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Abstract— The product model is assumed to be an appropri-
ate statistical model for multilook polarimetric synthetic radar
data (PolSAR). According to this model, the observed signal
is considered as the product of independent random variates
of a complex Gaussian speckle and a non-Gaussian texture.
With different texture distributions, the product model leads to
different expressions for the compound distribution considered
as an infinite mixture model. In this paper, the maximum-likeli-
hood (ML) estimator is derived to jointly estimate the speckle
and texture parameters in the compound distribution model using
the multilook polarimetric radar data. In particular, we estimate:
1) the equivalent number of looks; 2) the covariance matrix of the
speckle component; and 3) the texture distribution parameters.
The expectation–maximization algorithm is developed to compute
the ML estimates of the unknown parameters. The hybrid
Cramer–Rao bounds (HCRBs) are also derived for these para-
meters. First, a general HCRB expression is derived under an
arbitrary texture distribution. Then, this expression is simplified
for a specific texture distribution. The performance of the ML
is compared with the performance of other known estimators
using the simulated and real multilook PolSAR data. For real
data, a goodness of fit of multilook PolSAR data histograms is
used to assess the fitting accuracy of the compound distributions
using different estimators.

Index Terms— Expectation–maximization (EM) algorithm,
maximum likelihood (ML), multilook polarimetric synthetic aper-
ture radar (PolSAR) data, parameter estimation, product model.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (PolSAR) has
been widely used to discriminate between different

scattering mechanisms. It gives more scattering information
than single-polarization-channel SAR data. Radar images are
affected by an interference phenomenon known as speckle.
This noise can be mitigated by a multilooking processing
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step. Multilooking consists in averaging multiple SAR mea-
surements during data formation and postprocessing [1], [2].
The parameter that describes the degree of averaging applied
to the SAR measurements is called the number of looks.
Due to the random nature of speckles, statistical models have
been widely used for PolSAR data. The product model is
commonly assumed to be an appropriate statistical model for
PolSAR data. Introduced by Yueh et al. [3], the multivariate
product model considers the observed signal as the product
of a complex Gaussian speckle random variate and a non-
Gaussian texture random variate. These two components are
independent sources of data variability. It has been shown
that a single-look PolSAR speckle follows a multivariate
zero-mean complex Gaussian distribution [4] and a multi-
look PolSAR speckle follows a matrix-variate-scaled complex
Wishart distribution [4]. The texture represents the natural
spatial variation of the radar cross section and is considered
to be a positive real variable. Different distributions are used
to model the texture random variable. With different texture
distributions, the product model leads to different expres-
sions for the resulting compound distribution. Some of the
most important texture distributions proposed in the literature
are gamma (γ), inverse gamma (γ−1), generalized inverse
Gaussian (GIG) (N−1), and Fisher (F), respectively, with the
resulting compound distributions Kd, G0

d , Gd, and Kummer-Ud
[5]–[10]. A parameter estimation procedure is an important
task in the analysis of PolSAR images, and an efficient
parameter estimation of the compound distributions is always
desired. Three types of parameters need to be estimated: 1) the
number of looks; 2) the covariance matrix; and 3) the texture
parameters. The first two parameters are from the speckle
probability density function (pdf), and the latter concerns the
texture pdf and indicates the texture variation level.

In the literature, there are a lot of ways to deal with the para-
meter estimation. The classical one consists in estimating para-
meters on each individual single polarization and average to
obtain the estimates for the polarimetric distribution [6], [11].
This kind of single-polarization estimator has a performance
less than that of polarimetric estimators [12]. This approach
is frequently used in the equivalent number of looks (ENL)
estimation. Therefore, the traditional approach to an ENL
estimation is to identify the homogeneous regions in an
image, where the speckle is fully developed and the texture
is negligible. These conditions ensure that the distribution of
the scattering coefficients can be assumed complex Gaussian.
Under this assumption, Anfinsen et al. [13] estimated the
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ENL using the coefficient of variation estimator and the frac-
tional moment-based estimator obtained from each available
polarization before averaging the results. For full PolSAR,
Anfinsen et al. [13] developed a trace moment-based estimator
and a log-determinant moment-based estimator for the ENL
estimation via statistics of the polarimetric covariance matrix,
which follows the Wishart distribution. These two methods
provide a valid estimation when the speckle is fully developed
and the texture is considered negligible. Tao et al. [14]
introduced a novel ENL estimator that could be applied to
any distribution of a texture model. The new estimator is
the development of trace moments (DTM), which cancels the
textural variation using trace moments. This estimator is an
extension of the trace moment-based estimator developed by
Anfinsen et al. [13] under the assumption of the Wishart dis-
tribution. The most important method developed recently and
becoming increasingly popular is the method of matrix log-
cumulants (MoMLC) for the multilook polarimetric parameter
estimation [12]. The MoMLC is based on the computation of
higher derivatives of special functions [12]. With the MoMLC,
the ENL is estimated from the first-order MLC equations of the
complex Wishart distribution over a textureless area [10], [12].

The estimation of the speckle covariance matrix is important
in the statistical modeling of multilook PolSAR data. An
important comparative study of covariance matrix estimators
for single-look PolSAR data was presented by Tao et al. [15].
They compared a few covariance matrix estimators: the
maximum-likelihood (ML) estimators under the Gaussian dis-
tribution, the K-distribution, and Tyler’s estimator [16] or the
fixed point estimator. For the Gaussian distribution-based
ML (G-ML) estimator, the texture variable is considered as
constant in the product model. The scattering vector then
becomes complex multivariate Gaussian distributed, and the
ML estimator reduces to the familiar sample covariance
matrix (SCM) estimator. Gini and Greco [17] derived
the general ML covariance matrix estimator based on the
single-look polarimetric product model. When the texture is
gamma-distributed, the scattering vector becomes multivariate
K-distributed [3]. The K-distribution-based ML (K-ML) esti-
mator is solved iteratively and it depends on the shape para-
meter of the texture distribution, which has been preliminarily
estimated. The third estimator is Tyler’s estimator. It is the
approximate ML estimator of the speckle covariance intro-
duced by Gini and Greco [17] and Vasile et al. [18], [19].
A particularity of this estimator is that it does not require
any prior information about the texture pdf. Tao et al. [15] in
their comparative study concluded that the K-ML estimator
was better than the G-ML estimator under a high texture but
at increased computational cost and that Tyler’s estimator did
not provide any distinct advantage for a textureless or textured
area. For the multilook PolSAR data, Liu et al. [20] extended
the spherically invariant random vector (SIRV) model to the
multilook case and derived the ML estimator and the approxi-
mate ML estimator of the covariance matrix of the speckle.

When the pdf is used to model the texture random vari-
able, additional shape parameters are introduced, which have
to be estimated to define the distribution. Several works
have been devoted to improve the estimation of the texture

parameters. The moment-based method is a traditional solu-
tion for shape parameter estimation. Due to the fact that
the variance of a moment-based estimator increases with
the moment order, the fractional moments are used instead.
Then, the method can be applied to all polarimetric channels
before averaging the results. This approach was adopted by
Freitas et al. [7] and Frery et al. [11]. They derived estimators
from fractional moments of single polarization by combining
half- and quarter-order moments. The final estimate of the
shape parameter of the texture is an average of the single-
polarization estimates. Alternative estimators were proposed
by Frery et al. [11] and Doulgeris et al. [21], where the former
was just a monopoly version of the latter. The estimator was
derived from the moments of the Hotelling–Lawley trace. The
third method was the MoMLC applied to estimate the texture
parameters from the multilook polarimetric Kd, G0

d , and Gd
distributions [10], [12]. When the distribution has only one
texture parameter, as Kd, G0

d , the parameter will be related
to the second-order MLC. If the distribution has two texture
parameters, as Gd and Kummer-Ud distributions, the estima-
tion procedure will require the second- and third-order MLC
equations, which will involve higher order derivatives of a
modified Bessel function of the second kind with respect
to its order for Gd and higher order derivatives of a mul-
tivariate digamma function for the Kummer-Ud distribution.
These derivatives do not have closed-form expressions [10].
Anfinsen and Eltoft [12] performed the Monte Carlo simu-
lations to compare the performance of several estimators for
texture parameters carried out for simulated multilook PolSAR
data. They concluded that polarimetric estimators outperform
single-polarization estimators in terms of bias and variance.
Recently, Khan and Guida [22] have shown that the method of
multivariate fractional moment (MoMFM), which is based on
the fractional moments of the multilook polarimetric whitening
filter [23], has a lower bias and variance than the MoMLC-
based estimators.

The aforementioned methods are used separately in the
estimation of parameters and under the condition of homo-
geneous regions. In fact, when the MLC method is used to
estimate parameters, the ENL is estimated under the condition
of region homogeneity. Then, it is estimated from the first-
order MLC equation of the complex Wishart distribution [12].
In addition, to solve this equation, a prior estimate of the
covariance matrix estimated under the Wishart condition is
needed. In this paper, a general framework for fully PolSAR
data is developed. The objective is a fully automatic estimation
procedure that requires no Gaussian assumption or manual
intervention, as the selection of homogeneous regions where
the speckle is fully developed and the texture is negligible. The
ENL, the covariance matrix, and the texture parameters are
estimated simultaneously and not separately by the maximum-
likelihood estimator. The classical expectation–maximiza-
tion (EM) algorithm [24] is used to derive the ML parameters.
The EM provides an ideal framework for the parameter
estimation of the compound distribution, which is the result
of the product model, and it guarantees the convergence to a
stationary point of the log-likelihood. In addition, the algo-
rithm is easier to implement and computationally efficient,



Acc
ep

ted
 m

an
us

cri
tpt

3

which requires the computation of special functions and not
their higher order derivatives. The aim of this paper is to
use the EM algorithm to derive the ML estimates for the
multilook polarimetric Kd, G0

d , and Gd. Then, the polarimetric
EM estimator is compared with some known estimators.
The rest of this paper is organized as follows. Section II
introduces the statistical product model for multilook PolSAR
data. The application to parameter estimation for the multilook
PolSAR data distribution using the EM algorithm is presented
in Section III. The content of Section IV is related to the
performance evaluation. The EM estimator is compared with
other estimators for multilook polarimetric Kd, G0

d , and Gd
distributions using the simulated PolSAR data. Section V
presents the results of the proposed estimators applied to real
data. Finally, Section VI concludes this paper.

II. PRODUCT MODEL FOR MULTILOOK

POLARIMETRIC RADAR DATA

The polarimetric scattering vector is defined as

s = [shh, shv, svh, svv]T ∈ C
d (1)

with sxy the complex scattering coefficients, where x is the
transmit, y is the receive polarization, h denotes horizontal, v
denotes vertical [25], [.]T means transposition, and d = dim(s)
is the vector dimension. The single-look polarimetric product
model is defined as

s =
√
τx (2)

where τ represents a positive scalar texture random variable
with a pdf fτ (τ) and x is a d-dimensional speckle vector,
which follows a circular complex Gaussian distribution [x ∼
NC

d (0,Σ)], with a zero-mean vector and a covariance mat-
rix Σ. The random variable τ and the random vector x are
statistically independent. The multilooking of PolSAR data
reduces the speckle effect characteristic of coherent imaging
systems. The polarimetric multilooking operation is given by

C =
1
L

L∑
l=1

slsHl , L ≥ d (3)

where L is the number of looks, (.)H denotes the Hermitian
operator, and C ∈ Ω+ ⊂ Cd×d is the multilook polarimetric
covariance matrix considered as a random matrix defined
on the cone Ω+ of the positive-definite complex Hermitian
matrices. The multilook polarimetric product model is then
given by

C = τX (4)

where X is a random speckle matrix defined as X =
(1/L)

∑L
l=1 xlxHl . When L ≥ d, the unnormalized SCM

defined as Z = LX follows the nonsingular complex Wishart
distribution [26] denoted as Z ∼ WC

d (L,Σ) and X follows
a scaled complex Wishart distribution with a pdf given by
fX(X) = fZ(LX)|JZ→X|, where |JZ→X| = Ld

2
is the Jacobian

determinant of the transformation Z = LX [27]. The pdf of
X is

fX(X) =
LLd|X|L−d
Γd(L)|Σ|L etr(−LΣ−1X) (5)

where etr(.) = exp(tr(.)) is the exponential trace operator,
|.| is the determinant operator, and Γd(L) is the multivariate
gamma function of the complex kind defined as

Γd(L) = πd(d−1)/2
d−1∏
i=0

Γ(L− i) (6)

where Γ(L) is the standard Euler gamma function. The pdf of
C using Bayes’ theorem becomes as follows:

fC(C) =
∫ +∞

0

fC|τ (C|τ)fτ (τ)dτ (7)

where fC|τ (C|τ) is the pdf of C with a specific value of τ
and is given by fC|τ (C|τ) = fX(C/τ)|JX→C| with |JX→C| =
τ−d

2
. Then, the pdf is, therefore, given by

fC|τ (C|τ) =
LLd|C|L−d
Γd(L)|Σ|L

1
τdL

etr
(
−L
τ
Σ−1C

)
. (8)

The pdf of C is obtained by substituting (8) in (7)

fC(C) =
LLd|C|L−d
Γd(L)|Σ|L

∫ +∞

0

1
τdL

etr
(
−L
τ
Σ−1C

)
fτ (τ)dτ.

(9)

This equation is the extension of the SIRV distribution model
to the multilook case [9], [20]. The same pdf of the multilook
polarimetric covariance matrix C can be defined by different
couples (Σ, θτ ), where θτ are the texture distribution para-
meters. In order to obtain a unique correspondence between
fC(C) and the parameters, some constraint on the mean of the
texture distribution or on the scale of Σ is considered. The first
constraint is to normalize the mean of the texture distribution
to 1, and then, E{τ} = 1. This normalization was adopted in
[12], [13], and [28]. The second constraint is to normalize the
determinant of the covariance matrix of the speckle to 1 by
dividing Σ by its determinant |Σ|1/d [10], [21] or to normalize
the trace of the covariance matrix of the speckle to d by
dividing Σ by tr(Σ)/d [17]. In fact, normalization is required,
but any normalization can be adopted. Table I provides the
analytical expression of the covariance matrix pdfs of possible
choices of fτ (τ): gamma (γ̄), inverse gamma (γ̄−1), and GIG
(N−1) distributed textures. They are, respectively, the matrix-
variate Kd, G0

d , and Gd distributions. The overbar in the symbol
of gamma (γ̄) and inverse gamma distributions (γ̄−1) means
that these distributions have been normalized to a unit mean.
The determinant of the covariance matrix of the speckle of the
matrix-variate Gd distribution is normalized to 1. Substituting
the pdf of γ̄(α) and N−1(α,w, η) into (9), where (α,w)
are two shape parameters and η is a scale parameter, and
using [29, eq. (3.471.9)] lead to the pdf of Kd(Σ, L, α)
and Gd(Σ, L, α, w, η) depending on Kα−dL(.), which is the
modified Bessel function of the second kind of order α−dL.

III. EM FOR COMPOUND DISTRIBUTION

Let us consider N independent and identically distributed
(i.i.d.) realizations Ci, i = {1, . . . , N} of a random matrix
C distributed according to the density function fC(C). One
can suppose that each observed covariance matrix Ci has a
corresponding unobserved and hidden texture τi. The sequence
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TABLE I

TEXTURE AND COVARIANCE MATRIX DISTRIBUTION UNDER THE MULTILOOK POLARIMETRIC PRODUCT MODEL

{τi, i = 1, . . . , N} is also assumed to be i.i.d. The pdf of
C depends on a set of unknown parameters θ = (L,Σ, θτ ),
where θτ are the parameters of the texture distribution. The
ML estimator θ̂ of the set parameter θ of the compound
distribution is given by

θ̂ = argmax
θ

fC(C|θ) = arg max
θ

N∏
i=1

fC(Ci|θ). (10)

In the absence of a closed-form solution to (10), the EM
algorithm is used to find the estimation θ̂ given a current
estimate θ�. The new equation is then given by

θ̂ = arg max
θ
Eτ |C{ln fτ,C(C, τ |θ)∣∣C, θ�}

= arg max
θ
Eτ |C

{
N∑
i=1

ln fτ,C(Ci, τi|θ)
∣∣Ci, θ

�
}

= arg max
θ

N∑
i=1

Eτ |C{ln fτ,C(Ci, τi|θ)
∣∣Ci, θ

�}. (11)

Let θX = (Σ, L) and using the fact that fτ,C(Ci, τi|θ) =
fC|τ (Ci|τi, θX)fτ (τi|θτ ), then (11) can be maximized sepa-
rately according to the speckle parameter θX and θτ

θ̂X = argmax
θX

N∑
i=1

Eτ |C{ln fC|τ (Ci|τi, θX)
∣∣Ci, θ

�} (12)

θ̂τ = argmax
θτ

N∑
i=1

Eτ |C{ln fτ (τi|θτ )
∣∣Ci, θ

�}. (13)

A. Estimation of Speckle Parameters

Substituting (8) in (12), differentiating with respect to L and
Σ by taking into account the properties [30]: ∂ ln |Σ|/∂Σ =
(Σ−1)T and ∂tr(Σ−1W)/∂Σ = −(Σ−1WΣ−1)T , and set-
ting the result to zero yield

Σ̂ =
1
N

N∑
i=1

Eτ |C

{
1
τi
|Ci, θ�

}
Ci (14)

d ln L̂+ d− ψd(L̂)

=
1
N

N∑
i=1

(
Eτ |C

{
1
τi
|Ci, θ�

}
tr(Σ̂

−1
Ci)− ln |Σ̂−1

Ci|
)

+
d

N

N∑
i=1

Eτ |C{ln τi|Ci, θ�} (15)

where Eτ |C{ln τi|Ci, θ�} and Eτ |C{(1/τi)|Ci, θ
�} are poste-

rior expectations depending on the texture distributions, and
their closed-form expressions are given in Section III-B. The
function ψd(L) is the multivariate digamma function defined
as ψd(L) = ∂ ln Γd(L)/∂L =

∑d−1
j=0 ψ(L − j), where ψ(.)

is the digamma function. Equation (14) is the ML estimator
of the covariance matrix of the speckle. Equation (14) is
equivalent to the ML estimator of the covariance matrix of
the speckle derived by Liu et al. [20], which is given as

Σ̂ML =
1
N

N∑
i=1

hdL+1

(
Ltr

(
Σ̂

−1

MLCi
))

hdL
(
Ltr

(
Σ̂

−1

MLCi
)) Ci (16)

where the function hdL(q) is defined as hdL(q) =∫ +∞
0

τ−dL exp(−(q/τ))fτ (τ)dτ . A complete proof is given
in Appendix A. For single-look PolSAR data, we get
L = 1 and C = ssH . By applying the identity
tr(Σ−1ssH) = sHΣ−1s, (16) is reduced to the ML covariance
matrix estimator derived by Gini and Greco [17] given by
Σ̂ML = (1/N)

∑N
i=1(hd+1(sHi Σ̂

−1

MLsi)/hd(sHi Σ̂
−1

MLsi))sisHi .
It is important to point out that to guarantee the unicity of
the covariance matrix for the case of GIG texture distribution,
the determinant of the estimated covariance matrix of the
speckle is normalized to 1 by dividing Σ̂ by its determinant
|Σ̂|1/d. Equation (15) is needed to solve the ML estimator
of the ENL L. An explicit solution for L̂ is not obtainable
directly from (15). The Newton–Raphson method is proposed
to solve it iteratively. As regards the estimation of L, (15)
is equivalent to EY{tr(Yi) − ln |Yi|} = EC{EY|C{tr(Yi) −
ln |Yi|

∣∣Ci}}, where Yi = (1/τi)Σ−1/2CiΣ−1/2 is distributed
as a scaled Wishart distribution with the parameters (L, Id),
where Id is the d × d identity matrix, EY{tr(Yi)} = d, and
EY{ln |Yi|} = ψd(L) − d lnL. A complete description is
provided in Appendix B.

B. Estimation of Texture Parameters

The texture distribution parameters θ̂τ are estimated using
(13), which needs the texture pdf fτ (τi|θτ ) and the posterior
distribution fτ |C(τi|Ci, θ�). In what follows, four texture pdfs
are used.

1) Gamma Distribution: Substituting γ̄(α) in (13), differ-
entiating with respect to α, and setting the result to zero yield

ln(α̂)− ψ(α̂) + 1 =
1
N

N∑
i=1

Eτ |C{τi − ln τi|Ci, θ�}. (17)
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TABLE II

POSTERIOR PDF OF τ GIVEN THE MULTILOOK POLARIMETRIC COVARIANCE MATRIX C

TABLE III

POSTERIOR EXPECTATION OF τ GIVEN THE MULTILOOK POLARIMETRIC COVARIANCE MATRIX C

The ML-based α parameter estimator is the solution to (17)
involving fτ |C(τi|Ci). Using Bayes’ rule, the posterior pdf of
τi given Ci is provided as follows:

fτ |C(τi|Ci) =
fC|τ (Ci|τi)fτ (τi)

fC(Ci)
. (18)

The expression of fτ |C(τi|Ci) is presented in Table II in
the case where the texture is gamma-distributed. This pos-
terior distribution corresponds to the GIG distribution (see
Appendix C), with the parameters (α1 = α − dL,w1 =
2(Lαtr(Σ−1Ci))1/2, η1 = ((L/α)tr(Σ−1Ci))1/2. The pos-
terior expectation expressions in terms of these parameters
are shown in Table III. It is worth noticing that (17) can be
interpreted as the difference between Eτ{τi} and Eτ{ln τi},
with Eτ{τi} = 1 = EC{Eτ |C{τi|Ci}} and Eτ{ln τi} =
ψ(α)− ln(α) = EC{Eτ |C{ln τi|Ci}}.

2) Inverse Gamma Distribution: In a similar manner, sub-
stituting γ̄−1(λ) in (13), differentiating with respect to λ, and
setting the result to zero yield

ln(λ̂−1)−ψ(λ̂)+
λ̂

λ̂−1
=

1
N

N∑
i=1

Eτ |C

{
1
τi

+ln τi|Ci, θ�
}
. (19)

The posterior pdf of τi given Ci is provided in a closed form
in Table II. It corresponds to an inverse gamma distribution
with parameters (α1 = dL+λ, β1 = Ltr(Σ−1Ci)+λ−1). The
posterior expectation expression in terms of these parameters is
defined in Table III (see Appendix D). Equation (19) represents
the sum of Eτ{(1/τi)} and Eτ{ln τi}, where Eτ{(1/τi)} =
λ/(λ−1) = EC{Eτ |C{(1/τi)|Ci}} and Eτ{ln τi} = ln(λ−1)
− ψ(λ) = EC{Eτ |C{ln τi|Ci}}.

3) Generalized Inverse Gaussian Distribution: Substituting
N−1(α,w, η) in (13), differentiating with respect to α, w,
and η, and setting the result to zero yield

Kα̂−1(ŵ)+Kα̂+1(ŵ)
Kα̂(ŵ)

=
1
N

N∑
i=1

Eτ |C

{
η̂

τi
+
τi
η̂
|Ci, θ�

}
(20)

1
Kα̂(ŵ)

∂Kα̂(ŵ)
∂α

=
1
N

N∑
i=1

Eτ |C

{
ln
τi
η̂
|Ci, θ�

}
(21)

2
α̂

ŵ
=

1
N

N∑
i=1

Eτ |C

{
τi
η̂
− η̂

τi
|Ci, θ�

}
. (22)

The posterior pdf of τi given Ci is given in a closed form
in Table II. This is a N−1 distribution with the parameters
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[α1 = α − dL,w1 = ((w/η)(2Ltr(Σ−1Ci) + wη))1/2,
and η1 = ((2Ltr(Σ−1Ci) + wη)/w/η)1/2]. The
posterior expectation expressions in terms of these
parameters are defined in Table III. In a similar way,
(20) and (21) are equivalent to Eτ{τi + (1/τi)} =
EC{Eτ |C{τi + (1/τi)|Ci}} and Eτ{ln τi} = ln η +
(1/Kα(w))(∂Kα(w)/∂α) = EC{Eτ |C{ln τi|Ci}},
respectively, with Eτ{τi} = η(Kα+1(w)/Kα(w)) and
Eτ{(1/τi)} = (1/η)(Kα−1(w)/Kα(w)).

C. Implementation of EM Algorithm

Equations (14), (15), and (17), (14), (15), and (19), and
(14), (15), and (20)–(22) represent the iterative EM algorithm
for the estimation of the matrix-variate Kd, G0

d , and Gd
distribution parameters, respectively. The algorithm can be
initialized with any suitable values of Σ�, L�, and θ�τ . The
initial parameter values for the EM algorithm can be produced
by the MFM method or the MLC method. We have to note that
the choice of initialization value too far from the final solution
can cause the divergence of the algorithm. The algorithm is
stopped when the convergence criterion is satisfied. The partial
derivative (∂/∂α)Kα(.) is approximated using a numerical
differentiation given as follows:

∂

∂α
Kα(x) ≈ Kα+h(x)−Kα−h(x)

2h
(23)

with h = 10−3. The approximation accuracy of the numerical
derivatives depends on the smoothness of the functions. The
algorithm is stopped once the difference between the succes-
sive parameter estimates is less than 0.5% or if the maximum
iteration number 300 is reached. Since ln(z)− ψ(z) + 1 and
d ln(z)+d−ψd(z) are monotonically decreasing with respect
to z, the value of α̂ (Kd) and L̂ is uniquely determined if a
solution exists. The function ln(z − 1)− ψ(z) + z/(z − 1) is
monotonically increasing with respect to z, and λ̂ is uniquely
determined. The trust-region method [31] is used to solve (17)
for Kd, (19) for G0

d , and the system of equations (20)–(22) for
Gd. Specifically, the fsolve function in MATLAB is utilized
to obtain the parameter estimates. The estimation approach of
the parameters is summarized in Algorithm 1. In our case,
the Frobenius norm is used in step 11.

IV. ESTIMATORS PERFORMANCE COMPARISON

In this section, the performance of the proposed method
is compared with the performance of different estimators for
ENL and texture parameters by comparing their bias, variance,
and mean square error (mse) using Monte Carlo methods.
This is computed for the matrix-variate Kd, G0

d , and Gd
distributions. In Section IV-A, a lower bound on the variance
of these parameters is established and the hybrid Cramer–Rao
bound (HCRB) introduced by Gini and Reggiannini [32] is
used. The HCRB is easy to calculate at the cost of bound
tightness [33].

A. Hybrid Cramer–Rao Bound

The performance of an unbiased estimator is judged by the
Cramer–Rao lower bound (CRLB), which is known to be a

Algorithm 1 Parameter estimation
1: Input: N,Ci, d, �
2: Output: θ̂ = (Σ̂, L̂, θ̂τ )
3: Initialization:
4: Set initial parameters θ� = (Σ� = Id, L0, θτ0)
5: Main Loop:
6: Repeat
7: Calculate Eτ |C{.|Ci, θ�} according to the compound

pdf using Table III
8: Estimate Σ̂ using (14). For the case of Gd distribution

use: Σ̂← Σ̂
|Σ̂|1/d

9: Estimate L̂ using Σ̂ and (15)
10: Estimate θ̂τ using (17) for Kd, or (19) for G0

d , or (20,
21, 22) for Gd.

11: Calculate stop criterion: D ← 	θ̂ − θ�	
12: Set inputs for next iteration: Σ�, L�, θ̂�τ ← Σ̂, L̂, θ̂τ
13: Until D < �
14: Return (Σ̂, L̂, θ̂τ )

tight bound for a wide class of estimators [32]. However,
in many practical situations, the computation of this bound
is infeasible. The computation of a less optimal bound is
considered in this paper. It is the HCRB which is defined
by Gini and Reggiannini [32]. As it is mentioned in their
paper, there are other alternatives to the Cramer–Rao bound,
such as the HCRB, the modified Cramer–Rao bound (MCRB)
[34], the Miller–Chang bound (MCB) [35], and the extended
MCB (EMCB) [32]. The HCRB is tighter than the MCRB,
since the latter is generally lower than the former. In addition,
both the bounds apply to a wide class of estimators that are
unbiased on the average [32]. Contrariwise, the MCB and the
EMCB apply to a more restricted class of estimators than
the conventional CRB [32]. In this paper, the definition of
the HCRB is adapted for complex parameters following the
methodology of Anfinsen et al. [13] for the computation of a
CRLB for complex parameters [36]. The information matrix
of the HCRB is defined as

J(Θ) = EC,τ

{(
∂ ln fC,τ (C, τ |Θ)

∂ΘT

)H
∂ ln fC,τ (C, τ |Θ)

∂ΘT

}

= −EC,τ

{
∂

∂Θ∗

(
∂ ln fC,τ (C, τ |Θ)

∂Θ

)T
}

(24)

where Θ = [θTτ ,Θ
T
Σ]T and ΘΣ = [L,Σ11,Σ21, . . . ,Σdd]T =

[L, vec(Σ)T ]T is the complex-valued parameter vector of the
speckle, with the vectorization operator denoted as vec(.).
The superscript ∗ denotes complex conjugation. Σij , i, j ∈
{1, .., d} are the entries of the covariance matrix. As seen in
(24), the expectation is carried out with respect to both C and
τ . If the estimator Θ̂ is unbiased, then the covariance matrix
of the parameters will satisfy the following relation:

cov(Θ̂) ≥ HCRB(Θ) = J−1(Θ). (25)

After simplification, the information matrix of the HCRB
is a block diagonal matrix with two blocks given



Acc
ep

ted
 m

an
us

cri
tpt

7

TABLE IV

HCRB FOR TEXTURE DISTRIBUTIONS

as

J(Θ) = −EC,τ

{
∂

∂Θ∗

(
∂ ln fC|τ (C|τ,ΘΣ)

∂Θ

)T

+
∂

∂Θ∗

(
∂ ln fτ (τ |θτ )

∂Θ

)T}

=
[

J(θτ ) 0
0 J(ΘΣ)

]
(26)

with

J(θτ ) = −Eτ
{

∂

∂θτ

(
∂ ln fτ (τ |θτ )

∂θτ

)T
}

(27)

J(ΘΣ) = −EC,τ

{
∂

∂Θ∗
Σ

(
∂ ln fC|τ (C|τ,ΘΣ)

∂ΘΣ

)T}
. (28)

The HCRB is defined as the inverse of J(Θ)

J−1(Θ)=
1
N

⎡
⎢⎢⎢⎣

1
N

J(θτ ) 0 0

0 − d

L
+ ψ

(1)
d (L) 0

0 0 L(Σ−1 ⊗Σ−1)

⎤
⎥⎥⎥⎦
−1

(29)

where ⊗ denotes the Kronecker product. The derivation is
shown in Appendix E. J(θτ ) is given in Table IV for each
texture distribution.

The bound on the variance of the ENL estimator thus
becomes

var(L̂) > [J−1(ΘΣ)]11 = 1
N

L

Lψ
(1)
d (L)−d (30)

where [J−1(.)]ij denotes the element (i, j) of J−1(.). The
other lower bounds on the variance of the texture parameters
are given in Table IV.

B. Estimation of Equivalent Number of Looks

We present, in this section, a brief description of the
MoMLC and the DTM for the estimation of the ENL.

1) Method of Matrix Log-Cumulant: The first and the
νth-order MLCs of the multilook polarimetric covariance
matrix C, denoted by κ1{C} and κν{C}, respectively, evalu-
ated under the product model for general texture variable, are
given by [12]

κ1{C} = ψd(L) + ln |Σ| − d(lnL− κ1{τ}) (31)

κν{C} = ψ
(ν−1)
d (L) + dνκν(τ), ν > 1 (32)

TABLE V

LOG-CUMULANTS OF SOME TEXTURE DISTRIBUTIONS

where κν{τ} is νth-order log-cumulant of the texture variable,
ψ

(ν)
d (L) is the νth-order multivariate polygamma function

defined as ψ
(ν)
d (L) =

∑d−1
i=0 ψ

(ν)(L − i), and ψ(ν)(L) is
the polygamma function of order ν. The MLCs are related
to the matrix log-moments (MLMs) denoted by μν{C}. The
first MLCs are expressed by [12]

κ1{C} = μ1{C} (33)

κ2{C} = μ2{C} − μ2
1{C} (34)

κ3{C} = μ3{C} − 3μ1{C}μ2{C}+ 2μ3
1{C}. (35)

To evaluate the MLMs, the sample MLMs are used,
which are calculated with the sample mean estimator
μν{C} � (1/N)

∑N
i=1(ln |Ci|)ν . When the specific texture

log-cumulant is inserted in (31) and (32), the MLCs of C will
then be determined. The log-cumulants of the texture distribu-
tion are given in Table V. lnK(ν)

α (w) = (dν/dαν) lnKα(w)
is the νth derivative with respect to order of the logarithm
of the modified Bessel function of the second kind. The log-
cumulants of the GIG distribution are only computable using
numerical differentiation.

To estimate the ENL, Anfinsen et al. [12] proposed the first
MLC-based estimator, denoted by L̂A1, estimated from the
first-order MLC equation of the complex Wishart distribution
under a textureless area condition. This means that the log-
cumulant of the texture variable is omitted from (31). The
equation to solve for L̂A1 is then as follows:

ψd(L̂A1)− d ln L̂A1 = κ1{C} − ln |Σ| (36)

where the covariance matrix Σ is estimated before solving L
by using the SCM.

The second MLC-based estimator, denoted by L̂A2, is based
on a system of equations (31) and (32). These MLC equations
contain texture parameters from the first and the higher order.
L̂A2 and the texture parameters need to be estimated jointly
from the system of equations. Section IV-C describes the
estimation of L̂A2 for different stochastic models.
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Fig. 1. (Left) Bias, (Middle) variance, and (Right) mse of estimators for (Top) ENL L and (Bottom) Kd distribution texture parameter α as a function of
sample size N .

2) Method of DTM: An alternative estimator was proposed
by Tao et al. [14]. They applied the trace moments of the
covariance matrices to estimate the ENL for both the Wishart
model and the product model. The DTM estimator is given as
follows [14]:

L̂D =
E{tr2(C)}tr2(E{C})− E{tr(C2)}tr(E2{C})
E{tr(C2)}tr2(E{C})− E{tr2(C)}tr(E2{C}) . (37)

C. Texture Parameter Estimation

The matrix-variate Kd, G0
d , and Gd are the most widely

used stochastic models to describe the product model. The
performance of the EM and some other estimators, such as the
MoMLC, the MoMFM, and the Doulgeris method for texture
parameter estimation, are evaluated using these distribution
models.

1) Matrix-Variate K Distribution: Under this distribution,
the MLC-based estimator, denoted by α̂A1, is related to the
second-order MLC and proposed by Anfinsen et al. [12]. This
estimator is obtained by solving the following equation:

ψ(1)(α̂A1) =
κ2(C)− ψ(1)

d (L)
d2

(38)

where L is supposed to be a known constant. Two choices
are made for the value of L. The first choice is to use the
true value of L and the estimator is then denoted by α̂A1(L).
The second choice is to use the first MLC-based estimator L̂A1

estimated from the first-order MLC equation of the complex
Wishart distribution given by (36), and then, the estimator is
denoted by α̂A1(L̂A1).

The second MLC-based estimator, denoted by α̂A2, is based
on the resolution of a system of equations dependent on a
multiple MLCs and can be defined as

κ1{C} = ψd(L̂A2) + ln |Σ|−d ln L̂A2 + d(ψ(α̂A2)−ln α̂A2)

κ2{C} = ψ
(1)
d (L̂A2) + d2ψ(1)(α̂A2) (39)

where L̂A2 also needs to be solved and Σ is estimated using
the SCM, since the texture is normalized to a unit mean
resulting in E{C} = Σ.

The MoMFM-based estimator proposed by Khan and Guida
[22] for the texture parameters is obtained by solving the
following equation:

E{Mν}
Eν{M} =

E{τν}
Eν{τ}

(
1
Ld

)ν Γ(Ld+ ν)
Γ(Ld)

(40)

where M = tr(Γ−1C), Γ = E{C}, and ν ∈ R+. The new
variable M can be expressed as a function of the variable
texture: M = τ/E{τ}tr(Σ−1X), where tr(Σ−1X) follows
the gamma distribution with the parameters (Ld,L). The νth
moment of M is calculated with the sample mean estimator
1/N

∑N
i=1M

ν
i given a sample of {Mi = tr(Γ−1Ci)}Ni=1.

For the case of the matrix-variate Kd distribution, the MFM
estimator, denoted by α̂F , can be obtained as a solution for
the following equation:

E{Mν}
Eν{M} =

Γ(α̂F + ν)
α̂νFΓ(α̂F )

(
1
Ld

)ν Γ(Ld+ ν)
Γ(Ld)

. (41)

The value of ν is chosen to be equal to 1/8 in the experiments.
The choice is arbitrary, but generally, lower ν makes lower
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Fig. 2. (Left) Bias, (Middle) variance, and (Right) mse of estimators for (Top) ENL L and (Bottom) G0
d distribution texture parameter λ as a function of

sample size N .

variance [22]. The MFM estimator depends on the value of
L. α̂F (L) and α̂F (L̂A1) are the estimators dependent on the
true value and an estimate of L, respectively.

Another known estimator is Doulgeris’ estimator [21] which
is given for the matrix-variate Kd distribution by

α̂D =
d(Ld+ 1)

L · var(M)− d. (42)

The variance of M , var(M), is estimated with a standard
variance estimator from a sample of Hotelling–Lawley traces
{Mi = tr(Γ−1Ci)}Ni=1 [12], [21] and considering that τ ∼
γ̄(α) with E{τ} = 1 and E{τ2} = (α+ 1)/α.

Fig. 1 shows the value of bias, variance, and mse of all the
estimators after 2000 Monte Carlo simulations with α = 10
and L = 10. It shows that the EM estimator outperforms the
other estimators. The estimator L̂EM is better than L̂A2. The
worst estimator is L̂A1. The DTM estimator L̂D has a less
performance than L̂A2. It is clearly seen that the variance of
L̂A1 is less than the HCRB which is normal, given that the
HCRB is calculated assuming a textureless area condition. It
is observable that the MoMFM-based estimator α̂F (L̂A1) and
the first MLC-based estimator α̂A1(L̂A1) perform the worst,
where the former exhibits the lower bias, variance, and mse
than the latter. The EM- and MLC2-based estimators exhibit
very close performances. The better overall performance of
the α̂EM estimator is shown through the lower mse compared
with the other estimators. When using the true value of L,
the performance of the MoMFM-based estimator α̂F (L) and
α̂A1(L) is very close to the performance of the EM estimator

α̂EM and the second MLC estimator α̂A2. It is clear that
the underestimation of the ENL L affects the quality of
the estimation of the other parameters, especially when the
ENL is estimated using the first MLC-based estimator. The
performance of Doulgeris’ estimator α̂D(L) is between the
performances of α̂EM and α̂F (L̂A1). In terms of the com-
putational time comparison between the different algorithms,
the EM algorithm takes more time than the others due to the
iterative nature of the algorithm. The ratio of the EM to MFM
computation time for N = 256 and for the texture parameter
α = 10 is 6.5. In addition, the EM algorithm converges quickly
at low α values and slowly at higher values.

In addition to plotting the evolution of the bias and the
mse as a function of the sample size, we have evaluated
them in Fig. 3 as a function of the shape parameter α that
describes the degree of homogeneous or heterogeneous of the
texture. The goal is to assess the influence of the homogeneity
of the texture on the quality of the estimators. The sample
size is fixed to 512, and 2000 Monte Carlo simulations are
realized for each value of α ∈ [5, 80]. We can clearly observe
that the estimators L̂EM and L̂A2 maintain their performances
regardless of the value of α. The mse of L̂A1 decreases, as the
value of α increases. This behavior is different from that of
Fig. 1, where the mse of L̂A1 is invariant as a function of the
number of samples. In fact, with homogeneous texture (large
value of α), the matrix-variateK distribution converges toward
the complex scaled Wishart distribution and the first MLC-
based estimator L̂A1 is then more justified. This is also valid
for the matrix-variate G0 and G distribution. As we increase the
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Fig. 3. (Left) Bias and (Right) mse of estimators for (Top) ENL L
and (Bottom) Kd distribution texture parameter α as a function of shape
parameter α.

value of α, the mses of the estimators, such as α̂EM, α̂F (.),
α̂A1(.), α̂A2, and α̂D , increase. Thus, the mses move away
from the HCRB and the performances deteriorate gradually.

2) Matrix-Variate G0 Distribution: For this distribution,
the MLC-based estimator, denoted by λ̂A1, is estimated by
solving the following second-order MLC equation [12]:

ψ(1)(λ̂A1) =
κ2(C)− ψ(1)

d (L)
d2

. (43)

λ̂A1(L) and λ̂A1(L̂A1) are the estimators dependent on the
true value and an estimate of L, respectively.

The second MLC-based estimator, denoted by λ̂A2,
is obtained in the same way as done in the previous section
for the matrix-variate Kd distribution. However, the MLCs for
the G0 distribution are used, instead, as follows:

κ1{C} = ψd(L̂A2) + ln |Σ| − d ln L̂A2 (44)

+ d(ln(λ̂A2 − 1)− ψ(λ̂A2))

κ2{C} = ψ
(1)
d (L̂A2) + d2ψ(1)(λ̂A2). (45)

The MoMFM-based estimator, which is denoted by λ̂F , is the
solution for the following equation [22]:

E{Mν}
Eν{M} = (λ̂F − 1)ν

Γ(λ̂F − ν)
Γ(λ̂F )

(
1
Ld

)ν Γ(Ld+ ν)
Γ(Ld)

. (46)

The method of Doulgeris developed for the G0
d distribution to

estimate λ̂D is given by [21]

λ̂D =
2L · var(M) + d(Ld− 1)

L · var(M)− d . (47)

Monte Carlo simulations for the estimation of λ are performed
with the parameters λ = 10 and L = 10 of the matrix-variate
G0
d distribution. The behavior of bias, variance, and mse shown

in Fig. 2 is similar to those reported for the estimators of α.

3) Matrix-Variate G Distribution: The texture parameter
estimation is more complicated, since there are two shape
parameters to estimate instead of only one texture parameter.
The first MLC-based estimator requires the second- and third-
order MLC equations

κ2{C} = ψ
(1)
d (L) + d2 lnK(2)

α̂A1
(ŵA1) (48)

κ3{C} = ψ
(2)
d (L) + d3 lnK(3)

α̂A1
(ŵA1). (49)

The ENL L is supposed to be a known constant. In a similar
way, α̂A1(L) [resp. ŵA1(L)] and α̂A1(L̂A1) [resp. ŵA1(L̂A1)]
are the estimators dependent on the true and the estimate of
L, respectively. The second MLC-based estimators, denoted
by α̂A2 and ŵA2, are obtained by using the first-, second-
, and third-order MLC equations. The ENL L̂A2 needs to
be estimated simultaneously with the texture parameters. The
determinant of the covariance matrix Σ is normalized to 1.
Then, ln |Σ| is omitted from the first MLC equation. The first-,
second-, and third-order MLC equations are given by

κ1{C} = ψd(L̂A2)− d ln
L̂A2

η̂
+ d lnK(1)

α̂A2
(ŵA2) (50)

κ2{C} = ψ
(1)
d (L̂A2) + d2 lnK(2)

α̂A2
(ŵA2) (51)

κ3{C} = ψ
(2)
d (L̂A2) + d3 lnK(3)

α̂A2
(ŵA2). (52)

After replacing η̂ = |ΣSCM|1/dKα̂(ŵ)/Kα̂+1(ŵ), where
ΣSCM = E{C}, in the first MLC equation, the parameters
L̂A2, α̂A2, and ŵA2 can be estimated. The disadvantage
of the first and second MLC-based estimators is that the
estimation procedure requires the second- and third-order
MLC equations, which involves higher order derivatives of a
modified Bessel function of the second kind with respect to its
order. These derivatives are only computable using numerical
differentiation.

The equation for the MoMFM-based estimator for the
matrix-variate Gd distribution, denoted by α̂F and ŵF , is given
by

E{Mν}
Eν{M} =

Kα̂F +ν(ŵF )Kν−1
α̂F

(ŵF )
Kν
α̂F +1(ŵF )

Γ(Ld+ ν)
(Ld)νΓ(Ld)

. (53)

We note here that similar to the previous estimator, (53)
depends on L, and then, α̂F (L) [resp. ŵF (L)] and α̂F (L̂A1)
[resp. ŵF (L̂A1)] are possible estimators. Since two parameters
have to be estimated, two equations derived from (53), for
ν = 1/4 and 1/8, are simultaneously solved. In fact, these
two values are taken by Khan and Guida [22].

Fig. 4 shows the value of bias, variance, and mse of
all the estimators after 3000 Monte Carlo simulations with
α = 10, w = 10, η = 1, and L = 10. The best estimator
for L is the EM estimator, followed by the L̂D estimator.
Although the estimator L̂A2 has a good performance when
we deal with only one texture parameter such as the matrix-
variate K and G0 distributions, it has registered the worst
performance when we deal with the G distribution with two
shape parameters. This is due to numerical instabilities during
the computation of higher order (second- and third-order)
derivative of the modified Bessel function of the second kind.
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Fig. 4. (Left) Bias, (Middle) variance, and (Right) mse of estimators for (Top) ENL L and the Gd distribution texture parameters (Middle row) α and
(Bottom) w as a function of sample size N .

The preferred estimators for texture parameters are α̂EM and
ŵEM due to their lowest bias, variance, and mse. The α̂F (L)
and ŵF (L) estimators have a very close performance to that
given by the EM. We recall that they use the true value of L.
The α̂F (L̂A1) and ŵF (L̂A1) estimators are less performant
than α̂F (L) and ŵF (L) estimators. The worst performance
is registered for the first and second MLC-based estimators.
They are far from the performance of the EM and the
MoMFM.

V. APPLICATION TO REAL POLSAR DATA

To evaluate the performance of the EM estimator on real
data and to prove the outperformance of the proposed estima-
tor versus some known estimators, two multilook PolSAR data
sets are used for this purpose. The former was acquired over
San Francisco Bay by the NASA/Jet Propulsion Laboratory
(JPL) Airborne Synthetic Aperture Radar (AIRSAR) airborne
platform. The latter data set was acquired over Oberpfaffen-
hofen in Germany by the DLR’s ESAR airborne platform.
Three different areas with varying degrees of texture are
selected from each PolSAR data set and indicated in the panes
in Fig. 5. The selected areas are airside, forest, and urban for
the Oberpfaffenhofen data set, and sea, vegetation, and urban

Fig. 5. (a) Color-coded image in Pauli basis in Oberpfaffenhofen. Area 1
indicates airside, area 2 indicates vegetation, and area 3 indicates urban.
(b) Color-coded image in Pauli basis in San Francisco. Area 4 indicates sea,
area 5 indicates vegetation, and area 6 indicates urban.

for the San Francisco Bay data set. The data have been 6-look
and 12-looked processed images. The dimension of the multi-
look polarimetric covariance matrix (d = 3) makes it difficult
to verify the pdf with a histogram from data. The variable
tr(Σ−1C) transforms the matrix-variate data into the scalar,
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Fig. 6. tr(Σ−1C) normalized histograms and the estimated pdfs when C follows Kd (first row), G0
d

(second row), and Gd (third row) distributions. Data
are from the San Francisco data set. (a), (d), and (g) Area 4. (b), (e), and (h) Area 5. (c), (f), and (i) Area 6.

TABLE VI

PDF OF Y = tr(Σ−1C) FOR DIFFERENT TEXTURE
DISTRIBUTIONS

such that it can be used to fit the histogram of each area.
The theoretical statistical model for tr(Σ−1C) = τtr(Σ−1X)
is derived using the distribution of the texture τ and the
distribution of tr(Σ−1X), which follows a gamma distribution
with parameters γ(Ld,L), and its expectation is given by
E{tr(Σ−1X)} = d. The pdfs of the scalar variable Y =
tr(Σ−1C) are given in Table VI for each texture pdf. The fit
ability is evaluated qualitatively by visual comparison between
the estimated pdfs and the normalized histograms of tr(Σ−1C)
and quantitatively using the Kolmogorov–Smirnov (KS) test.

The smaller value of KS indicates the better, and the hypothe-
sized model fits with the empirical distribution. A small value
of p-value of the test indicates strong incompatibilities of the
data with the employed distribution hypothesis. Table VII lists
the values of KS and the p-values of the test (in percentage)
obtained for the three selected areas from the Oberpfaffen-
hofen data set when C follows Kd, G0

d , and Gd distributions.
The parameters of these distributions are estimated using the
proposed EM and other estimators, such as MFM, MLC, and
MLC2. For the area 1, EM-based estimators G0

d and Gd show
the highest p-values of 81.02% and 84.43% followed by the
MFM-based estimators at 59.79% and 80.98%, respectively.
Contrariwise, the MFM-based estimator shows the best p-value
of 73.21% for the Kd distribution. The remaining estimators
show the p-values close to 0. For the area 2, the highest p-
values of 90.66% and 25.84% are obtained for Kd and G0

d with
EM-based estimators, respectively. For the Gd, it is the MFM-
based estimator that shows the highest p-value of 79.66% fol-
lowed closely by a value of 78.43% for the EM-based estima-
tor. Finally, for urban area 3, the highest p-values of 71.41%,
19.55%, and 86.77% are obtained with the EM-based
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TABLE VII

VALUES OF KS AND p-VALUES (%) OF THE OBERPFAFFENHOFEN

DATA OBTAINED BY USING tr(Σ−1C) WHEN C FOLLOWS

Kd , G0
d , AND Gd DISTRIBUTIONS

TABLE VIII

VALUES OF KS AND p-VALUES (%) OF THE SAN FRANCISCO DATA

OBTAINED BY USING tr(Σ−1C) WHEN C FOLLOWS Kd , G0
d

, AND Gd

DISTRIBUTIONS

estimators for Kd, G0
d , and Gd. Table VIII lists the values of

KS and the p-values of the test (in percentage) obtained for the
three selected areas from the San Francisco data set when C
follows the polarimetric Kd, G0

d , and Gd distributions, respec-
tively. For area 4 which corresponds to the sea, the EM-based
estimatorsKd, G0

d , and Gd give the highest p-values of 58.56%,
85.97%, and 98.63%, respectively, whereas among the remain-
ing estimators, the MFM-based estimators show the higher p-
values of 51.84%, 82.19%, and 91.36% than the MLC and
MLC2-based estimators. For the vegetation area, G0

d shows
the best fitting for all estimators with the p-value of 75.07%.
Again, the EM-based estimators G0

d and Gd show the highest
p-values of 75.07% and 62.74%, respectively, except for
the Kd distribution where the MFM-based estimator shows
the best p-value of 38.17%. Finally, the MLC and MLC2-
based estimators show very low p-values for urban area and,
then, the worst fitting for all distributions. Fig. 6 shows the
comparison between the normalized histograms of tr(Σ−1C)
and the estimated pdfs for the selected three areas in San
Francisco Bay. It is clear that the estimated pdfs curves fit
well the normalized histograms, especially when it comes to

the EM-based estimator which is consistent with the results of
Table VIII.

According to Tables VII and VIII, the p-values and the KS
test for the EM-based estimators are generally higher than
those of the other estimators. The p-values for the MFM-based
estimators are close to the EM-based estimators. It is clear to
conclude that the estimated parameters by the EM method
give a better estimation performance and higher precision by
acquiring higher p-values than the other estimators.

VI. CONCLUSION

In this paper, the ML estimates of some important distri-
bution parameters, such as the matrix-variate Kd, G0

d , and
Gd distributions, are analytically derived based on the EM
algorithm. The simulation results reveal the outperformance
of the proposed EM-based algorithm versus some known
estimators. The former leads to the lowest mse of the para-
meter estimator. Furthermore, it gives a better estimation
of the parameters for small and moderate numbers of sam-
ples. The results indicate that the accuracy of the estimation
method improves when the sample size is increased. The
EM estimates of these distribution parameters are asymptoti-
cally unbiased and efficient. The proposed estimation method
has a good performance and more easily implementable.
Results on the real multilook polarimetric data show that the
ML estimator outperforms the MFM and MLC polarimetric
estimators.

APPENDIX A
ML ESTIMATOR OF COVARIANCE MATRIX

OF SPECKLE

For N i.i.d. data, the likelihood function is given by

LC(C1, . . . ,CN ,Σ, τ1, . . . , τN ) (54)

=
N∏
i=1

LLd|Ci|L−d
Γd(L)|Σ|L

∫ ∞

0

1
τdLi

etr
(
−L
τi

Σ−1Ci

)
fτi(τi)dτi

=
(

LLd

Γd(L)|Σ|L
)N N∏

i=1

|Ci|L−dhdL(Ltr(Σ−1Ci)). (55)

The ML estimator of Σ is obtained by maximizing the
likelihood LC(.) with respect to Σ. Differentiating the log-
likelihood with respect to the latter and setting the result to
zero yield

−NL∂ ln |Σ|
∂Σ

+
N∑
i=1

gdL(Ltr(Σ−1Ci))
hdL(Ltr(Σ−1Ci))

∂Ltr(Σ−1Ci)
∂Σ

= 0

(56)

where gdL(x) = ∂hdL(x)/∂x. Knowing that ∂ ln |Σ|/∂Σ =
(Σ−1)T and ∂tr(Σ−1W)/∂Σ = −(Σ−1WΣ−1)T , and
observing that gdL(x) = −hdL+1(x), we reach the expression
of the ML estimator of the covariance

Σ̂ =
1
N

N∑
i=1

hdL+1(Ltr(Σ̂
−1

Ci))

hdL(Ltr(Σ̂
−1

Ci))
Ci. (57)
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The function hdL(Ltr(Σ−1Ci)) is developed as follows:

hdL(Ltr(Σ−1Ci))

=
∫ +∞

0

τ−dLi exp
(
−Ltr(Σ−1Ci)

τi

)
fτ (τi)dτi

=
|Σ|LΓd(L)
LLd|Ci|L−d

∫ +∞

0

fC|τ (Ci|τi)fτ (τi)dτi

=
|Σ|LΓd(L)
LLd|Ci|L−d

∫ +∞

0

fC,τ (Ci, τi)dτi

=
|Σ|LΓd(L)
LLd|Ci|L−d fC(Ci) (58)

and also the expression of hdL+1(Ltr(Σ−1Ci))

hdL+1(Ltr(Σ−1Ci))

=
|Σ|LΓd(L)
LLd|Ci|L−d

∫ +∞

0

1
τi
fC|τ (Ci|τi)fτ (τi)dτi

=
|Σ|LΓd(L)
LLd|C|L−d

∫ +∞

0

1
τi
fτ |C(τi|Ci)fC(Ci)dτi

=
|Σ|LΓd(L)
LLd|C|L−d fC(Ci)Eτ |C

{
1
τ
|Ci

}
. (59)

Dividing the expression of hdL+1(Ltr(Σ−1Ci)) by
hdL(Ltr(Σ−1Ci)), we get the result (14).

APPENDIX B

Let Y = (1/τ)Σ−1/2CΣ−1/2 = Σ−1/2XΣ−1/2. The
Jacobian determinant of X written as Y is given as follows
[27]: |JX→Y| = |Σ|d. The pdf of Y is then given as

fY(Y) = fX(Σ1/2YΣ1/2)|JX→Y|. (60)

X follows a scaled complex Wishart distribution with a pdf
given by (5). Equation (60) can be written as follows:

fY(Y) =
LLd|Σ1/2YΣ1/2|L−d

Γd(L)|Σ|L−d etr(−LΣ−1Σ1/2YΣ1/2)

=
LLd|Y|L−d

Γd(L)
etr(−LY). (61)

It is clear that E{Y} = Id. Therefore, tr(E{Y}) =
E{tr(Y)} = d. The Mellin kind characteristic function of the
complex random matrix Y is

φY(s) = E{|Y|s−d} =
∫

Ω+

|Y|s−dfY(Y)dY (62)

=
Γd(L + s− d)

Γd(L)
L−d(s−d). (63)

The νth-order Mellin kind matrix moment of Y is defined as

μν(Y) =
dν

dsν
φY(s)

∣∣∣∣
s=d

= E{(ln |Y|)ν}. (64)

For ν = 1,
d

ds
φY(s)

∣∣∣∣
s=d

= ψd(L)− d lnL = E{ln |Y|}.

(65)

APPENDIX C
GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

The pdf of the GIG distribution is given by

f(z;α1, w1, η1) =
1

ηα1
1 2Kα1(w1)

zα1−1 exp−w1

2

(
η1
z

+
z

η1

)
.

(66)

The following moments exist and are finite:

E{Zk} = ηk1
Kα1+k(w1)
Kα1(w1)

(67)

E{lnZ} = ln η1 +
∂
∂aKα1+a(w1)

∣∣
a=0

Kα1(w1)
. (68)

APPENDIX D
INVERSE GAMMA DISTRIBUTION

The pdf of the inverse gamma distribution is given by

f(z;α1, β1) =
βα1

1

Γ(α1)
1

z1+α1
exp

(−β1

z

)
. (69)

The following moments exist and are finite:

E{Z} =
β1

α1 − 1
for α1 > 1, E{Z−1} =

α1

β1
(70)

E{lnZ} = −ψ(α1) + lnβ1. (71)

APPENDIX E
DERIVATION OF INFORMATION MATRIX OF HCRB

The log-likelihood function can be expanded to

ln fC|τ (C|τ,Θ)

= ln
N∏
i=1

fC|τ (Ci|τi,Θ)

=
N∑
i=1

Ld lnL+ (L − d) ln |Ci| − L

τi
tr(Σ−1Ci)

− ln Γd(L)− L ln |Σ| − dL ln τi. (72)

The first and the second partial derivative with respect to L
as follows:

∂

∂L
ln fC|τ (C|τ,Θ)

=
N∑
i=1

d lnL+ d+ ln |Ci| − 1
τi

tr(Σ−1Ci)

−ψd(L)− ln |Σ| − d ln τi (73)

∂2

∂L2
ln fC|τ (C|τ,Θ)

= N

(
d

L
− ψ(1)

d (L)
)
. (74)

The partial derivative with respect to Σ by using a complex
matrix differentiation [30] is given by

∂

∂Σ
ln fC|τ (C|τ,Θ) = −NLΣ−1 +

N∑
i=1

L

τi
Σ−1CiΣ−1. (75)
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To calculate the second partial derivative, the following rela-
tions [30] are used:

∂(AB)
∂Σ

=
∂A
∂Σ

(Id ⊗ B) + (Id ⊗ A)
∂B
∂Σ

(76)

∂Σ−1

∂Σ
= −Σ−1 ⊗Σ−1 (77)

where A and B are two arbitrary complex matrices with the
same dimensions. The second partial derivative is then given
by (see [13] for more calculation details)

∂2

∂Σ2 ln fC|τ (C|τ,Θ) = NLΣ−1 ⊗Σ−1

−
N∑
i=1

L

τi
[(Σ−1 ⊗Σ−1CiΣ−1) + (Σ−1 ⊗Σ−1Σ−1Ci)].

(78)

Finally,

∂

∂L

(
∂ ln fC|τ (C|τ,Θ)

∂Σ

)
=

∂

∂Σ

(
∂ ln fC|τ (C|τ,Θ)

∂L

)

= −NΣ−1 +
N∑
i=1

1
τi

(Σ−1CiΣ−1).

(79)

Using the relation ∂/∂vec(A) = vec(∂/∂A) [30], J(ΘΣ) can
be expressed as

[J(ΘΣ)]11 = −EC,τ

{
∂2

∂L2
ln fC|τ (C|τ,Θ)

}

= N

(
− d
L

+ ψ
(1)
d (L)

)
(80)

[J(ΘΣ)]22 = −EC,τ

{
∂

∂vec(Σ)∗

(
∂ ln fC|τ (C|τ,Θ)

∂vec(Σ)

)T}

= NL(Σ−1 ⊗Σ−1) (81)

[J(ΘΣ)]12 = −EC,τ

{
∂

∂vec(Σ)∗

(
∂ ln fC|τ (C|τ,Θ)

∂L

)}
= 0

(82)

[J(ΘΣ)]21 = −EC,τ

{
∂

∂L

(
∂ ln fC|τ (C|τ,Θ)

∂vec(Σ)

)T}
= 0.

(83)
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