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The endoplasmic reticulum (ER) is a membranous intracellular organelle

and the first compartment of the secretory pathway. As such, the ER con-

tributes to the production and folding of approximately one-third of cellu-

lar proteins, and is thus inextricably linked to the maintenance of cellular

homeostasis and the fine balance between health and disease. Specific ER

stress signalling pathways, collectively known as the unfolded protein

response (UPR), are required for maintaining ER homeostasis. The UPR

is triggered when ER protein folding capacity is overwhelmed by cellular
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demand and the UPR initially aims to restore ER homeostasis and normal

cellular functions. However, if this fails, then the UPR triggers cell death.

In this review, we provide a UPR signalling-centric view of ER functions,

from the ER’s discovery to the latest advancements in the understanding

of ER and UPR biology. Our review provides a synthesis of intracellular

ER signalling revolving around proteostasis and the UPR, its impact on

other organelles and cellular behaviour, its multifaceted and dynamic

response to stress and its role in physiology, before finally exploring the

potential exploitation of this knowledge to tackle unresolved biological

questions and address unmet biomedical needs. Thus, we provide an inte-

grated and global view of existing literature on ER signalling pathways

and their use for therapeutic purposes.

Introduction

The endoplasmic reticulum (ER) is a cellular orga-

nelle that was first visualized in chicken fibroblast-like

cells using electron microscopy and was described as

a ‘delicate lace-work extending throughout the cyto-

plasm’ [1]. Its current name was coined almost

10 years later by Porter in 1954 [2]. The ER appears

as a membranous network of elongated tubules and

flattened discs that span a great area of the cyto-

plasm [3]. This membrane encloses the ER lumen and

allows for the transfer of molecules to and from the

cytoplasm.

ER structure

The ER is classically divided into the rough ER

(RER) and smooth ER (SER), depending on the pres-

ence or absence of ribosomes on the cytosolic face of

the membrane respectively. The SER and RER can

exist either as interconnected or spatially separated

compartments [4]. More recently, a novel classification

was proposed based on membrane structure rather

than appearance. According to this classification, the

ER comprises the nuclear envelope, sheet-like cisternae

and a polygonal array of tubules connected by three-

way junctions [5]. A striking difference between these

ER structures is the curvature of the membrane,

whereby ER tubules possess a high membrane curva-

ture compared to the sheets of the nuclear envelope

and cisternae. The ER occupies an extensive cell-type-

specific footprint within the cell and is in contact with

many other intracellular organelles. It forms physical

contact sites with mitochondria named mitochondria-

associated membranes (MAMs), which play a crucial

role in Ca2+ homeostasis [6]. It also comes in contact

with the plasma membrane (PM), an interaction regu-

lated by proteins like stromal interaction molecule 1 in

the ER and calcium release-activated calcium channel

protein 1 in the PM which are controlled by Ca2+

levels [7]. Vesicle-trafficking protein SEC22b (SEC22b)

and vesicle-associated membrane protein 7 are also

involved in the stabilization of ER-PM contacts and

PM expansion [8]. The ER also interacts with endo-

somes [9] and is tethered by StAR-related lipid transfer

protein 3 and StAR-related lipid transfer protein 3

[10], which also contribute to cholesterol maintenance

in endosomes [11]. Interestingly, an ER interaction

with the endolysosomal system, mediated by the mito-

chondrial distribution and morphology 1/sorting nexin

13 (MDM1/SNX13) complex [12], suggests ER

involvement in autophagy. Indeed, a specialized ER

structure called the omegasome forms contact sites

with the phagophore, which elongates and becomes a

mature autophagosome [13,14] (Fig. 1). In this way,

the ER on its own or in coordination with other cell
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organelles exerts its multifaceted roles in the function-

ality of the cell as it is discussed in the next sections.

ER functions

The ER is involved in many different cellular func-

tions. It acts as a protein synthesis factory, contributes

to the storage and regulation of calcium, to the synthe-

sis and storage of lipids, and to glucose metabolism

[3]. These diverse functions indicate a pivotal role for

the ER as a dynamic ‘nutrient sensing’ organelle that

coordinates energetic fluctuations with metabolic

reprogramming responses, regulating metabolism and

cell fate decisions (Fig. 1).

Protein folding and quality control

The ER is involved in secretory and transmembrane

protein synthesis, folding, maturation, quality control

and degradation, and ensures that only properly folded

proteins are delivered to their site of action [15]. About

30% of all proteins are cotranslationally targeted to the

ER [16] where they are exposed to an environment

abundant in chaperones and foldases that facilitate their

folding, assembly and post-translational modification

before they are exported from the ER [16]. Protein pro-

cessing within the ER includes signal sequence cleavage,

N-linked glycosylation, formation, isomerization or

reduction of disulfide bonds [catalysed by protein disul-

fide isomerases (PDIs), oxidoreductases], isomerization

of proline or lipid conjugation, all of which ultimately

result in a properly folded conformation [16–19]. Mis-

folded proteins are potentially detrimental to cell func-

tion and are therefore tightly controlled. Although

protein misfolding takes place continually, it can be

exacerbated during adverse intrinsic and environmental

conditions. The ER has developed quality control sys-

tems to ensure that there are additional opportunities to

correct misfolded proteins or, if terminally misfolded, to

be disposed of by the cell. Terminally misfolded secre-

tory proteins are eliminated by a process called ER-

associated degradation (ERAD) [20]. Proteins are first

recognized by an ER resident luminal and transmem-

brane protein machinery, then retrotranslocated into

Fig. 1. ER molecular machines and contact sites with other organelles. The ER is primarily subdivided into the SER and RER, with the latter

characterized by the presence of ribosomes at its cytosolic surface. Alternatively, the ER has been recently classified into the nuclear

envelope, ER sheet-like cisternae and tubular ER (panel 1). The ER forms multiple membrane contact sites with other organelles, including

the endosomes and lysosomes (through STARD3, STARD3NL, Mdm1; panel 2), the mitochondria (through Mfn-2, Sig-1R, PERK; panel 3),

and the PM (through ORAI1, STIM1, Sec22b, VAMP7; panel 4) with various functional implications. The ER plays instrumental roles in

secretory and transmembrane protein folding and quality control, protein and lipid trafficking, lipid metabolism, and Ca2+ homeostasis, all of

these processes being mediated by a diverse series of ER resident proteins (schematically depicted in panels 1 and 5).

243The FEBS Journal 286 (2019) 241–278 ª 2018 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

A. Almanza et al. Compendium of endoplasmic reticulum stress signaling



the cytosol by a channel named dislocon [21] and the

cytosolic AAA+ ATPase p97 [22], deglycosylated by N-

glycanase (NGLY1; [23]) and targeted for degradation

via the ubiquitin–proteasome pathway [20,24,25]

(Fig. 1).

Lipid synthesis

The ER also plays essential roles in membrane produc-

tion, lipid droplet/vesicle formation and fat accumula-

tion for energy storage. Lipid synthesis is localized at

membrane interfaces and organelle contact sites, and

the lipid droplets/vesicles are exported in a regulated

fashion. The ER dynamically changes its membrane

structure to adapt to the changing cellular lipid con-

centrations. The ER contains the sterol regulatory ele-

ment-binding protein family of cholesterol sensors

ensuring cholesterol homeostasis [26]. This compart-

ment also hosts enzymes catalysing the synthesis of cell

membrane lipid components, namely sterols, sphin-

golipids and phospholipids [27]. The synthesis of those

lipids from fatty acyl-CoA and diacylglycerols takes

place at the ER membrane [28], which also hosts 3-

hydroxy-3-methyl-glutaryl-coenzyme A reductase, the

rate-limiting enzyme of the mevalonate/isoprenoid

pathway that produces sterol and isoprenoid precur-

sors [29]. Precursors made by ER membrane-localized

enzymes are subsequently converted into structural

lipids, sterols, steroid hormones, bile acids, dolichols,

prenyl donors and a myriad of isoprenoid species with

key functions for cell metabolism. Interestingly,

MAMs have been identified as a privileged site of sph-

ingolipid synthesis [30] (Fig. 1).

ER export

Most of the proteins and lipids synthesized in the ER

must be transported to other cellular structures,

which occurs mostly through the secretory pathway.

To maintain the constant anabolic flux, export needs

to be tightly regulated, and defects in secretion can

lead to serious structural and functional consequences

for the ER. Central to this export process is the gen-

eration of ER COPII transport vesicles, named after

the family of proteins that shapes and coats them

[31]. In addition to COPII vesicle transport, several

other mechanisms of lipid export have been

described. A variety of lipids can be transported by

nonvesicular mechanisms; for example, large lipopro-

tein cargo has been shown to be exported out of the

ER in another type of vesicle termed prechylomicron

transport vesicles [32] or to accumulate in lipid dro-

plets (Fig. 1).

Ca2+ homeostasis

Ca2+ is involved as a secondary messenger in many

intracellular and extracellular signalling networks,

playing an essential role in gene expression, protein

synthesis and trafficking, cell proliferation, differentia-

tion, metabolism or apoptosis [33]. ER, as the main

cellular compartment for Ca2+ storage, plays a pivotal

role in the regulation of Ca2+ levels and reciprocally

many ER functions are controlled in a Ca2+-depen-

dent way, thereby regulating the calcium homeostasis

of the whole cell [34]. Consequently, both ER and

cytosolic Ca2+ concentrations need to be highly spa-

tiotemporally regulated in order for the ER to main-

tain a much increased physiological intraluminal Ca2+

concentration and oxidizing redox potential than the

cytoplasm. To modulate these levels, the ER employs

a number of mechanisms that control Ca2+ concentra-

tion on both sides of the membrane: (a) ER membrane

ATP-dependent Ca2+ pumps for cytosol-to-lumen

transport; (b) ER luminal Ca2+-binding chaperones

for sequestering free Ca2+; and (c) ER membrane

channels for the regulated release of Ca2+ into the

cytosol. These mechanisms are facilitated by a tight

communication between the ER and other organelles,

such as the PM and the mitochondria, thereby sup-

porting the cell needs.

Traditionally thought as a site of protein synthesis,

recent evidence has established the involvement of the

ER in many different cellular functions: from novel

roles in lipid metabolism to connections with

cytoskeletal structures or roles in cytoplasmic stream-

ing, our view of the ER keeps rapidly expanding, plac-

ing it increasingly as a key organelle governing the

whole cellular metabolism.

Perturbing ER functions

Conditions that disrupt ER homeostasis create a cellu-

lar state commonly referred to as ‘ER stress’. The cel-

lular response to ER stress involves the activation of

adaptive mechanisms to overcome stress and restore

ER homeostasis. This response is dependent on the

perturbing agent/condition and the intensity/duration

of the stress [35].

Intrinsic ER perturbations

Cell autonomous mechanisms can lead to ER pertur-

bation and examples of this can be seen in several dis-

eases, including cancer, neurodegenerative diseases and

diabetes. The hallmarks of cancer such as genetic

instability and mutations [36] can result in constitutive
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activation of ER stress response pathways leading to

cell growth, proliferation, differentiation and migra-

tion. In addition, the uncontrolled, rapid growth of

cancer cells requires high protein production rates with

a consequent impact on ER systems [37]. Many can-

cers have a high mutation load which results in an

intrinsically higher level of ER stress. For example,

melanoma has the highest mutation burden of any

cancer and the sheer numbers of mutated proteins are

a source of intrinsically higher ER stress levels. In

chronic myeloid leukaemia, the fusion protein pro-

duced the Philadelphia chromosome, BCR-ABL1, is a

constitutively active oncoprotein that enhances cell

proliferation and interferes with Ca2+-dependent

apoptotic response [38]. In addition, mutation-driven

ER stress can also induce senescence that contributes

to chemoresistance [39]. ER stress has also been linked

to several neurodegenerative diseases. For example,

mutations in the ER resident vesicle-associated mem-

brane protein-associated protein B in familial amy-

otrophic lateral sclerosis (ALS) are linked to induction

of motor neuron death mediated by the alteration of

ER stress signalling [40,41]. On the other hand, secre-

tory cells such as pancreatic b cells have a highly

developed ER to manage insulin production and

release in response to increases in blood glucose. The

C96Y insulin variant leads to its impaired biogenesis

and ER accumulation in the Akita mouse. As the ER

cannot cope with the mutation induced stress, beta

cells die and type 1 diabetes develops [42,43]. Insulin

mutation-related ER stress was also reported in neona-

tal diabetes [44,45].

Extrinsic perturbations

Microenvironmental stress

In tumours, the ER stress observed in rapidly prolifer-

ating cells is compounded by the fact that increased

proliferation eventually depletes the microenvironment

of nutrients and oxygen, causing local microenviron-

mental stress and resulting in hypoxia, starvation and

acidosis, all of which cause ER stress and perturb pro-

tein, and possibly lipid synthesis [46]. Nutrient depri-

vation, and particularly glucose starvation, at least in

part, promotes ER stress by impairing glycosylation.

Exposure to ER stressors

Several small molecules that induce ER stress through

a variety of mechanisms have been identified [47,48].

Stressors such as tunicamycin [49,50], or 2-deoxyglu-

cose [51] target the N-linked glycosylation of proteins,

whereas dithiothreitol inhibits protein disulfide bond

formation[52]. Alternatively, Brefeldin A impairs ER-

to-Golgi trafficking, thus causing a rapid and reversi-

ble inhibition of protein secretion [53]. Targeting the

Sarco/ER Ca2+-ATPase (SERCA) with compounds,

such as thapsigargin and cyclopiazonic acid [54,55],

induces ER stress by reducing ER Ca2+ concentration

and impairing protein folding capacity.

Exposure to enhancers of ER homeostasis

Conversely, other molecules have been found that can

alleviate ER stress. These include small molecules, pep-

tides and proteostasis regulators. The frequently used

4-phenylbutyric acid (4-PBA) reduces the accumulation

of misfolded proteins in the ER [56]. Tauroursodeoxy-

cholic acid (TUDCA) is an endogenous bile acid able

to resolve ER stress in islet cells [57]. TUDCA is the

taurine conjugate of ursodeoxycholic acid (UDCA), an

FDA-approved drug for primary biliary cirrhosis that

is also able to alleviate ER stress [58]. The precise

mode of action of such proteostasis modulators still

remains elusive.

Temperature

Body temperature is crucial for the viability of meta-

zoans; normal mammalian physiological temperatures

are 36–37 °C. Deviations from this range can disrupt

cellular homeostasis causing protein denaturation and/

or aggregation [59]. Moreover, an acute increase in

temperature, known as heat shock, causes the frag-

mentation of both ER and Golgi [59]. Heat precondi-

tioning at mildly elevated temperatures (up to 40 °C)
in mammalian cellular and animal models has been

shown to lead to the development of thermotolerance,

which is associated with an increase in the expression

of several heat shock proteins and ER stress markers

[60,61]. In addition, moderate hypothermia (28 °C)
induces mild ER stress in human pluripotent stem

cells, the activation of which may be sufficient to pro-

tect against severe stress through an effect known as

ER hormesis [62,63].

Reactive oxygen species production and other

perturbations

Several external agents can induce intracellular reactive

oxygen species (ROS) production, and when ROS pro-

duction exceeds the antioxidant capacity oxidative

stress negatively affects protein synthesis and ER

homeostasis [64]. ROS, including free radicals, are gen-

erated by the UPR-regulated oxidative folding
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machinery in the ER [65] and in the mitochondria [66].

In this context, increased mitochondrial respiration

and biogenesis promotes survival during ER stress

through a reduction of ROS [67]. The ER provides an

oxidizing environment to facilitate disulfide bond for-

mation and this process is believed to contribute to as

much as 25% of the overall ROS generated [68,69].

The interconnection between the ER and ROS is medi-

ated by signalling pathways which involve glutathione

(GSH)/glutathione disulfide, NADPH oxidase 4,

NADPH-P450 reductase, Ca2+, ER oxidoreductin 1

(ERO1) and PDI [70]. The latter, in particular, has

been found upregulated in the central nervous system

of Alzheimer’s disease patients thus highlighting the

relevance of these pathways in neurodegenerative dis-

ease [71]. Overall, from the sections above it is appar-

ent that directly or indirectly impaired ER function

contributes to disease development and treatment

resistance.

ER stress consequences

In response to ER stress, cells trigger an adaptive sig-

nalling pathway called the unfolded protein response

(UPR), which acts to help cells to cope with the stress

by attenuating protein synthesis, clearing the unfolded/

misfolded proteins and increasing the capacity of the

ER to fold proteins.

The UPR

The UPR is a cellular stress response originating in the

ER and is predominantly controlled by three major sen-

sors: inositol requiring enzyme 1 (IRE1), protein kinase

RNA-activated (PKR)-like ER kinase (PERK) and

activating transcription factor 6 (ATF6). The ER lumi-

nal domains of all three ER stress sensors are normally

bound by the ER resident chaperone, heat shock pro-

tein A5 [heat shock protein family A (Hsp70) member

5, also known as glucose-regulated protein 78 (GRP78)

and binding immunoglobulin protein (gene GRP78)

(BiP)], keeping them in an inactive state [72,73]. Accu-

mulating misfolded proteins in the ER lumen engage

BiP thus releasing the three sensors. A FRET UPR

induction assay, developed to quantify the association

and dissociation of the IRE1 luminal domain from BiP

upon ER stress [74], demonstrated that the ER luminal

co-chaperone ERdj4/DNAJB9 represses IRE1 by pro-

moting a complex between BiP and the luminal stress-

sensing domain of IRE1a [75]. Moreover, it has

recently been reported that another ER luminal chaper-

one, Hsp47, displaces BiP from the IRE1 UPRosome

to promote its oligomerization [76]. Once released from

BiP, IRE1 and PERK homodimerize or oligomerize

and trans-autophosphorylate to activate their down-

stream pathways [72]. In contrast, BiP dissociation

from AFT6 reveals an ER export motif [73] which facil-

itates its translocation to the Golgi apparatus [77]. This

‘competition model’ of UPR activation assumes that

BiP acts as a negative regulator of UPR signalling.

However, other BiP-dependent or independent models

have been proposed (reviewed in [78]; Fig. 2).

IRE1 signalling

In humans, there are two paralogues of IRE1 (IRE1a
and b), encoded by endoplasmic reticulum to nucleus

signalling 1 and 2 (ERN1 and ERN2), respectively

[79–81]. Both human IRE1 isoforms share significant

sequence homology (39%) [20]. IRE1a (referred to

IRE1 hereafter) is ubiquitously expressed; however,

inositol-requiring enzyme 1 b (IRE1b) expression is

restricted mainly to the gastrointestinal tract and the

pulmonary mucosal epithelium [82,83]. Ern1 knockout

(KO) in mice is embryonic lethal due to growth retar-

dation and defects in liver organogenesis and placen-

tal development [84] while Ern2 KO mice develop

colitis of increased severity and shorter latency [82]

but are otherwise histologically indistinguishable from

the Ern2WT mice. BiP dissociation, caused by accu-

mulating unfolded proteins, triggers IRE1 oligomer-

ization and activation of its cytosolic kinase domain.

The oligomers position in close proximity, in a face-

to-face orientation, enabling trans-autophosphoryla-

tion. This face-to-face configuration is adopted by

both human and murine IRE1 [85,86]. Phosphoryla-

tion in the activation loop of the kinase domain,

specifically at Ser724, Ser726 and Ser729, is not only

necessary to activate its cytosolic RNase domain [87]

but is also required to initiate recruitment of tumour

necrosis factor receptor-associated factor 2 (TRAF2)

and JNK pathway signalling [88]. The IRE1 cytosolic

domain, which is highly homologous with RNase L

[89], induces a selective cleavage of dual stem loops

within the X-box binding protein 1 (XBP1) mRNA

[79,90,91]. Therefore, IRE1, in a spliceosome indepen-

dent-manner, but together with the tRNA ligase

RNA 20,30-cyclic phosphate and 50-OH ligase [92–97],
catalyses the splicing of a 26 nucleotide intron from

human XBP1 mRNA to produce spliced isoform of

XBP1 (XBP1s) [90,91]. XBP1s is a basic leucine zip-

per (bZIP) transcription factor [98–100] and the

unspliced isoform of XBP1 (XBP1u) is unable to acti-

vate gene expression due to lack of a transactivation

domain [91]. The N-terminal region of XBP1u con-

tains a basic region and a leucine zipper domain
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involved in dimerization and DNA binding

[91,98,100,101]. The XBP1u C-terminal region con-

tains a P (proline), E (glutamic acid), S (serine) and

T (threonine) motif which destabilizes proteins (ubiq-

uitin-dependent proteolysis) and contributes to its

short half-life [98,101–103]. The N-terminal region

Fig. 2. Signalling the UPR and downstream pathways. The 3ER stress sensors (PERK, IRE1, ATF6) upon release from BiP, PDIA5, 6 initiate

signalling cascades through transcription factor production (ATF4, XBP1s, ATF6f) and associated processes such as RIDD, NFjB activation

and ERAD to address the misfolded protein load on the ER. By modulating transcriptional output and translational demand the UPR

attempts to re-establish ER protein folding homeostasis and promote cell survival. If ER stress cannot be resolved then mechanisms are

triggered to promote cell death.
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also contains two other domains: a hydrophobic

region that targets XBP1u to the ER membrane and

a domain that promotes efficient XBP1 splicing [104–
106] and cleavage [103] by pausing XBP1 translation.

IRE1-mediated splicing of XBP1 mRNA results in an

open reading frame-shift inducing the expression of a

transcriptionally active and BP1s [90,91,101]. XBP1u

has been reported to negatively regulate XBP1s tran-

scriptional activity as well as to promote the recruit-

ment of its own mRNA to the ER membrane

through the partial translation of its N-terminal

region [107,108]. XBP1s directs the transcription of a

wide range of targets including the expression of

chaperones, foldases and components of the ERAD

pathway, in order to relieve ER stress and restore

homeostasis [109,110]. However, XBP1s can also par-

ticipate in the regulation of numerous metabolic path-

ways such as lipid biosynthesis [111–113], glucose

metabolism [114–118], insulin signalling [117,119,120],

redox metabolism [121], DNA repair [122] and it

influences cell fate including cell survival [123], cell

differentiation [124–128] and development [126,129–
131]. Although there is strong evidence pointing to a

key role for XBP1 in multiple cellular functions, the

exact mechanisms by which XBP1 mediates gene

transactivation are still elusive. Indeed, in addition to

the known interaction of the XBP1s transactivation

domain with RNA polymerase II, other mechanisms

could exist. For example, XBP1 can physically inter-

act with many other transcription factors such as AP-

1 transcription factor subunit [132], oestrogen recep-

tor a (ERa) [133], GLI-family zinc finger 1 [134],

SSX family member 4 [134], forkhead box O1 [114],

ATF6 [135], cAMP response element-binding protein

(CREB)/ATF [135] and hypoxia inducible factor 1

alpha subunit [136] (Fig. 2).

The RNase activity of IRE1 can also efficiently tar-

get other transcripts through a mechanism called regu-

lated IRE1-dependent decay (RIDD) [137]. Analysis of

the in vitro RNase activity of wild-type (WT) vs

mutant IRE1 led to the discovery of a broad range of

other IRE1 substrates [138,139] and, interestingly, it

was noted that IRE1 can also degrade its own mRNA

[140]. RIDD is a conserved mechanism in eukaryotes

[137,141–145] by which IRE1 cleaves transcripts con-

taining the consensus sequence (CUGCAG) accompa-

nied by a stem-loop structure [142,146]. The cleaved

RNA fragments are subsequently rapidly degraded by

cellular exoribonucleases [141,147]. RIDD is required

for the maintenance of ER homeostasis by reducing

ER client protein load through mRNA degradation

[137,141,142]. Recently, it has been proposed that

there is basal activity of RIDD [138] which increases

progressively with the severity of ER stress. However,

this hypothesis needs further experimental validation.

Interestingly, IRE1b was found to selectively induce

translational repression through the 28S ribosomal

RNA cleavage [81] demonstrating that IRE1a and

IRE1b display differential activities [148]. Characteriz-

ing RIDD activity, particularly in vivo, has proven dif-

ficult due to the complex challenge of separating the

RIDD activity from the XBP1 splicing activity of

IRE1. In addition, basal RIDD can only target specific

mRNA substrates, as full activation and subsequent

targeting of further transcripts requires strong ER

stress stimuli (Fig. 2).

PERK signalling

PERK was identified in rat pancreatic islets as a ser-

ine/threonine kinase and, similar to PKR, heme regu-

lated initiation factor 2 alpha kinase and general

control nonderepressible 2, can phosphorylate eIF2a
[149,150]. PERK is ubiquitously expressed in the body

[149] and has an ER luminal domain as well as a cyto-

plasmic kinase domain [150]. BiP detachment from the

ER luminal domain leads to oligomerization [72],

trans-autophosphorylation and activation of PERK

[151]. Active PERK phosphorylates eIF2a on serine 51

[150]. eIF2a is a subunit of the eIF2 heterotrimer

[152,153] which regulates the first step of protein syn-

thesis initiation by promoting the binding of the initia-

tor tRNA to 40S ribosomal subunits [154]. However,

eIF2a phosphorylation by PERK inhibits eukaryotic

translation initiation factor 2B (eIF2B) activity and

thereby downregulates protein synthesis [155]. Block-

ing translation during ER stress consequently reduces

the protein load on the ER folding machinery [156].

Remarkably, some transcripts are translated more

efficiently during PERK-dependent global repression

of translation initiation. The ubiquitously expressed

activating transcription factor 4 (ATF4) [157], whose

transcript contains short upstream open reading

frames (uORFs) [158], is normally inefficiently trans-

lated from the protein-coding AUG [159]. However,

attenuation of translation from uORFs shifts transla-

tion initiation towards the protein coding AUG,

resulting in more efficient synthesis of ATF4 [158].

ATF4 can then bind to the C/EBP-ATF site in the

promoter of CAAT/enhancer-binding protein (C/EBP)

homologous protein (CHOP)/GADD153 [160] and

induce its expression [158]. ATF4 and CHOP directly

induce genes involved in protein synthesis and the

UPR [161], but conditions under which ATF4 and

CHOP increase protein synthesis can result in ATP

depletion, oxidative stress and cell death [162]. eIF2a
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phosphorylation (p-eIF2a) can also directly enhance

the translation of CHOP [163,164] and other proteins

involved in the ER stress response, as reviewed in

[165]. For example, growth arrest and DNA-damage-

inducible 34 (GADD34) [166,167] is positively regu-

lated by eIF2a phosphorylation [168] and likewise

transcriptionally induced by ATF4 [169] and CHOP

[170]. Interestingly, GADD34 interacts with the cat-

alytic subunit of type 1 protein serine/threonine phos-

phatase (PP1) [171], which dephosphorylates eIF2a
thereby creating a negative feedback loop that antago-

nizes p-eIF2a-dependent translation inhibition and

restores protein synthesis [169,170,172]. The transla-

tional arrest induced by p-eIF2a reduces protein load

in ER lumen and conserves nutrients, while ATF4 dri-

ven expression of adaptive genes involved in amino

acid transport and metabolism, protection from oxida-

tive stress, protein homeostasis and autophagy

together help the cell to cope with ER stress [173,174].

However, sustained stress changes the adaptive

response to a prodeath response and ultimately, the

phosphorylation status of eIF2a appears to codeter-

mine the balance between prosurvival or prodeath sig-

nalling [175,176]. This is accomplished by the above

mentioned delayed feedback through which the inter-

play of GADD34, ATF4 and CHOP results in the

activation of genes involved in cell death, cell-cycle

arrest and senescence [177–180] (Fig. 2).

ATF6 signalling

The transcription factor ATF6, which belongs to an

extensive family of leucine zipper proteins [8], is encoded

in humans by two different genes: ATF6A for ATF6a
[181] and ATF6B for ATF6b [153]. After its activation

in the ER and export to the Golgi, it is cleaved by the

two Golgi-resident proteases membrane bound tran-

scription factor peptidase, site 1 (MBTPS1) and

MBTPS1, releasing a fragment of ~ 400 amino acids

corresponding to ATF6 cytosolic N-terminal portion

(ATF6f). ATF6f comprises a transcriptional activation

domain (TAD), a bZIP domain, a DNA-binding

domain and nuclear localization signals. In the nucleus,

ATF6f induces UPR gene expression [73,182]. Although

the two ATF6 paralogs share high homology [153],

ATF6b is a very poor activator of UPR genes due to the

absence of eight important amino acids in the TAD

domain [157]. Indeed, it rather seems to function as an

inhibitor by forming heterodimers with ATF6a [10,158].

Interestingly, ATF6 can modulate gene expression by

interacting with other bZIPs, such as CREB [159],

cAMP responsive element-binding protein 3 like 3

(CREB3L3) [160], sterol regulatory element-binding

transcription factor 2 [161] and XBP1 [71], and various

other transcription factors such as serum response fac-

tor [181], components of the nuclear transcription factor

Y (NF-Y) complex [159,162,163], yin yang 1 [163,164]

and general transcription factor I [165]. Converging

with IRE1 and PERK signalling cascades, ATF6 can

also induce the expression of XBP1 and CHOP to

enhance UPR signalling [30,166,167]. However, ATF6

is not the only ER-resident bZIP transcription factor.

At least five other tissue-specific bZIPs, named Luman,

cAMP responsive element-binding protein 3 like 1

(OASIS), cAMP responsive element-binding protein 3

like 2 (BBF2H7), CREB3L3 and CREB, reviewed in

[183], are involved in ER stress signalling (Fig. 2), high-

lighting the regulatory complexity this branch of the ER

stress response is subjected to at the organismal level.

Noncoding RNAs

Noncoding RNAs are connected to the three UPR sen-

sors with effects on both physiological and pathological

conditions [184]. These RNA species mostly include

microRNAs (miRNAs) and also long noncoding RNAs

(lncRNAs). This additional level of regulation works in

fact in a bidirectional manner. This means that either

the UPR sensors themselves or their downstream com-

ponents can also modulate their expression levels. A

certain number of miRNAs have been so far recognized

to regulate IRE1, which in turn regulates miRNAs

through XBP1s at a transcriptional level and through

RIDD activity via degradation. One miRNA regulates

PERK expression, while this in turn regulates miRNAs

through its downstream targets. ATF6 is also modu-

lated by miRNAs, but only one miRNA has been

found under its direct effect. Upstream of IRE1, PERK

and ATF6, the BiP chaperone is also regulated by miR-

NAs but does not control any. In addition to miRNAs,

lncRNAs exhibit a similar role regarding the regulation

of UPR factors and vice versa. Their levels change in

accordance to the cell stress status and depending on

the pathophysiological context lead to distinct cell

fates. This interconnection between noncoding RNAs

and the UPR may contribute to a more complex net-

work but at the same time reveals the existence of fine-

tuning mechanisms governing ER stress responses and

their effects in cell homeostasis (described in [184]).

Proximal impact of UPR activation

Transcriptional programmes

Each branch of the UPR pathway culminates in tran-

scriptional regulation and, together the UPR’s major
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transcription factors, ATF6f, XBP1s and ATF4, stim-

ulate many adaptive responses to restore ER function

and maintain cell survival [35]. They regulate genes

encoding ER chaperones, ERAD factors, amino acid

transport and metabolism proteins, phospholipid

biosynthesis enzymes, and numerous others [185]. In

particular, the IRE1–XBP1 pathway is involved in the

induction of ER chaperones and capacity control of

ERAD [186] as well as promoting cytoprotection [187]

and cleaving miRNAs that regulate the cell death-

inducing caspases [188]. ATF6f translocates to the

nucleus where it activate genes involved in protein

folding, processing, and degradation [185]. ATF4, acti-

vated downstream of PERK and p-eIF2a, increases

the transcription of many genes that promote survival

under ER stress. Some of these prosurvival genes

include genes that are involved in redox balance,

amino acid metabolism, protein folding and autophagy

[189].

Translational programmes

Translation is directly impacted by UPR activation

under ER stress conditions, particularly by PERK as

described above. It also affects the expression of sev-

eral miRNAs, which may further contribute to transla-

tion attenuation or protein synthesis [35]. It has been

shown that ER stress can regulate the execution phase

of apoptosis by causing the transient induction of inhi-

bitor of apoptosis proteins (IAPs). Several papers have

reported that cIAP1, cIAP2 and XIAP are induced by

ER stress, and that this induction is important for cell

survival, as it delays the onset of caspase activation

and apoptosis. PERK induction of cIAPs and the

transient activity of PI3K–AKT signalling suggest that

PERK not only allows adaptation to ER stress, but it

also actively inhibits the ER stress-induced apoptotic

programme [190].

Protein degradation

There are two main protein degradation pathways

activated by components of the UPR following ER

stress: ubiquitin–proteasome-mediated degradation via

ERAD and lysosome-mediated protein degradation via

autophagy. ERAD is responsible for removing mis-

folded proteins from the ER and several genes

involved in ERAD are upregulated by ATF6f and

XBP1s [185]. ERAD involves the retrotranslocation of

misfolded proteins from the ER into the cytosol where

they are degraded by the proteasome (see above) [187].

When accumulation of misfolded proteins overwhelms

ERAD, autophagy is induced as a secondary response

to limit protein build-up [187,191]. Autophagy is a

pathway involved in the degradation of bulk compo-

nents such as cellular macromolecules and organelles.

It involves target recognition and selectivity, sequester-

ing targets within autophagosomes, followed by the

fusion of the autophagosome with the lysosome, where

targets are then degraded by lysosomal hydrolases

[187,192]. The direct link between ER stress and

autophagy has been established in both Saccha-

romyces cerevisiae and mammalian cells, where autop-

hagy plays a solely cytoprotective role. The PERK

(eIF2a) and IRE1 (TRAF2/JNK) branches of the

UPR have been implicated in ER stress-induced

autophagy in mammalian systems to avoid accumula-

tion of lethal disease-associated protein variants [192].

IRE1–JNK signalling activates Beclin 1, a key player

and regulator of autophagy, via the phosphorylation

of Bcl-2 and the subsequent dissociation from Beclin

1. This then leads to the activation of ATG proteins

required for the formation of the autophagolysosome

[193]. Overall, these mechanisms decrease the build-up

of improperly folded proteins in the ER thus allowing

adaptive and repair mechanisms to re-establish home-

ostasis. As the amounts of improperly folded proteins

decrease, the UPR switches off. However, the molecu-

lar details of UPR attenuation still remain to be fur-

ther elucidated.

Overall, the three mechanisms describe above

decrease the build-up of proteins in the ER which

allows adaptive and repair mechanisms to re-establish

homeostasis. As the amounts of improperly folded

proteins decrease, the UPR switches off. However, the

molecular details of UPR attenuation remain to be

further elucidated.

Regulation of MAMs

Mitochondria-associated membranes (MAMs), which

are mainly responsible for Ca2+ homeostasis mainte-

nance as well as lipid transport, mediate the interaction

between the ER and mitochondria thereby controlling

mitochondrial metabolism and apoptosis [194]. MAMs

contain many proteins and transporters which mediate

mitochondrial clustering and fusion, such as the dyna-

min-like GTPase mitofusin-2 (MFN2) [195]. MFN2

interacts with PERK, serving as an upstream modula-

tor and thereby regulating mitochondrial morphology

and function as well as the induction of apoptosis

[196]. Furthermore, the cytosolic domain of PERK

serves as an ER-mitochondria tether, thus facilitating

ROS-induced cell death [197].The sigma 1 receptor

(Sig-1R) is located in the MAMs and forms a complex

with BiP. Recent studies show that S1R stabilizes IRE1
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at the MAMs upon ER stress, promoting its dimeriza-

tion and conformational change, and prolonging the

activation of the IRE1–XBP1 signalling pathway

through its long-lasting endoribonuclease activity. Fur-

thermore, mitochondria-derived ROS stimulates IRE1

activation at MAMs [198]. Another MAM component

is Bax-inhibitor-1 (BI-1), regulating mitochondrial

Ca2+ uptake and apoptosis. BI-1 is a negative regula-

tor of IRE1-XBP1 signalling and in BI-1 deficient cells

there is IRE1 hyperactivation and increased levels of

its downstream targets [199]. Apoptosis activation by

the UPR results in mitochondrial membrane permeabi-

lization, with the resulting Ca2+ transfer potentially

triggering mitochondrial cytochrome c release [200].

Less well understood are the interactions of the mito-

chondria with the ER during sublethal ER stress. The

latter results in more ER-mitochondria contacts than

lethal levels of ER stress, allowing for transfer of Ca2+

and enhancement of ATP production through

increased mitochondrial metabolism [201] (Fig. 1).

These evidences demonstrate the importance of the

ER-mitochondria communication in regulating the ER

homeostasis and in coordinating the cellular response

to ER stress, thereby restoring cellular homeostatic

condition or leading towards cell death.

Redox homeostasis

Oxidative stress can be induced through several mech-

anisms and is critically controlled by the UPR. PERK

activity helps to maintain redox homeostasis through

phosphorylation of NRF2 which functions as a tran-

scription factor for the antioxidant response [202].

ATF4 also regulates redox control and has been

shown to protect fibroblasts and hepatocytes from

oxidative stress [173], as well as ensuring that there is

an adequate supply of amino acids for protein and

GSH biosynthesis [203]. However, in neurons and

HEK293 cells ATF4 was shown to induce cell death in

response to oxidative stress while CHOP was reported

to induce ERO1-a, resulting in ER Ca2+ release and

apoptosis in macrophages [204]. Direct interactions of

PDIs with ER stress sensors, protein S-nitrosylation

and ER Ca2+ efflux that is promoted by ROS con-

tribute to redox homeostasis and by extension to the

balance between prosurvival and prodeath UPR sig-

nalling [205]. As such, these signalling loops are para-

mount to normal cellular function.

Global metabolic impact of the UPR

It was recently shown that the UPR and mitochon-

drial proteotoxic stress signalling pathways converge

on ATF4 to induce the expression of cytoprotective

genes [174]. Another pathway regulating energy meta-

bolism is the nutrient-sensing mammalian target of

rapamycin (mTOR) signalling hub. mTOR is associ-

ated with the UPR through crosstalk with regulatory

pathways (reviewed in [206]), and mTOR inhibitors

such as rapamycin lead to the activation of PERK

signalling, thus favouring cell viability [207]. PERK

can also regulate the PI3K–AKT–mTORC1 axis

through the activation of AKT. Furthermore, it was

observed that mTORC2 plays a role in the inhibition

of PERK through AKT activation [208]. Altogether

these data suggest that crosstalk between mTOR and

the UPR is complex and occurs through multiple

pathways.

Lipid metabolism

The UPR can also be activated by deregulated lipid

metabolism. In this regard, the UPR has been shown

to be activated in cholesterol-loaded macrophages

resulting in increased CHOP signalling and apoptosis

[209]. Notably, chronic ER stress leads to insulin

resistance and diabetes in obesity. This is caused by

alterations in lipid composition which lead to inhibi-

tion of SERCA activity and hence ER stress [210].

On the other hand, the UPR is involved in systemic

metabolic regulation. Disturbance of ER homeostasis

in the liver is involved in hepatic inflammation,

steatosis and nonalcoholic fatty liver disease [211].

The PERK–eIF2a pathway has been reported to reg-

ulate lipogenesis and hepatic steatosis. Compromising

eIF2a phosphorylation in mice by overexpression of

GADD34 results in reduced hepatosteatosis upon

high-fat diet [212]. ATF4 the downstream effector of

PERK–eIF2a pathway has also been suggested to

regulate lipid metabolism in hepatocytes in response

to nutritional stimuli by regulating expression of

genes involved in fatty acid and lipid production

[213,214]. Furthermore, it has been demonstrated that

the IRE1–XBP1–PDI axis links ER homeostasis with

VLDL production which plays an important role in

dyslipidaemia [215]. In addition, XBP1 is required for

the normal hepatic fatty acid synthesis and it was

shown that selective XBP1 deletion in mice resulted

in marked hypocholesterolaemia and hypotriglyceri-

daemia [216]. These studies suggest that ER stress

and the UPR are involved in lipid metabolism.

Relieving ER stress ameliorates the disease state asso-

ciated with lipid metabolism alterations, suggesting

that targeting ER stress might serve as a therapeutic

strategy for treating diseases associated with lipid

accumulation.
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Glucose metabolism

It has been suggested that in the liver the PERK–
eIF2a pathway is responsible for disruption of insulin

signalling caused by intermittent hypoxia, though

IRE1–JNK pathways may still play a role [217]. Adi-

ponectin is widely regarded as a marker of functional

glucose metabolism and as a suppressor of metabolic

dysfunctions. In hypoxic and ER-stressed adipocytes,

reduced adiponectin mRNA levels are observed due

to negative regulation by CHOP [218,219]. In b-cells,
it was shown that IRE1 is involved in insulin biosyn-

thesis after transient high glucose levels. However,

chronic exposure to high glucose leads to full UPR

induction and insulin downregulation[220]. IRE1 sig-

nalling was shown to be involved in insulin resistance

and obesity through JNK activation. In hepatocytes,

IRE1-dependent JNK activation leads (a) to insulin

receptor substrate 1 (IRS1) tyrosine phosphorylation

(pY896) decrease and (b) to AKT activation leading

to an increase of IRS1 phosphorylation (pS307), con-

sequently blocking insulin signalling. A role for

XBP1 in the pancreas was demonstrated by the fact

that b-cell-specific XBP1 mutant mice show hypergly-

caemia and glucose intolerance due to decreased

insulin release of b-cells [221]. ER stress-induced acti-

vation of ATF6 in rat pancreatic beta cells exposed

to high glucose, impairs insulin gene expression and

glucose-stimulated insulin secretion. Interestingly,

knocking down expression of orphan nuclear receptor

short heterodimer partner (SHP) previously reported

to be involved in beta cell dysfunction by downregu-

lating expression of PDX-1 and RIPE3b1/MafA

partly mitigated this effect. However, it remains

unclear how ATF6 induces expression of SHP and

whether ATF6 alone can directly regulate the expres-

sion of insulin, PDX-1 and RIPE3b1/MafA [222]. It

has been suggested that physiological impact of ER

stress with respect to glucose metabolism depends

upon the availability of glucose. Indeed acute glucose

availability in beta cells leads to concerted efforts of

each branch of UPR to supply insulin, while chronic

glucose stimulation leads to depletion of insulin pro-

duction and beta cell mass due to apoptosis. More-

over, chronic fasting conditions in mice have shown

that XBP1s directly activates the promoter of the

master regulator of starvation response, PPARa
demonstrating a further link between the UPR and

glucose and lipid metabolism [223]. Acquiring further

knowledge on link between UPR and metabolic sen-

sor mechanisms will significantly expand the possibil-

ity of gaining beneficial metabolic output. Taken

together this indicates that the UPR arms are critical

for the cell to regulate metabolism through regulating

mTOR signalling, lipid homeostasis as well as insulin

signalling.

Downstream impact of UPR activation

The activation of UPR leads to the modulation of

many cellular pathways, thereby influencing prosur-

vival mechanisms as well as processes such as prolifer-

ation, differentiation, metabolism and cell death.

UPR-associated cell death

Following prolonged activation of the UPR, the cellu-

lar response switches from prosurvival to prodeath.

Several types of cell death, including apoptosis, necro-

sis/necroptosis and autophagic cell death, can be

induced following ER stress.

Apoptosis

Unresolved ER stress can lead to the activation of

either the intrinsic (mitochondrial) or extrinsic [death

receptor (DR)] pathways of apoptosis. Both pathways

trigger activation of caspase proteases that dismantle

the cell, and all of the three branches of the UPR are

involved in apoptosis. In the extrinsic pathway, the

activation of DRs on the PM leads to the recruitment

of caspases to the DRs and their proximity-induced

trans-autoactivation. Intrinsic apoptosis involves the

release of cytochrome c (along with other proapoptotic

factors) from the mitochondria, which promotes the

formation of a cytosolic protein complex to activate a

caspase cascade. This release is controlled by pro- and

antiapoptotic members of the BCL-2 protein family.

In particular, the BH3-only members of the family

including PUMA, NOXA and BIM are pivotal com-

ponents of ER stress-induced apoptosis [224], and cells

deficient in BH3-only proteins are protected against

ER stress-induced cell death [190]. ER stress leads to

transcriptional upregulation of these proapoptotic

molecules resulting in cytochrome c release. Both the

IRE1 and PERK arms of the UPR have been linked

to induction of apoptosis during ER stress. In particu-

lar, CHOP, a transcription factor that is downstream

of PERK, and a direct target of ATF4, has been

implicated in the regulation of apoptosis during ER

stress. As discussed in section PERK signalling

CHOP-induced expression of GADD34 promotes

dephosphorylation of p-eIF2a reversing translational

inhibition and allowing transcription of genes includ-

ing apoptosis-related genes [172]. CHOP activates
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transcription of BIM and PUMA, while it represses

transcription of certain antiapoptotic BCL-2 family

members such as MCL-1 [225]. In addition, the ATF4/

CHOP pathway can increase the expression of other

proapoptotic genes, such as TRAIL-R1/DR4 and

TRAIL-R2/DR5 which promote extrinsic apoptosis

[180]. Apart from CHOP, p53 is also involved in the

direct transcriptional upregulation of BH3‑ only pro-

teins during ER stress. However, the link between p53

activation and ER stress is unclear [226].

Although IRE1–XBP1s signalling is mainly prosur-

vival, IRE1 can promote apoptosis. Activated IRE1

can interact directly with TRAF2, leading to the acti-

vation of apoptosis signal-regulating kinase 1 (ASK1)

and its downstream targets c-Jun NH2-terminal kinase

(JNK) and p38 MAPK [227,228]. Phosphorylation by

JNK has been reported to regulate several BCL-2 fam-

ily members, including the activation of proapoptotic

BID and BIM, and inhibition of antiapoptotic BCL-2,

BCL-XL and MCL-1 [229,230]. In addition, p38

MAPK phosphorylates and activates CHOP, which

increases expression of BIM and DR5, thereby pro-

moting apoptosis [231,232]. In fact, cell death induc-

tion in HeLa cells overexpressing CHOP is dependent

on its phosphorylation by p38 MAPK [233]. Interest-

ingly, it was proposed that ER stress and MAPK sig-

nalling act in a positive feed-forward relationship, as

ER stress induces MAPK signalling which in turn

increases ER stress [234]. IRE1 signalling may also

contribute to apoptosis induction through prolonged

RIDD activity which degrades the mRNA of protein

folding mediators [142].

Interestingly, recent studies indicate a role for miR-

NAs in the induction of apoptosis following prolonged

ER stress. For example, miRNA29a which is induced

during ER stress via ATF4 results in the downregula-

tion of antiapoptotic Bcl-2 family protein Mcl-1, and

thus promotes apoptosis [235]. miRNA7 has also been

linked with ER stress-induced apoptosis, where IRE1

reduces miRNA7 levels which results in the stability of

a membrane-spanning RING finger protein, RNF183.

RNF183 has an E3 ligase domain that then causes the

ubiquitination and subsequent degradation of the anti-

apoptotic member of the BCL-2 family BCL-XL. Fol-

lowing prolonged ER stress, increased expression of

RNF183 via IRE1 leads to increased apoptosis [236].

In the last decade, it also became clear that ER

stress can profoundly modify the immunological con-

sequences of apoptotic cell death. Accumulating

in vitro and in vivo evidence have highlighted that the

activation of the PERK arm of ER stress evoked in

response to selected of anticancer therapies (including

anthracyclines, oxaliplatin, radiation and

photodynamic therapy (reviewed in [237]), drives a

danger signalling module resulting in the surface expo-

sure of the ER luminal chaperone calreticulin and the

exodus of other danger-associated molecular patterns,

eliciting immunogenic cell death (reviewed in [238]).

Necroptosis

Necroptosis, a programmed form of cell death, is

dependent on the activation of receptor-interacting

protein kinase 1 (RIPK1), RIPK3 and mixed lineage

kinase domain-like (MLKL) protein and has been

linked to ER stress. In an in vivo mouse model of

spinal cord injury, there is induction of necroptosis and

ER stress, with localization of MLKL and RIPK3 on

the ER in necroptotic microglia/macrophages suggest-

ing a link between necroptosis and ER stress in these

cells [239]. Necroptosis is frequently activated down-

stream of TNFR1 when apoptosis is blocked [240].

This has been linked to ER stress-induced necroptosis

whereby tunicamycin kills L929 murine fibrosarcoma

cells by caspase-independent, death ligand-independent,

TNFR1-mediated necroptosis [241].

Autophagic cell death

Endoplasmic reticulum stress has also been connected

to autophagic cell death. Autophagy not only pro-

motes cell survival, but can also mediate nonapoptotic

cell death under experimental conditions when apopto-

sis is blocked, or in response to treatments that specifi-

cally trigger caspase-independent autophagic cell death

[192]. IRE1a mediated TRAF2 and ASK1 recruitment,

and subsequent JNK activation mediates autophagy.

JNK-mediated phosphorylation of BCL-2 releases

Beclin-1 (while XBP1s also transcriptionally upregu-

lates its expression), which interacts with the ULK1

complex to promote vesicle nucleation that leads to

the formation of the autophagosome [242]. Activated

PERK can induce autophagy through ATF4 by induc-

ing vesicle elongation while Ca2+ release from the ER

lumen through the IP3R can relieve mTOR inhibition

on the ULK1 complex [187].

UPR-associated morphological changes

Endoplasmic reticulum stress causes morphological

changes in cellular models. Experiments to date have

largely focused on the morphologies associated with

apoptotic and autophagic cell death resulting from

UPR activation. UPR-regulated flattening and round-

ing of cells, indicative of cell death, has been observed

in many model systems, with traditional caspase-
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dependent apoptosis being responsible [200,243–248].
These morphological changes can be reversed by phys-

iological and pharmacological ER stress relief

[247,249]. Both IRE1 and PERK arms of the UPR

have been implicated in the observed changes

[193,243,244,247,249–251]. As described above, pro-

grammed cell death and its associated morphological

changes have become a focal and much researched

outcome of the use of UPR-inducing cytotoxic agents.

An intensively studied consequence of ER stress is

the epithelial to mesenchymal transition (EMT) and its

role in cancer invasion and metastasis. EMT is an

essential component of tissue repair following wound-

ing, allowing for the migration of new healthy cells

into any lesions that have occurred. Morphological

changes indicative of EMT have been observed in mul-

tiple cell models under physiologically relevant stress

(e.g. hypoxia) and pharmacological induction of ER

stress [252–255]. The IRE1–XBP1 pathway has been

reported to negatively regulate the traditional epithelial

marker E-cadherin, while positively regulating the mes-

enchymal marker N-cadherin in models of colorectal,

breast and pulmonary fibrosis [254,256,257]. Breast

cancer and pulmonary fibrosis models showed an

IRE1–XBP1-dependent regulation of mesenchymal

promoting transcription factor SNAIL that is responsi-

ble for EMT [254,256]. Human mammary epithelial

cells undergo EMT in response to PERK activation,

and PERK-mediated phosphorylation of eIF2a is

required for invasion and metastasis [258]. Other ER

stress-regulated pathways have been proposed to act in

the EMT in cellular models, including autophagy and

activation of c-SRC kinase in tubular epithelial cells

[259] and the compensatory activation of the NRF-2/

HO-1 antioxidative stress response pathway in HT-29

and DLD-1 colon cancer cells [252]. Therefore, UPR

signalling pathways appear to induce morphological

changes indicative of EMT. These data have generated

interest in the field of cancer research where the phar-

macological inhibition of UPR components might be

used to reduce tumour invasiveness and metastasis.

Hormone production

The tissues and cells of the endocrine system responsi-

ble for hormone production and extracellular sig-

nalling often have a high protein load, resulting in ER

stress and activation of the UPR. OASIS (CREB3L1)

and ATF6a have been shown to regulate arginine

vasopressin (AVP), a potent vasoconstrictor, in murine

and rat models [260,261]. Upon dehydration or salt

loading in rat models, cleaved active OASIS is

observed binding the AVP promoter region, directly

upregulating protein expression [260]. In ATF6�/�

murine models subjected to intermittent water depriva-

tion, similar downstream effects were observed, but

signalling pathways were not investigated [261]. ER

stress-inducing agents palmitate and oxysterol 27-

hydroxycholesterol both result in a reduction in leptin

(a long-term mediator of energy balance) expression

and extracellular concentrations. This has been attribu-

ted, by using ChIP analysis and siRNA knockdowns,

to the fact that the PERK downstream target CHOP

negatively regulates C/EBPa, transcriptionally down-

regulating its translation and release [262,263]. UPR

activation has been implicated in the hypothalamic

and brown adipose tissue response to thyroid hormone

triiodothyronine (T3). Elevated T3 levels induce the

UPR downstream of AMPK in the ventromedial

nucleus of the hypothalamus, resulting in decreased

ceramide levels. JNK1 KO revealed that it acts down-

stream of this AMPK-dependent activation, possibly

as a target of IRE1 but to our knowledge no studies

have yet confirmed this [264]. In response to ER stress

in hepatocytes, CREBH is exported from the ER and

cleaved in the Golgi apparatus. The CREBH cytosolic

fragment binds to the promoter region of hepcidin and

transcriptionally upregulates its production [265].

These examples of UPR-regulated hormone produc-

tion and release give scope for further investigation

into the longer term, system wide effects of UPR sig-

nalling outside of the current focuses on cytotoxicity

and acute diseases.

Physiological ER stress signalling

It has been established that ER stress signalling is

important in interorganelle and intercellular interac-

tions. It therefore comes as no surprise that it forms a

significant network of interactions upon which normal

physiology is based. This is not only the case in

humans, but is also conserved throughout species and

has been an important fact in the design of experimen-

tal model organisms to further study ER stress sig-

nalling and it role in physiology and disease.

Embryology and development

The UPR as the major conduit of ER stress regulation

has been extensively studied in developmental biology

in the majority of organisms commonly used in transla-

tional research. The use of multiple models has been

important in discerning the variable ER stress signalling

between species, as demonstrated by the discovery that

protein quality control in mammals is critically depen-

dent on ATF6 while the major player in
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Caenorhabditis elegans and Drosophila melanogaster is

IRE1 [182,266]. Mammalian and other embryos

implanted in vitro or naturally, undergo a multitude of

physical, biochemical and cellular stresses involving epi-

genetic changes as well as a disproportional increase in

protein synthesis load that affect cell differentiation,

proliferation and growth.[267]. In zebrafish, transgenic

models have been generated to monitor XBP1 splicing

during development and implantation, showing that

maternal XBP1s is active in oocytes, fertilized eggs and

early stage embryos, presenting a potential model for

study of the impact of water pollutants on embryogene-

sis [268]. It was recently shown that in medaka fish the

JNK and RIDD pathways are dispensable for growth,

with development solely dependent on the XBP1 arm

of IRE1 signalling, thereby supporting the hypothesis

that XBP1 and RIDD may be differentially utilized in

development and homeostasis [269]. In C. elegans it has

been postulated that the IRE1-XBP1 axis as well as the

PERK pathway are responsible for the maintenance of

cellular homeostasis during larval development [270].

Pronephros formation was shown to be BiP dependent

in Xenopus embryos, where BiP morpholino knock-

down not only blocked pronephros formation but also

attenuated retinoic acid signalling, impacting markers

such as the Lim homeobox protein [271]. In early

mouse development, it was shown that the BiP pro-

moter is activated in both the trophoectoderm and

inner cell mass at embryonic day 3.5 and that absence

of BiP leads to proliferative defects and inner cell mass

apoptosis, suggesting it is necessary for embryonic cell

growth and pluripotent cell survival [272]. Furthermore,

mouse studies revealed that ER stress proteins such as

BiP, GRP94, calreticulin and PDIA3 were downregu-

lated in adult neural tissues compared to embryonic

ones, suggesting a pivotal role for ER stress signalling

in the development of neural tissues such as the brain

and retina [273]. Beyond the nervous system, ER stress

signalling impairment has repeatedly shown mouse

embryonic lethality and, in particular in the hepatocel-

lular system, multiple studies have demonstrated that

IRE1 and XBP1 signalling defects lead to fetal liver

hypoplasia, intrauterine anaemia and early antenatal

pancreatic dysfunction [274]. The UPR is intrinsically

linked to the mouse embryonic morula–blastocyst tran-
sition [275] and this, in combination with evidence that

there is an immediate postnatal downregulation of BiP,

shows that there is an important role for the UPR both

in early and late gestation [276]. Taking all this evidence

into consideration, it is apparent that the correct inte-

gration of signals both intracellularly and between the

developing oocyte, follicular environment and support-

ing cumulus cells is absolutely essential for embryonic

development, making ER stress signalling a key regula-

tor in the earliest stages of life in all organisms [277].

Growth and differentiation

Many cell types experience a high protein load during

various stages of differentiation and maturation, result-

ing in ER stress. In several cases, morphological

changes required for the final function of the cell would

not be possible without transient activation of the

UPR’s cytoprotective mechanisms. Deletion of PERK

in murine models results in loss of pancreatic b cell

architecture but not in cell death, and was accompa-

nied by an increase in b cell proliferation. This mor-

phological change results in a diabetes mellitus-like

pathology and is not a result of increased cell death as

previously proposed [278]. Various haematopoietic lin-

eages require the activation of the UPR in order to sur-

vive ER stress resulting from production of

immunoglobulins and lysosomal compartments in

order to reach maturity [279–281]. One physiological

function that is indispensable for survival is the innate

immune response, and cell differentiation is at its epi-

centre. The conversion of B lymphocytes to highly

secretory plasma cells is accompanied by a huge expan-

sion of the ER compartment, and genetic alterations to

induce immunoglobulin production are good examples

of the necessity of ER signalling in normal physiology

[123]. This is supported by a study that suggests the

UPR, and the PERK pathway in particular, govern the

integrity of the haematopoietic stem-cell pool during

stress to prevent loss of function [282]. The ability of

skin fibroblasts to produce collagens and matrix metal-

loproteinases (proteins increased at wound sites), along

with their ability to differentiate into myofibroblasts,

provides another example where physiological ER

stress may drive morphological cellular transition [283].

Although not yet fully characterized, the RIDD path-

way has been linked to a multitude of physiological

processes including lysosomal degradation and xenobi-

otic metabolism through cytochrome P450 regulation

[284]. At the same time, substrates of regulated

intramembrane proteolysis such as CREBH are

involved in normal physiological processes such as glu-

coneogenesis [284]. Another substrate of regulated

intramembrane proteolysis, OASIS, is involved in mul-

tiple stages of bone homeostasis and development.

Mice lacking OASIS present with severe osteopenia,

which is compounded by the fact that the gene for type

1 collagen is an OASIS target [285]. Moreover, osteo-

blast OASIS expression is controlled by factors essen-

tial to osteogenesis (BMP2), pointing to a PERK-

eIF2a-ATF4 pathway upregulation during osteoblast
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differentiation, where ATF4 restores deficiencies of

PERK null osteoblasts all the while impacting apopto-

sis for bone remodelling [251,286]. Furthermore, a link

between osteoblast differentiation and hypoxia has

been established, with decreased vascularization shown

in OASIS null mice pointing towards a potential role

of ER stress in angiogenesis during bone development

[287]. This signalling cascade does not only restrict

itself to the normal physiology of bone but also modu-

lates UPR signalling in astrocytes and is responsible

for the terminal, early to mature, goblet cell differentia-

tion in the large intestine [288–290].

Metabolism

The ER is a site of significant metabolic regulation.

The UPR plays a major role in the regulation of gly-

colysis and it was recently shown that IRE1 mediates

a metabolic decrease upon glucose shortage in neu-

rons, suggesting an important role for the UPR as an

adaptive response mechanism in relation to energy

metabolism [291]. Moreover, mTOR signalling adjusts

global protein synthesis, which is a highly energy con-

suming process, and thereby regulates energy metabo-

lism (reviewed in [292]).

Lipid homeostasis

The ER is heavily involved in lipid homeostasis. Char-

acteristically, hepatocytes are enriched in SER, because

in addition to protein synthesis, these cells also synthe-

size bile acids, cholesterol and phospholipids. XBP1

ablation in murine liver results in hypolipidaemia due

to feedback activation of IRE1 caused by the lack of

XBP1. Activated IRE1 induces the degradation of

mRNAs of a cohort of lipid metabolism genes via

RIDD, demonstrating the critical role of IRE1–XBP1

signalling in lipid metabolism and suggesting that tar-

geting XBP1 may be a viable approach to the treat-

ment of dyslipidaemias [113]. It was also reported that

in hepatocyte-specific IRE1-null mice, XBP1 is

involved in very low-density lipoprotein synthesis and

secretion [215]. Interestingly, ATF6 has also been

shown to have a role in adipogenesis by inducing adi-

pogenic genes and lipid accumulation [293].

Glucose metabolism

The UPR is also involved in regulating glucose meta-

bolism. Initial murine studies suggested the PERK–
eIF2a arm was responsible for impaired insulin sig-

nalling due to knock out effects on beta cells during

development. Further studies have since shown that

IRE1 RIDD activity is responsible for a reduction in

the mRNA of proinsulin processing proteins, including

INS1, PC1 and SYP. These effects can be observed in

cases of XBP1 deficiency and in cases of extensive

UPR activation, highlighting the divergent effects of

IRE1 RNase activity [119,221,294].

Amino acid metabolism

The UPR is also described to be involved in amino

acid metabolism. It was recently described that ATF4

mediates increased amino acid uptake upon glutamine

deprivation [295]. Furthermore, a low protein diet

leads to the upregulation of cytokines mediated by

IRE1 and RIG1 which results in an anticancer

immune response in tumours [296]. In summary, these

findings show the importance of the various UPR

arms in cell metabolism and energy homeostasis with

effects not only on the cell itself but also on the whole

cellular environment.

Pharmacological targeting of the UPR

Several small molecules have been reported to modu-

late (activate or inhibit) one or more arms of the

UPR. Importantly, these molecules have shown

promising beneficial effects in diverse human diseases

(Table 1). X-ray cocrystal structures are now available

for IRE1 and PERK with several endogenous or

exogenous ligands. The understanding of how small

molecules bind to the active sites and modulate the

function of IRE1 and PERK will have a profound

impact on the structure-based drug discovery of novel

UPR modulators. Available X-ray structures, in addi-

tion to mutagenesis analysis of critical amino acids

[297], have revealed a variety of unexpected allosteric

binding sites on IRE1 [297–299].

Pharmacological modulators of IRE1

IRE1 signalling information along with CHOP/Gal4-

Luc cells and UPRE-Luc engineered cells were used to

screen large chemical libraries in high throughput

screening assays for discovery of pathway-selective

modulators of IRE1 [300].

IRE1 ATP-binding site

IRE1 modulators have been discovered primarily by

traditional drug discovery methods, identifying inhibi-

tors specific to the kinase or RNase domain (Table 1).

The IRE1 kinase modulators were used as tools to

understand the allosteric relationship between the
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kinase and RNase domains [301,302]. Kinase inhibi-

tors can be broadly classed as (a) ATP-competitive

inhibitors that inhibit the kinase domain and activate

the RNase domain and (b) ATP-competitive inhibitors

that inhibit the kinase domain and inactivate RNase

(kinase inhibiting RNase attenuators – KIRAs). Avail-

able IRE1 crystal structures reveal a possible mecha-

nism of RNase activation by conformational changes

that occur in the kinase domain when transitioning

from a monomeric to an active dimeric state. Type I

IRE1 kinase inhibitors include APY29 [303] and suni-

tinib [304], which target the ATP-binding site and

inhibit the phosphorylation but stabilize the active

form of the kinase domain. An active kinase confor-

mation is seen in human apo dP-IRE1* (PDB 5HGI),

as a back-to-back dimer. Notably, the DFG motif

(Asp711-Phe712-Gly713) faces into the active site

(DFG-in), with helix-aC-in conformation. In contrast,

human IRE1 bound to KIRA compound 33 (PDB:

4U6R) shows an inactive kinase conformation, with

DFG-in and helix-aC-out conformation. The inactive

conformation is incompatible with back-to-back dimer

formation due to the displaced helix-aC [301]. Imida-

zopyrazine-based inhibitors and other KIRAs

Table 1. Different modulators that target the UPR-transducer protein pathways. Molecule name, respective molecular target and brief

description with the associated reference are provided (ND: not determined).

UPR Arm Name Target Brief description Reference

PERK GSK2656157 PERK Kinase In preclinical stage for multiple myeloma

and pancreatic cancer

[314,364]

Salubrinal GADD34/PP1c Inhibition of eIF2a dephosphorylation [365–367]

In ALS, it increases lifespan of mutant

superoxide dismutase 1 transgenic mice

In Parkinson’s disease, it increases neuronal

survival of a-synuclein transgenic mice

ISRIB eIF2b Decreased ATF4 expression [322]

Guanabenz GADD34/PP1c Inhibitor of eIF2a phosphatase, [368]

Sephin1 GADD34 (PP1c) Inhibitor of eIF2a phosphatase [369]

IRE1 Salicylaldimines IRE1 RNase IRE1aRNase active-site inhibitor [305]

STF-083010 IRE1 RNase IRE1a RNase active-site inhibitor [308]

In preclinical stage for multiple myeloma treatment

MKC-3946 IRE1 RNase IRE1a RNase active-site inhibitor [307,370]

In preclinical stage for multiple myeloma treatment

4l8c IRE1 RNase IRE1a RNase active-site inhibitor [306]

In preclinical stage for multiple myeloma treatment

APY29 IRE1 Kinase IRE1a kinase active-site inhibitor [303]

Sunitinib IRE1 Kinase IRE1a kinase active-site inhibitor [85,304]

FDA approved for renal cell carcinoma

It acts on multiple kinases

KIRA IRE1 Kinase IRE1a kinase active-site inhibitor [371]

Toyocamycin IRE1 RNase IRE1a RNase active-site inhibitor [309,372]

In preclinical stage for various cancers treatment

3-ethoxy-5,6-

dibromosalicylal-

dehyde

IRE1 RNase IRE1a RNase active site inhibitor [305]

Apigenin Proteasome Increase of IRE1a nuclease activity in model [373]

FIRE peptide IRE1 Kinase Modulation IRE1 oligomerization in vitro, [85]

Xbp1 mRNA cleavage in vitro, in cell culture

and in vivo (Caenorhabditis elegans)

ATF6 Apigenin ATF6 Upregulation of ATF6 expression [373]

Baicalein ATF6 Upregulation of ATF6 expression [374]

Ceapin ND Inhibitor of ATF6 [323]

Kaempferol ATF6 Downregulation of ATF6 expression [375]

Melatonin ATF6 Inhibitor of ATF6 [325]

Compound 147 ATF6 Activator of ATF6 [376]

Compound 263 ATF6 Activator of ATF6 [376]

16F16 PDI Inhibitor of PDI [377]
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allosterically inhibit the RNase activity of phosphory-

lated IRE1 by possibly displacing helix-aC from an

active conformation to an inactive conformation [301].

IRE1 RNase-binding site

IRE1 RNase inhibitors include salicylaldehydes [305]

4l8C [306], MKC-946 [307], STF-83010 [308], toy-

ocamycin [309] and hydroxyl-aryl-aldehydes [86]. The

reported cocrystal structures of murine IRE1a with

salicyaldehyde-based inhibitor show that Lys 907 is

involved in Schiff base arrangement (PDB code: 4PL3

[86]). Lys 907 is a crucial residue present within the

hydrophobic pocket of the IRE1 RNase catalytic site

[310]. Quercetin is reported to activate IRE1 through a

site distinct from the nucleotide-binding site (crystal

structure PDB 3LJ0), increasing the population of

IRE1 dimers in vitro [299]. A recent in silico study

identified the anthracycline antibiotic doxorubicin as

an inhibitor of the IRE1-XBP1 axis [311]. Covalent

binders are very efficient in the sense that they com-

pletely block the proteins to which they bind, but this

can also have several drawbacks [312]. Noncovalent

kinase and allosteric modulators in general inhibit

competitively and are thus less efficient, but can at the

same time be extremely useful in obtaining new

insights for developing selective and potent modulators

of IRE1a-XBP1 signalling (Table 1).

Other IRE1 modulators

Peptides derived from the kinase domain of human

IRE1 promote oligomerization in vitro, enhancing

XBP1 mRNA cleavage activity in vitro and in vivo

[85]. However, although peptide-based modulators

have limited clinical application [313] (Table 1) peptide

mimetics may prove more useful. These are different

aspects that can be exploited to develop selective IRE1

modulators. Despite significant progress in understand-

ing IRE1 signalling and in the development of modu-

lators of IRE1 activity, several questions still remain

to be answered to fully control IRE1 activity and sig-

nalling outcomes, including how to selectively target

the XBP1 and RIDD arms of IRE1 signalling.

Pharmacological modulators of PERK

Through biochemical screening of exclusive library col-

lections and structure-based lead optimization, GSK

discovered PERK inhibitors GSK2606414 and

GSK2656157 [314]. These potent PERK inhibitors can

be orally administered [314], reducing tumour growth

in mouse xenograft models [314,315]. GSK2606414

was also the first oral small molecule to prevent neu-

rodegeneration in vivo in prion-diseased mice, with

GSK2606414 reducing the levels of p-PERK and p-

eIF2a and restoring protein synthesis rates [316].

Despite the promising selectivity profile, pharmacologi-

cal inhibition of PERK in mice caused damage to exo-

crine cells and pancreatic beta cells, a similar

phenotype to that observed in PERK�/� mice [317].

Furthermore, GSK2606414 and GSK2656157 were

found recently to inhibit RIPK1 at nanomolar concen-

trations [318]. To overcome the b-cell toxicity, small

molecules modulating the eIF2a pathway without

directly inhibiting PERK were examined. Integrated

stress response inhibitor (ISRIB) is the first small

molecule described to bind and activate guanine

nucleotide exchange factor eIF2B [319,320]. Unlike

GSK inhibitors, ISRIB did not show any pancreatic

toxicity [321]. Interestingly, ISRIB increased learning

and memory in WT mice [322] (Table 1).

ATF6 modulators

The identification of small molecules that modulate

ATF6 has been challenging due to lack of potentially

druggable binding sites and unavailability of the pro-

tein crystal structure. Recently, Walter and colleagues

identified selective inhibitors of ATF6 signalling, the

small molecules Ceapins, using a high throughput

cell-based screen [323]. Ceapins do not affect the

IRE1 and PERK arms of the UPR. Ceapins are

chemically classed as pyrazole amides and extensive

biochemical and cell biology evidence show that they

trap ATF6 in the ER and thus prevent its transloca-

tion to the Golgi upon stress [324]. Ceapins sensitize

cells to ER stress without affecting unstressed cells

and hence have potential to be developed within the

framework of a therapeutic strategy to induce cell

death in cancer cells. A recent study identified mela-

tonin as an ATF6 inhibitor, leading to enhanced liver

cancer cell apoptosis through decreased COX-2

expression [325]. The activation of ATF6 depends on

a redox process involving PDIs suggesting that PDI

inhibitors such as PACMA31 [326], RB-11-ca [327],

P1 [327] and 16F16 [328] may be able to modulate

ATF6 activation. Additionally, the serine protease

inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride is

reported to prevent ER stress-induced cleavage of

ATF6 [329] (Table 1). Albeit the above developments

hold strong promise for the future, very little is

known to date about specific binding sites, which

together with the lack of a crystal structure and

insufficient templates to enable homology modelling,

rational drug design targeting ATF6 remains a
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challenge. Availability of an ATF6 crystal structure is

in this sense the key aspect, as this will provide ato-

mistic level understanding of interactions and mecha-

nism of action, and enable in silico based rational

design of ATF6 modulators.

The UPR in the clinic

In this section, we review recent preclinical and clinical

studies in which UPR components were used as dis-

ease biomarkers or as therapeutic targets (Fig. 3). As

already described in section Perturbing ER functions

molecules have been designed to modulate ER stress

by inducing the UPR (Brefeldin A, DTT), inhibiting

SERCA Ca2+ ATPases (thapsigargin) or preventing

the generation of glycoproteins, and hence, the induc-

tion of ER stress through calcium imbalance or mis-

folded protein accumulation. They were touted as

potential antitumour therapies as they could poten-

tially induce tumour cell death through ER stress over-

activation. However, none of these compounds were

used in the clinic due to their lack of specificity and

high toxicity. It has been reported though that a pro-

drug analogue of thapsigargin, mipsagargin, did dis-

play acceptable tolerability and favourable

pharmacokinetic profiles in patients with solid tumours

[330]. On the other hand, section 6 describes molecules

that inhibit the various arms of the UPR.

UPR biomarkers

Changes in UPR and ER stress markers in blood or

tissue biopsy samples can be indicative of disease state

and could be/are utilized as valuable biomarkers for

different human pathologies. For instance, BiP has

strong immunological reactivity when released into the

extracellular environment [331], and in 1993, it was the

first ER stress protein associated with the pathogenesis

of osteogenesis imperfecta [332]. Since then, further

evidence suggests overexpression of BiP in several

human diseases (reviewed in [333]). The UPR tran-

scription factors can also be seen as potential biomark-

ers of various diseases. ATF4 is upregulated and

contributes to progression and metastasis in patients

with oesophageal squamous cell carcinoma [334]. Simi-

larly, XBP1 overexpression is linked to progressive

clinical stages and degree of tumour malignancy in

osteosarcoma [335]. In contrast, IRE1–XBP1 downreg-

ulation can differentiate germinal centre B cell-like

lymphoma from other diffuse large B-cell lymphoma

subtypes and contributes to tumour growth [336].

Moreover, XBP1 is genetically linked to inflammatory

bowel disease (IBD) [337]. Using cohorts of IBD

patients to test the association of 20 SNPs across the

XBP1 gene region, it was found that three SNPs

rs5997391, rs5762795 and rs35873774 are associated

with disease, thus linking cell-specific ER stress

changes with the induction of organ-specific inflamma-

tion. Quantitative changes in ER stress chaperones in

the CSF have been proposed as possible biomarkers to

monitor the progression of neurodegenerative diseases

such as ALS [338,339]. Finally, the mesencephalic

astrocyte-derived neurotrophic factor (MANF) can be

used as a urine biomarker for ER stress-related kidney

diseases [340]. MANF localizes in the ER lumen and

is secreted in response to ER stress in several cell

types. Similarly, angiogenin was identified as an ER

stress responsive biomarker found in the urine of

patients with kidney damage [341]. Thus, noninvasive

ER stress-related biomarkers can be used to stratify

disease risk and disease development (Fig. 3).

ER stress and UPR-based therapies

Beyond their use as biomarkers, ER stress signalling

components also represent relevant therapeutic targets.

BiP was recently recognized as a universal therapeutic

target for human diseases such as cancer and bacte-

rial/viral infections [333]. Antibodies targeting BiP

exhibited antitumoural activity and enhanced radiation

efficacy in non-small-cell lung cancer and glioblastoma

multiforme in mouse xenograft models [342]. It was

also shown that short-term systemic treatment with a

monoclonal antibody against BiP suppressed AKT

activation and increased apoptosis in mice with

endometrial adenocarcinoma [343]. Moreover, the ER-

resident GRP94 is being evaluated as a therapeutic

target because of its ability to associate with cellular

peptides irrespective of size or sequence [344]. Preclini-

cal studies have linked GRP94 expression to cancer

progression in multiple myeloma, hepatocellular carci-

noma, breast cancer and colon cancer. Finally, this

protein has been identified as a strong modulator of

the immune system that could be used in anticancer

immunotherapy [345].

ER stress-induced transcription factors can also rep-

resent relevant targets. Thus, XBP1s has been one of

the main targets for drug discovery and gene therapy

[346]. Elimination of XBP1 improves hepatosteatosis,

liver damage and hypercholesterolaemia in animal

models. As such direct targeting of IRE1 or XBP1 can

be a possible strategy to treat dyslipidaemias [113]. In

cancer, toyocamycin was shown to inhibit the constitu-

tive activation of XBP1s expression in multiple mye-

loma cells as well as in patient primary samples [309].

Despite being the least studied UPR arm, there are
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instances that ATF6 can be a specific clinical target.

The activation of ATF6 but not IRE1 or PERK has

been linked with airway remodelling in a mouse model

of asthma [347]. Additionally, these studies showed

that expression of orosomucoid-like 3 (ORMDL3) reg-

ulates ATF6 expression and airway remodelling

through ATF6 target genes such as SERCA2b,

TGFb1, ADAM8 and MMP9 (Fig. 3, Table 2).

Fig. 3. UPR disease biomarkers and therapeutic targets. Schematic representation of the UPR signalling pathway as defined in Fig. 2 and

annotated with the relevance to disease of each component. The colour code indicates the type of disease (cancer: orange; metabolic

disease: red; degenerative disease: blue; infectious disease: green; inflammatory disease: pink) and the lines indicate the role as biomarker

(continuous line) or therapeutic target (dashed line).
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ER stress targets are also strong candidates for

immunotherapy and vaccines development, a good

example of which is the production of chaperone pro-

tein-based cancer vaccines termed chaperone-rich cell

lysate (CRCL) [348]. The CRCL are purified from

tumour tissue or recombinantly produced and applied

as vaccines against murine and canine cancers or infec-

tious diseases. Advantages of CRCL vaccines include

small quantities and easily obtained starting materials

[349]. Furthermore, DNA vaccination with gp96-pep-

tide fusion proteins showed increased resistance

against the intracellular bacterial pathogen Listeria

monocytogenes in a mouse model [350]. To improve

the efficacy of gp96 vaccines, gp96 was pooled with

CpG in combination with anti-B7H1 or anti–inter-
leukin-10 monoclonal antibodies to treat mice with

large tumours [351]. The heterogeneous or allogeneic

gp96 vaccines protected mice from tumour challenge

and re-challenge. In addition to its role as a molecular

chaperone, GRP94 was likewise identified as a peptide

carrier for T-cell immunization [352]. However, the

immunological application of GRP94 derived from its

peptide binding capacity was not further investigated

(Fig. 3, Table 2). The activation of ER stress has been

reported as well in different critical care diseases mod-

els, such as sepsis [331,332], liver, heart, brain and kid-

ney ischaemia [353–359] and haemorrhagic shock

[334,335]. But, the pathophysiological impact of ER

stress activation in these conditions severely lacks

characterization. Multiple factors such as inflamma-

tion, hypoxia present in sepsis and shock can induce

ER stress but its effects are ambivalent. It has been

shown that induction of ER stress is cytoprotective

[353,354], and that proteostasis promotors/disruptors

such as 4-PBA [336] or TUDCA [337] can be used to

improve disease outcome. The increase of CHOP in

renal tissue was reported to inhibit inflammatory

response in and provide protection against kidney

injury [336]. Moreover, the activation of PERK seems

to facilitate survival of lipopolysaccharide-treated car-

diomyocytes by promoting autophagy [338]. Addition-

ally, the activation of ATF6 before ischaemia reduced

myocardial tissue damage during ischaemia/reperfusion

(I/R) injury [339]. Furthermore, induction of BiP in

cardiomyocytes stimulated AKT signalling and pro-

tected against oxidative stress, conferring cellular I/R

damage protection [340]. In contrast, inhibition of ER

stress was indicated to limit cellular damage in

Table 2. ER stress-centred clinical trials. A range of clinical entities in endocrinology, oncology and paediatrics have been targeted through

clinical trials. This table presents such trials detailing the trial targeted, interventional agent investigated and national authority carrying out

the investigation.

Trial Disease Intervention Country

Role of ER stress in the pathophysiology

of type 2 diabetes

• Diabetes mellitus, type 2 No intervention France

ER stress and resistance to treatments

in Ph-negative myeloproliferative neoplasms

• Polycythemia vera

• Essential thrombocythemia
Biological: RNA sample

of total leucocytes

before start of treatment

France

Effect of ER stress on metabolic function • Insulin resistance

• Diabetes

• Obesity

Drug: TUDCA United States

Other: placebo

Drug: sodium phenylbutyrate

ER stress in chronic respiratory diseases • Chronic airway disorders

• Lung cancer
Observational South Korea

TUDCA for protease-inhibitor associated

insulin resistance

• HIV-related insulin resistance

• Protease inhibitor-related Insulin

resistance

Drug: TUDCA United States

Other: placebo tablet

ER stress in NAFLD • Obesity

• NAFLD
Drug: methyl-D9-choline United States

TUDCA in new-onset type 1 diabetes • Type 1 diabetes Drug: TUDCA United States

Drug: Sugar Pill (placebo)

Effects of Liraglutide on ER stress in

obese patients with type 2 diabetes

• Type 2 diabetes Drug: liraglutide United States

A clinical trial of dantrolene sodium in

paediatric and adult patients with

wolfram syndrome

• Wolfram syndrome

• Diabetes mellitus

• optic nerve atrophy

• Ataxia

Drug: dantrolene sodium United States
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pathologies such as hepatic I/R [341]. This contradic-

tion may be due to interference between UPR and

inflammatory pathways. CHOP-/- mice were reported

to have more prominent increase in NF-kB activation

and further upregulation of proinflammatory genes

(CXCL-1, MIP-2, IL-6) [342]. Interestingly, inhibition

of IRE1-NF-kB by resveratrol protected against sep-

sis-induced kidney failure [343]. In this light, the mod-

ulation of specific UPR branches is promising

approach for therapy of critical care diseases.

As discussed above, understanding and characteriz-

ing the UPR has provided several potential targets to

develop new therapeutics for various diseases, with an

encouraging increase in the number of clinical trials

based on ER stress pathway targets or associated

drugs. Several of these trials [ClinicalTrials.gov, Euro-

pean Clinical Trials Database and the ISRCTN reg-

istry] have focused on diabetes mellitus. A trial testing

TUDCA and 4-PBA for the treatment of high lipid

levels or insulin resistance was conducted by the

Washington University School of Medicine; however,

although this study was completed in 2014, the find-

ings are not available yet. The results from the first

completed human trial using BiP for rheumatoid

arthritis are described in Box 1. We can anticipate that

clinical trials to test ER stress targeting drugs in sev-

eral other diseases will shortly ensue.

Concluding remarks

The ER has evolved in our knowledge from a key

player in proteostasis and the secretory pathway to a

cornerstone of metabolic functions. Such wealth of

information has allowed the identification of numerous

mechanisms for fine-tuning ER signalling, as well as

motivated the need for their better characterization

towards relevant health-related applications. This drive

to further ER knowledge has also led to the identifica-

tion of emerging roles for the ER in physiology and

disease. In particular, it appears an indispensable tool

for cellular communication that reaches beyond the

intracellular space. The concept of transmissible ER

stress illustrates the far-reaching control that ER sig-

nalling exerts in interorgan communication affecting

disease pathogenesis and normal physiology [360,361].

Our increasing knowledge of ER signalling mecha-

nisms presents opportunities to exploit the resulting

applications on multiple fronts, including bioengineer-

ing and health, concepts that may routinely overlap.

For example, boosting ER protein production capacity

may be applied to cell engineering to increase biologic

therapy production. This will drive down costs of bio-

logics, helping demand to be met and leading to more

widely available medications, thus having a significant

effect on public health. Population-wide consequences

of ER modulation may not be restricted to the pro-

duction of biologic therapies as its applications could

also contribute to bioengineering approaches for crop

or livestock improvement.

A thorough understanding of the ER stress response

and its role in physiology and pathophysiology can be

applied to develop new ER stress targeted therapies

and stratifying patients into cohorts suitable for ER-

targeted therapies. Considering the enormity of attri-

tion rates of novel therapeutic discovery in an ever-

tightening financial climate, there is an urgent need for

new therapeutic targets as well as precision tools that

target and guide innovation to specific patient pools.

ER stress signalling may provide such tools. Not only

is it central to life itself but it is involved in a wide

array of clinical presentations. Moreover, its effect on

heterogeneous presentations within the same diseases

makes it an attractive target for translational precision

medicine. Of course, when undertaking medical

research or trying to solve a biomolecular functional

mystery one cannot look past the logistical aspect of

the task ahead. The conserved metazoan nature of ER

stress signalling combined with the emergence of high

throughput and in silico strategies supplies researchers

with a wealth of tools to study pathophysiology, from

structure to function in multiple in vivo and in vitro

models, producing robust results to be put forward for

clinical scrutiny while all the while observing both the

safeguards of the declaration of Helsinki and ethics on

animal experimentation. Our deeper understanding of

the ER and its major homeostatic regulator, the UPR

response, is introducing an individualized molecular

Box 1. First-in-human trial

Intravenous infusion of GRP78/BiP is safe in patients

In 2006, Brownlie et al. [362] reported that the prophy-

lactic or therapeutic parenteral delivery of BiP amelio-

rates clinical and histological signs of inflammatory

arthritis in mice. Ten years later, the first human clinical

trial using intravenous BiP demonstrated that GRP78/

BiP is safe in patients with active rheumatoid arthritis

and some patients had clinical and biological improve-

ments [363]. In phase I/IIA RAGULA trial, 42 patients

were screened, and 24 were randomized to receive either

BiP or placebo. The study showed that after a single

intravenous infusion, BiP may induce remission lasting

up to 3 months in rheumatoid arthritis patients.
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approach to health management at a preventative,

diagnostic and therapeutic level and, uncovering the

genetic architecture underlying the ER stress response

could significantly influence future therapeutic strate-

gies in patients.
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