid: mp $189-191^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.80$ (dd, J $=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.81-7.63$ (m, 5H), 7.58-7.50 (m, 2H), $7.25(\mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.9,134.0,131.3,130.8$, 130.7 (*2), 130.6, 129.0, 127.7, 127.3, 127.2, 127.1, 126.0, 125.0, 124.3, 124.2, 123.7, 123.3, 122.7, 118.1, 112.3.

3-(Phenanthren-9-yl)imidazo[1,2-b]pyridazine (20)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and imidazo[1,2 a]pyrimidine ($0.155 \mathrm{~g}, 1.3 \mathrm{mmol}$), 20 was obtained in $93 \%(0.274 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 259-261^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.82$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1H), 7.79-7.60 (m, 4H), 7.55 (t, J=7.4 Hz, 1H), 7.12 (dd, $J=9.2,4.3 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.2,139.6,134.7,131.2,130.9$, $130.8,130.7,130.5,129.1,127.8,127.5,127.0,126.9,126.8,126.3$ 126.0, 124.6, 123.2, 122.7, 116.7. elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3}$ (295.35): C 81.34, H 4.44; found: C 81.50, H 4.31.

2-Ethyl-3-(phenanthren-9-yl)benzofuran (21)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethylbenzofuran $(0.190 \mathrm{~g}, 1.3 \mathrm{mmol})$, 21 was obtained in $83 \%(0.267 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}$ $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.7$ 154.2, 131.8, 131.7, 130.8, 130.5, 130.4, 129.2, 129.0, 128.7, 127.0, 126.9 (2C), 126.8, 126.7, 123.7, 123.1, 122.8, 122.7, 120.2, 114.8, 111.0, 20.6, 13.0. elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}$ (322.41): C 89.41, H 5.63; found: C 89.60, H 5.47 .

3,5-Dimethyl-4-(phenanthren-9-yl)isoxazole (22)

From 9-bromophenanthrene ($0.257 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5-dimethylisoxazole $(0.126 \mathrm{~g}, 1.3 \mathrm{mmol})$, 22 was obtained in $62 \%(0.169 \mathrm{~g})$ yield as a white solid: mp 164-166 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.81$ (dd, $J=8.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ $7.56(\mathrm{~m}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.6, 160.2, 131.3, 131.1, 130.7, 130.4, 129.5, 128.6, 127.2, 127.1, 127.0, 126.9, 126.3, 125.9, 123.2, 122.6, 115.0, 11.5, 10.6. elementa analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}$ (273.34): C 83.49, H 5.53; found: C 83.67, H 5.47.

5-(10-Bromophenanthren-9-yl)-2-ethyl-4-methylthiazole (23)

2-Ethyl-4-methyl-5-(phenanthren-9-yl)thiazole 2 ($0.303 \mathrm{~g}, 1 \mathrm{mmol}$) and N bromosuccinimide ($0.356 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in DMF (5 mL) under an argon atmosphere. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 23 was obtained in 93% $(0.355 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.78-8.71$ (m, 2H), $8.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.52$ ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,150.3,132.5$, $131.5,130.4,129.7,129.6,129.2,128.2,128.1,127.9,127.6,127.5$, 127.2, 127.1, 122.8, 122.7, 27.1, 15.5, 14.2. elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNS}$ (382.32): C 62.83, H 4.22; found: C 62.90, H 4.07.

5-(10-Bromophenanthren-9-yl)-2-isopropyl-4-methylthiazole (24)

2-Isopropyl-4-methyl-5-(phenanthren-9-yl)thiazole 3 ($0.317 \mathrm{~g}, 1 \mathrm{mmol}$) and N-bromosuccinimide (0.356 g , 2 mmol) were dissolved in DMF (5 mL) under an argon atmosphere. The reaction mixture was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 3 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 24 was obtained in $87 \%(0.344 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 8.78-8.71 (m, 2H), $8.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.51(\mathrm{~m}, 5 \mathrm{H}), 3.44$ (sext., $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.5,150.2,132.5,131.5,130.4,129.8,129.7$, 129.2, 128.1, 127.9 (*2), 127.6, 127.5, 127.3, 127.2, 122.8, 122.7, 33.5, 23.3, 15.5. elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNS}$ (396.35): C 63.64, H 4.58; found: C 63.51, H 4.30 .

2-(10-Bromophenanthren-9-yl)-5-chlorothiophene (25)

2-Chloro-5-(phenanthren-9-yl)thiophene 4 ($0.295 \mathrm{~g}, 1 \mathrm{mmol}$) and N bromosuccinimide ($0.356 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in DMF (5 mL) under an argon atmosphere. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 25 was obtained in 67% $(0.250 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 118-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$: δ 8.75-8.69 (m, 2H), $8.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.62(\mathrm{~m}, 4 \mathrm{H})$, $7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 140.0,132.9,131.4,130.7,130.2,129.5$, 129.4, 128.2, 128.1, 127.9, 127.5 (*2), 127.2, 127.1, 126.1, 122.7, 122.6. elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{BrCIS}$ (373.69): C 57.85, H 2.70; found: C 57.79, H 2.78 .

2-Ethyl-5-(10-(2-isobutylthiazol-5-yl)phenanthren-9-yl)-4methylthiazole (26)

5-(10-Bromophenanthren-9-yl)-2-ethyl-4-methylthiazole 23 ($0.191 \mathrm{~g}, 0.5$ $\mathrm{mmol}), 2$-isobutylthiazole ($0.141 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.098 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 26 was obtained in 58% $(0.128 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 151-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-$ 7.72 (m, 2H), 7.68 (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58$ (m, 2H), 7.53 (s, $1 \mathrm{H}), 2.99(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10$ (s, 3H), 1.38 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.3,171.3,150.3,142.4,132.8,131.7,131.3,130.6$, $130.5,130.0,129.9,127.6,127.5,127.4,127.3,127.2$ (2C), 126.4, $122.8,122.7,42.2,30.0,26.9,22.2,22.1,15.7,14.1$. elemental analysis: calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}_{2}$ (442.64): C 73.26, H 5.92; found: C 73.38, H 6.04 .

5-(10-(5-Butylfuran-2-yl)phenanthren-9-yl)-2-ethyl-4-methylthiazole (27)

5-(10-Bromophenanthren-9-yl)-2-ethyl-4-methylthiazole 23 ($0.191 \mathrm{~g}, 0.5$ mmol), 2-butylfuran ($0.124 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.098 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 27 was obtained in 54% $(0.115 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.79$ (d, $\mathrm{J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.55(\mathrm{~m}, 5 \mathrm{H}), 6.20(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$,), $3.02(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.59$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.39 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,156.3,150.1,148.3,131.5,131.4,130.9$ 130.6, 130.5, 129.2, 127.5, 127.3 (m), 127.2, 127.0, 126.9, 122.7, 122.6, $111.8,106.0,30.3,27.7,26.9,22.1,15.5,14.3,13.8$. elemental analysis calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NOS}$ (425.59): C 79.02, H 6.39; found: C 79.20, H 6.12.

2-Isopropyl-4-methyl-5-(10-(5-pentylthiophen-2-yl)phenanthren-9yl)thiazole (28)

5-(10-Bromophenanthren-9-yl)-2-isopropyl-4-methylthiazole 24 (0.198 g , $0.5 \mathrm{mmol})$, 2-pentylthiophene ($0.154 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.098 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 28 was obtained in $52 \%(0.122 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.80$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (sept., $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.69$ (quint., $J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 10 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 177.2,149.9,146.9,136.5,134.0,132.3,131.5,130.5,130.3$, 129.1, 128.3, 127.9, 127.2 (m), 127.1, 126.9, 126.7, 123.4, 122.7, 122.5, $33.4,31.5,31.2,30.0,23.3,23.2,22.4,15.9,14.1$. elemental analysis: calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NS}_{2}$ (469.71): C 76.71, H 6.65; found: C 76.87, H 6.80 .

5-(10-(2-Isopropyl-4-methylthiazol-5-yl)phenanthren-9-yl)thiophene-2-carbonitrile (29)

5-(10-Bromophenanthren-9-yl)-2-isopropyl-4-methylthiazole 24 (0.198 g , $0.5 \mathrm{mmol})$, 2-thiophenecarbonitrile ($0.109 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.098 \mathrm{~g}, 1$ $\mathrm{mmol})$ and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 29 was obtained in $57 \%(0.121 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 178-180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.55(\mathrm{~m}, 7 \mathrm{H})$, 7.01 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (sept., $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11 (s, 3H), 1.45 1.36 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.0,150.4,147.1,137.0$, $131.2,131.1,130.7,130.6,130.5,130.2,129.0,128.0,127.8,127.6$, $127.4(\mathrm{~m}), 126.9,125.4,122.8,114.0,110.5,33.4,23.2,23.1,15.8$. elemental analysis: calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{2}$ (424.58): C 73.55, H 4.75; found: C 73.60, H 4.67.

2-Isopropyl-4-methyl-5-(10-(thiophen-2-yl)phenanthren-9-yl)thiazole (30)

5-(10-Bromophenanthren-9-yl)-2-isopropyl-4-methylthiazole 24 (0.198 g , $0.5 \mathrm{mmol})$, thiophene ($0.084 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.098 \mathrm{~g}, 1 \mathrm{mmol}$) and
$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 30 was obtained in 56% $(0.112 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.55(\mathrm{~m}$, $5 \mathrm{H}), 7.37$ (dd, $J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (sept., $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12 (s, 3H), 1.451.35 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.3,149.9,139.2,133.5$, 132.2, 131.5, 130.5, 130.4, 129.3, 128.6, 127.8, 127.3 (m), 127.2, 127.0, 126.4, 126.2, 122.7, 122.5, 33.3, 23.3, 23.2, 15.8. elemental analysis: calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NS}_{2}$ (399.57): C 75.15, H 5.30; found: C 75.32 , H 5.01.

1-(5-(10-(2-Isopropyl-4-methylthiazol-5-yl)phenanthren-9-yl)furan-2-

 yl)butan-1-one (31)5-(10-Bromophenanthren-9-yl)-2-isopropyl-4-methylthiazole 24 (0.198 g , $0.5 \mathrm{mmol})$, 1-(furan-2-yl)butan-1-one ($0.138 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc (0.098 g , $1 \mathrm{mmol})$ and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 31 was obtained in $59 \%(0.133 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.67(\mathrm{~m}$, $3 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, 1 H), 3.30 (sept., $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 1.76 (sext., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.7,177.4,154.4,152.8,150.3,131.1$, 130.9, 130.6, 130.5, 130.4, 129.1, 128.0, 127.7, 127.5 (m), 127.4, 126.8, 125.6, 122.8, 117.2, 113.8, 40.4, 33.3, 23.2, 23.1, 17.7, 15.6, 13.9. elemental analysis: calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ (453.60): C 76.79, H 6.00; found: C 76.90, H 6.12.

9,10-bis(2-isopropyl-4-methylthiazol-5-yl)phenanthrene (32)

5-(10-Bromophenanthren-9-yl)-2-isopropyl-4-methylthiazole 24 (0.198 g , 0.5 mmol), 2-isopropyl-4-methylylthiazole ($0.141 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc $(0.098 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 32 was obtained in $55 \%(0.125 \mathrm{~g})$ yield as a green solid: mp $138-140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ (sept., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.14(\mathrm{~s}, 6 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.5,149.9,131.2,130.6,130.5,127.5,127.4,127.1$, 126.1, 122.8, 33.4, 23.4, 23.1, 16.0. elemental analysis: calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{~S}_{2}$ (456.67): C 73.64, H 6.18; found: C 73.45, H 6.01.

9-IsopentyIphenanthrene (33) [15]

9-bromophenanthrene ($0.514 \mathrm{~g}, 2 \mathrm{mmol}$), 3-methyl-1-butylboronic acid $(0.464 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.552 \mathrm{~g}, 4 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(8.8 \mathrm{mg}, 0.04$ mmol) were dissolved in xylene (5 mL) under an argon atmosphere. The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 20 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 33 was obtained in $76 \%(0.377 \mathrm{~g})$ yield as a white solid: mp 89-91 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.77$ (d, J=8.0 $\mathrm{Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71-7.58(\mathrm{~m}, 5 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 3 \mathrm{H})$, $1.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.3$, 132.0,
131.3, 130.7, 129.6, 128.0, 126.6, 126.5, 126.1, 125.8 (2C), 124.5, 123.2, 122.4, 39.6, 31.3, 28.4, 22.7.

9-Bromo-10-isopentylphenanthrene (34) [15]

9-Isopentylphenanthrene 33 ($0.248 \mathrm{~g}, 1 \mathrm{mmol}$) and N-bromosuccinimide ($0.356 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in DMF (5 mL) under an argon atmosphere. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 34 was obtained in $88 \%(0.288 \mathrm{~g})$ yield as a white solid: mp 91-93 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.72(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76-7.58(\mathrm{~m}, 4 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): б 137.6, 131.3, 130.9, 130.5, 130.0, 128.6, 127.5, 127.3, 126.7, 126.6, $125.1,124.1,123.3,122.5,38.2,32.1,28.9,22.5$.

5-(10-Isopentylphenanthren-9-yl)-2-isopropyl-4-methylthiazole (35)

9-Bromo-10-isopentylphenanthrene 34 ($0.164 \mathrm{~g}, 0.5 \mathrm{mmol}$), 2-isopropyl-4-methylylthiazole ($0.141 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.098 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA $(2 \mathrm{~mL})$ under an argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 35 was obtained in 78% $(0.151 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H})$, 3.50-3.38 (m, 1H), 3.11-2.90 (m, 2H), 2.16 (s, 3H), 1.64-1.54 (m, 3H), 1.53 (d, $J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 177.0,149.5,139.3,132.2,131.0,130.7,129.5,127.0,126.9$, $126.8,126.7,126.5,126.1,125.7,125.4,123.2,122.5,39.5,33.6,28.8$, 23.5, 23.4, 22.3, 15.6. elemental analysis: calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NS}$ (387.59): C 80.57, H 7.54; found: C 80.74, H 7.34 .

2-(10-Isopentylphenanthren-9-yl)thiophene (36)

9-Bromo-10-isopentylphenanthrene $34(0.164 \mathrm{~g}, 0.5 \mathrm{mmol})$, thiophene ($0.084 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.098 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1$ $\mathrm{mg}, 0.01 \mathrm{mmol}$) were dissolved in DMA (2 mL) under an argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. Product 36 was obtained in $80 \%(0.132 \mathrm{~g})$ yield as a white solid: mp $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.80(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{dd}, J=5.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.94(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.54(\mathrm{~m}$, $3 \mathrm{H}), 0.91$ (d, $J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.6$, $138.5,133.1,130.8,130.6,129.2,128.7,128.1,127.2,127.0,126.8$, 126.6, 126.5, 125.9, 125.8, 125.4, 123.1, 122.2, 40.4, 28.8, 22.4, 22.3. elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~S}$ (330.49): C 83.59, H 6.71; found: C 83.60, H 6.49.

Acknowledgements

We are grateful to CNRS, Rennes Metropole and Scientific Ministry of Higher Education and Research of Tunisia for providing financial support.

Keywords: palladium • catalysis • C-H bond functionalization • coupling • phenanthrenes • heteroarenes
[1] a) H. Tian, J. Wang, J. Shi, D. Yan, L. Wang, Y. H. Geng, F. Wang, J. Mater. Chem. 2005, 15, 3026-3033; b) H. Tian, J. Shi, S. Dong, D. Yan, L. Wang, Y. H. Geng, F. Wang, Chem. Commun. 2006, 3498-3500; c) G. Li, C. Kang, C. Li, Z. Lu, J. Zhang, X. Gong, G. Zhao, H. Dong, W. Hu, Z. Bo, Macromol. Rapid Commun. 2014, 35, 1142-1147; d) Y.-A. Kim, K.-I. Hwang, M. Kang, N.-K. Kim, S.-y. Jang, I.-B. Kim, J. Kim, D.Y. Kim, Org. Electron. 2017, 44, 238-246.
[2] a) M. Walko, B. L. Feringa, Chem. Commun. 2007, 1745-1747; b) D. G. Patel, I. M. Walton, J. M. Cox, C. J. Gleason, D. R. Butzerb, J. B. Benedict, Chem. Commun. 2014, 50, 2653-2656; c) T. T. Vu, R. Meallet-Renault, G. Clavier, B. A. Trofimov, M. K. Kuimova, J. Mater. Chem. C 2016, 4, 2828-2833; d) Y. Beldjoudi, I. Osorio-Roman, M. A. Nascimento, J. M. Rawson, J. Mater. Chem. C 2017, 5, 2794-2799.
[3] a) C. A. Dornfeld, J. E. Callen, G. H. Coleman, Org. Synth. 1948, 28, 19-21; b) S. R. D. George, T. D. H. Frith, D. S. Thomas, J. B. Harper, Org. Biomol. Chem. 2015, 13, 9035-9041; c) A. Mishra, M. Ulaganathan, E. Edison, P. Borah, A. Mishra, S. Sreejith, S. Madhavi, M. C. Stuparu, ACS Macro Lett. 2017, 6, 1212-1216.
[4] a) M. Shimizu, I. Nagao, Y. Tomioka, T. Kadowaki, T. Hiyama, Tetrahedron 2011, 67, 8014-8026; b) S. Handa, E. D. Slack, B. H. Lipshutz, Angew. Chem., Int. Ed. 2015, 54, 11994-11998; c) A. Bessette, T. Auvray, D. Desilets, G. S. Hanan, Dalton Trans. 2016, 45, 7589-7604; d) A. Couhert, P. Delagrange, D.-H. Caignard, A. Chartier, F. Suzenet, G. Guillaumet, Eur. J. Med. Chem. 2016, 268-275; e) C. Raji Reddy, R. Rani Valleti, U. Dilipkumar, Chem. Eur. J. 2016, 22, 2501-2506; f) C. K. Hazra, N. Gandhamsetty, S. Park, S. Chang, Nat. Commun. 2016, 7, 13431; g) A. Bessette, T. Auvray, D. Desilets, G. S. Hanan, Dalton Trans. 2016, 45, 7589-7604.
[5] a) Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara, M. Shimizu, Heterocycles 1985, 23, 2327-2333; b) A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga, A. Miyafuji, T. Nakata, N. Tani, Y. Aoyagi, Heterocycles 1990, 31, 1951-1958.
[6] a) B.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett 2008, 949-957; b) L. Ackermann, R. Vincente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; c) J. Wencel-Delord, F. Glorius, Nature Chem. 2013, 5, 369-375; d) I. Kuzhushkov, H. K. Potukuchi, L. Ackermann, Catal. Sci. Technol. 2013, 3, 562-571; e) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; f) C. B. Bheeter, L. Chen, J.-F. Soulé, H. Doucet, Catal. Sci. Technol. 2016, 6, 2005-2049; g) L. Theveau, C. Schneider, C. Fruit, C. Hoarau, ChemCatChem 2016, 8, 3183-3194; h) R. Rossi, M. Lessi, C. Manzini, G. Marianetti, F. Bellina, Tetrahedron 2016, 72, 1795-1837; i) X. Shi, A. Sasmal, J.-F. Soulé, H. Doucet, Chem. Asian J. 2018, 13, 143-157.
[7] a) L. Ackermann, Modern arylation methods, Eds.: Wiley Online Library, 2009; b) A. Skhiri, R. Ben Salem, J.-F. Soulé, H. Doucet ChemCatChem 2017, 9, 2895-2913.
[8] a) W. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, G. J. Javadi, D. Cai, R. D. Larsen, Org. Lett. 2003, 5, 4835-4837; b) M. Parisien, D. Valette, K. Fagnou, J. Org. Chem. 2005, 70, 7578-7584; c) B. Liegault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, J. Org. Chem. 2009, 74, 1826-1834; d) V. O. laroshenko, A. Gevorgyan, S. Mkrtchyan, K. Arakelyan, T. Grigoryan, J. Yedoyan, A. Villinger, P. Langer, J. Org. Chem. 2015, 80, 2103-2119; e) D. Firmansyah, M. Banasiewicz, D. T. Gryko, Org. Biomol. Chem. 2015, 13, 1367-1374.
[9] a) D. Zhao, W. Wang, F. Yang, J. Lan, L. Yang, G. Gao, J. You, Angew. Chem., Int. Ed. 2009, 48, 3296-3300; b) H. Hachiya, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2009, 11, 1737-1740; c) K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc. 2012, 134, 169-172; d) W.-Y. Hu, P.-P. Wang, S.-L. Zhang, Synthesis 2015, 47, 42-48.
[10] A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, J. G. de Vries, Org. Lett. 2003, 5, 3285-3288.
[11] a) F. Požgan, J. Roger, H. Doucet, ChemSusChem 2008, 1, 404-407; b) J. Roger, H. Doucet, Tetrahedron 2009, 65, 9772-9781; c) Y. Fall, C. Reynaud, H. Doucet, M. Santelli, Eur. J. Org. Chem. 2009, 4041-4050; d) C. Sabah, S. Djebbar, J. F. Soulé, H. Doucet, Chem. Asian J. 2016, 11, 2443-2452.
[12] T. Cantat, E. Génin, C. Giroud, G. Meyer, A. Jutand, J. Organomet. Chem. 2003, 687, 365-376.
[13] K. Pati, C. Michas, D. Allenger, I. Piskun, P. S. Coutros, G. dos P. Gomes, I. V. Alabugin, J. Org. Chem. 2015, 80, 11706-11717.
[14] T. Truong, O. Daugulis, J. Am. Chem. Soc. 2011, 133, 4243-4245.
[15] N. I. Tabashidze, L. D. Melikadze, S. S. Barabadze, L. D. Tsamalashvili, M. M. Machabeli, Izvestiya Akademii Nauk Gruzinskoi SSR, Seriya Khimicheskaya 1978, 4, 35-41.

FULL PAPER

Successive palladium-catalyzed direct heteroarylations of 9 - and 10bromophenanthrenes provides a convenient route for access to symmetrical and non-symmetrical 9,10-di(heteroarylated) phenanthrenes. . A wide variety of heteroarenes such as thiazoles, (benzo)thiophenes, (benzo)furans, pyrroles, selenophenes or imidazopyridazines was successfully employed.

$\mathrm{C}-\mathrm{H}$ bond functionalization

Bilel Bouzayani, Ridha Ben Salem,* Jean-François Soulé, * and Henri Doucet*

Synthesis of C9,C10-diheteroarylated phenanthrenes via palladiumcatalyzed C-H bond activations

[^0]: [a] B. Bouzayani, J.-F. Soulé, H. Doucet,
 Univ Rennes
 CNRS, ISCR-UMR 6226
 F-35000 Rennes, France
 E-mail: jean-francois.soule@univ-rennes1.fr, henri.doucet@univrennes1.fr
 http://blogperso.univ-rennes1.fr/jean-francois.soule/ https://iscr.univ-rennes1.fr/omc/dr-henri-doucet
 [b] B. Bouzayani, R. Ben Salem
 Laboratoire de Chimie Organique LR 17ES08
 Université de Sfax, Faculté des Sciences de Sfax
 Route de la Soukra km 4, 3038 Sfax, Tunisia
 E-mail: ridhabensalem@yahoo.fr

[^1]: *: $\mathrm{Pd}(\mathrm{OAc})_{2} 0.1 \mathrm{~mol} \%$
 **: 2 equiv. of heteroarene

