

Catalytic activity in transfer hydrogenation using ruthenium (II) carbonyl complexes containing two 1,8-naphthyridine as N-monodentate ligands

J. Gajardo, J.C. Araya, Andres Ibanez, V. Guerchais, H. Le Bozec, S.A.

Moya, P. Aguirre

▶ To cite this version:

J. Gajardo, J.C. Araya, Andres Ibanez, V. Guerchais, H. Le Bozec, et al.. Catalytic activity in transfer hydrogenation using ruthenium (II) carbonyl complexes containing two 1,8-naphthyridine as N-monodentate ligands. Inorganica Chimica Acta, 2019, 486, pp.129-134. 10.1016/j.ica.2018.10.037 . hal-01939030

HAL Id: hal-01939030 https://univ-rennes.hal.science/hal-01939030

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Catalytic activity in transfer hydrogenation using ruthenium (II) carbonyl complexes containing two 1,8-naphthyridine as N-monodentate ligands.

Juana Gajardo^a, Juan C. Araya^b, Andrés Ibáñez^c, Véronique Guerchais^d, Hubert Le Bozec^d, Sergio A. Moya*^e and Pedro Aguirre^{*f}

^aUniversidad San Sebastián, Facultad de Ciencias, Depto. de Ciencias Biológicas y Químicas, Santiago, Chile.

^bUniversidad Central, Centro de Ciencias Básicas, Facultad de Ciencias de la Salud, Santiago, Chile.

^c Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago, Chile.

^dUMR 6226 CNRS-Université de Rennes 1, Sciences Chimiques de Rennes, Campus de Beaulieu, 35042 Rennes, France.

^eUniversidad de Santiago de Chile, Facultad de Química y Biología, Avda. Libertador Bernardo O'Higgins 3363, casilla 40, correo 33, Santiago, Chile. <u>sergio.moya@usach.cl</u>

^fUniversidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile.<u>paguirre@ciq.uchile.cl</u>

This manuscript is dedicated to Professor Hubert Le Bozec from Rennes University, France, who retired recently. Professor Le Bozec had a long and fruitful collaboration with our group in Chile for 30 years. During that time many Chilean postgraduate students made part of their theses in the University of Rennes, supervised by Prof. Le Bozec. Throughout his collaboration with us, we have not only an excellent co-worker but also a great friend and we are sure that our friendship will last forever.

Abstract

A new series of novel complexes of type cis-[Ru(CO)₂Cl₂(L)₂], L= 2-phenyl-1,8-naphthyridine, 2-(4'-nitrophenyl)-1,8-naphthyridine, 2-(4'bromophenyl)-1,8-naphthyridine, 2-(3'-methoxyphenyl)-1,8-naphthyridine, 2-(3'-methoxyphenyl)-1,8-naph

naphthyridine, 2-(2'-methoxyphenyl)-1,8-naphthyridine and 2-(4'-methoxyphenyl)-1,8-naphthyridine have been successfully synthesized and characterized. We found that the complexes can be directly synthesized from $[RuCl_2(CO)_2]_2$ with high yield. The crystallographic structures of complex *cis*-[RuCl₂(CO)₂(2-(4'cis-[RuCl₂(CO)₂(2-(2'methoxyphenyl)-1,8-naphthyridine- κ N8)₂] and methoxyphenyl)-1,8-naphthyridine-KN8)₂] have been established by X-Ray single crystal diffraction studies, which indicate an octahedral geometry with two 1,8naphthyridine ligands coordinated to the metal in a N-monodentate fashion. The ruthenium(II) complexes have been studied as catalysts in the transfer hydrogenation of acetophenone. We found that complexes show moderate activities and a 100 % selectivity. The best turnover frequency (390 h^{-1}) is found for cis-[RuCl₂(CO)₂(2-(4'-methoxyphenyl)-1,8-naphthyridine- κ N8)₂] when the substrate/catalysis ratio was 1000/1. The catalytic conditions were optimized using different substrate/catalyst and base/catalyst ratios.

Keywords: Ruthenium (II), 1,8-naphthyridine complexes, transfer hydrogenation, acetophenone, homogeneous catalysis.

Introduction

The naphthyridines (NAPs) are a group of diazanaphthalenes that contain a single nitrogen atom in each ring but no nitrogen atom at either of the bridgehead positions [1]. Several structural isomers exist, where the 1,8-NAPs are key components of a number of antibacterial agents [2]. The synthetic procedure are prepared via the Friedländer condensation of 2-aminonicotinaldehyde with the corresponding acyl derivatives[3-6]. In this system, the precursor 2aminonicotinaldehyde must be freshly prepared and used immediately after isolation to avoid self-condensation side reactions. Indeed, a facile synthesis of 2aminonicotinaldehyde was reported by Caluwe and co-workers in 1974 [5], with modifications being introduced later by Dunbar et all., Rivera et al. [7, 8]. In addition, the preparation of various alkylsubstituted (i.e., 2- and/or 3-position) NAP ligands has also been reported [9-14]. During the formation of mononuclear

ruthenium complexes, 1,8-NAP (1) tends to act as either a monodentate or a bidentate ligand. However, chelation is generally disfavored due to the small bite angle of the four-membered chelate ring.

Ruthenium complexes derived from 1,8-NAP have also been applied in homogeneous catalytic reactions as substitutes for 2,2-bipyridine or 1,10-phenanthroline (phen). For example, the catalytic potential of ruthenium complexes containing monodentate 1,8-NAPs, was investigated in the hydroformylation of styrene in dimethylformamide [15].

Ruthenium arene complexes, $[(\eta^6-p-cymene)_2Ru_2(L)Cl_2](PF_6)_2$ L = 7-bis(di-2pyridinyl)-1,8- naphthyridine] was synthesized and characterized by spectroscopic and analytical techniques. The use of these ruthenium complexes as pre-catalysts for oxidative coupling of 1,2-diols/1,2-aminoalcohol with o-phenylenediamines leading to quinoxalines was investigated. [16]. Other ruthenium complexes containing 1,8 NAP derivate have been succefully prepared and used as anticarcer compunds[17]

Other authors found that ruthenium-hydride complexes containing 1,8 NaPs ligands are effective catalysts in the transformation of primary alcohols, including amino alcohols, into the corresponding carboxylic acid in the presence of alkaline water [18]. This work proposed that the 1,8-NAP unit enhances the nucleophilicity of a water molecule through hydrogen bonding, and that the noncoordinated nitrogen atom in the 1,8-NAP unit promotes solvated hydroxide attack through hydrogen bonding with a water molecule of the solvent cage. Alternatively, uncoordinated nitrogen atom may facilitate hydroxide attack by coordination with Na⁺.

Scheme 1. Hydrogen transfer reaction of ketones (HTR).

Transfer hydrogenation of ketones by propan-2-ol is convenient in large-scale synthesis since there is no need to employ a high hydrogen pressure or to use hazardous reducing agents (scheme 1). Transition metal complexes containing a coordinative unsaturated metal center and a Brønsted basic π -donor ligand have been reported in homogeneous transfer hydrogenation. Ligands with different transition metals such as amido [19-22], thiolate [23-28], phosphido [29], imido [30-40], oxo [41-46], and sulfido [47] have been investigated for this reaction. The most active and selective catalysts for the transfer hydrogenation reactions are ruthenium [48], iridium [49] and rhodium [50] complexes containing nitrogen, oxygen and N,O-donor ligands [51- 58]. We have investigated the synthesis of ruthenium complexes containing polypyridine ligands and their application as potential homogeneous catalysts. We found that the compounds are active in the transfer hydrogenation where the active species is a ruthenium hydride complex containing 2,2-bipyridine, phenanthroline and 1,8-naphthyridine ligands.

Herein, we report the synthesis and the catalytic behavior of ruthenium complexes of the type *cis*-[Ru(CO)₂Cl₂(L)₂] with L = 2-phenyl-1,8-naphthyridine; L₁, 2-(4'nitrophenyl)-1,8-naphthyridine; , L₂, 2(4'-bromophenyl)-1,8-naphthyridine; , L₃, 2-(4'-methylphenyl)1,8-naphthyridine; , L₄, 2-(4'-methoxyphenyl)-1,8-naphthyridine; , L₅, 2-(3'-methoxyphenyl)-1,8-naphthyridine;; , L₆ and 2-(2'-methoxyphenyl)-1,8naphthyridine, L₇, in hydrogenation reaction of ketones. The X-Ray structures of complexes show that two naphthyridines ligands coordinate in an *N*-monodentate fashion to the metal. We will describe detailed studies on their catalytic activities for the hydrogen transfer reaction of ketones (HTR).

Experimental part.

Materials and general methods

All the reagents used were chemically pure and analytical grade. Acetophenone was used as supplied from Sigma-Aldrich. $[RuCl_2(CO)_2]_2$ [59] was prepared by refluxing commercial $RuCl_3$ ·3H₂O in a mixture of 37 % hydrochloric acid and 88 % formic acid (1:1) during 24 hours under nitrogen. The ligands were

prepared from 2-aminonicotinaldehyde and substituted acetophenone. The substrates were obtained from Sigma-Aldrich.

The catalytic conversions were determinated by gas chromatography using an Agilent 6890 Series GC System equipped with a flame ionization detector and a (30 m•0.25 mm• 0.25 µm) HP-INNOWAX column.

Crystal structure analysis of complexes. The data were collected at a temperature of $293 \pm 2^{\circ}$ K on an Oxford Diffraction X calibur Saphir 3 diffractometer equipped with graphite monochromated MoK α radiation (= 0.71069 Å). The structure was solved with SIR-97, which reveals the non-hydrogen atoms of the molecules. The structure was solved in the space group $P2_1/c$ by Patterson or direct method and refined by the full-matrix least-squares fitting on F^2 using SHELXTL-97 with initial isotropic parameters.

General procedure Synthesis of ligands

A suspension of 2-aminonicotinaldehyde (500 mg; 4.09 mmol), substituted acetophenone (4.09 mmol), and NaOH (200 mg; 5 mmol) in EtOH (40 mL) was refluxed under argon for 4 hours. The solvent was removed under vacuum. The residue was extracted from a mixture of CH_2Cl_2 /water and the organic layer was dried over magnesium sulfate; the product was purified by column chromatography on silica gel eluting with CH_2Cl_2 :EtOAc (6:1). After the solvent was removed, the desired product was obtained as a white solid. (more information about ligands characterization see supplemental material).

Synthesis of complexes

The ligands L (1.316 mmol) and $[RuCl_2(CO)_2]_2$ (0.658 mmol) were mixed in ethanol/H₂O (9/1) (50 mL) The mixture was refluxed for 24 hours under nitrogen atmosphere. The precipitate was separated by filtration and the solid was washed with, ethanol, acetone, chloroform and ether ethylic.

Cis-[RuCl₂(CO)₂(2-phenyl-1,8-naphthyridine-κ*N8*)₂](Ru-1).

¹H-NMR (200 MHz, CDCl₃) 10.44 (dd, H₇,J = 5.4 Hz, J = 2.0 Hz,1H), 8.98 (dd, H₇, J = 5.3 Hz, 1.9 Hz,1H), 8.83 (dd, H₅, J = 8.0 Hz, J = 2.0 Hz, 1H), 8.75 (m, o-Ph, m-Ph, 2H), 8.65 (d, H₄, J = 8.4 Hz,1H), 8.45 (d, H₄', J = 8.8 Hz,1H), 8.43 (d, H₃', J = 8.8 Hz, 1H), 8.29 (dd, H₅', J = 8.0 Hz, J = 1.9 Hz, 1H), 8.10 (d, H₃, J = 8.4 Hz, 1H), 8.01 (dd, H₆, J = 8.0 Hz, J = 5.4 Hz, 1H), 7.78 (m, m-Ph, 1H), 7.70 (m, p-Ph, 1H), 7.37 (m, m-Ph, 1H), 7.35 (m, o-Ph, 1H), 7.24 (m, o-Ph, 1H), 7.09 (dd, H₆', J = 8.0 Hz, J = 5.3 Hz, 1H), 6.95 (m, o-Ph, 1H). Yield 65%. MP 340 °C (d). IR (KBr, cm⁻¹)

M-CO 2044.7; 1983.2. Anal. Calcd. (%) for: C₃₀H₂₀Cl₂N₄O₂Ru C, 56.26; H, 3.15; N, 8.75. Found (%): C, 55.95; H, 2.95; N, 8.76.

Cis-[RuCl₂(CO)₂(2-(4'-nitrophenyl)-1,8-naphthyridine-κ*N8*)₂] (Ru-2).

¹H-NMR (200 MHz, CDCl₃) 10.93 (dd, H₇, J = 5.3 Hz, J = 1.8 Hz, 1H), 8.98 (m, H₇, Ph´ 3H), 8.91 (dd, H₅, J = 8.1, J = 1.8, 1H), 8.71 (m, 2H, Ph), 8.69 (d, H₄, J = 8.4 Hz, 1H), 8.56 (d, H_{4'}, J = 8.6 Hz, 1H), 8.49 (d, H_{3'}, J = 8.6, 1H), 8.32 (dd, H_{5'}, J = 8.0 Hz, J = 1.6 Hz, 1H), 8.15 (d, H₃, J = 8.4 Hz, 1H), 8.1 (dd, H₆, J = 8.1, J = 5.3, 1H), 7.82 (m. Ph', 2H), 7.57 (m, Ph, 2H), 7.09 (dd, H_{6'}, J = 8.0 Hz, J = 5.2 Hz, 1H). Yield 57%. MP 328 °C (d). IR (KBr, cm⁻¹): M-CO 2051.6; 1987.6. Anal. Calcd. (%) for $C_{30}H_{18}Cl_2N_6O_6Ru$: C, 49.33; H, 2.48; N, 11.50. Found (%): C, 48.96; H, 2.32; N, 11.26.

Cis-[RuCl₂(CO)₂(2-(4'-bromophenyl)-1,8-naphthyridine-к*N8*)₂] (Ru-3).

¹H-NMR (200 MHz, CDCl₃) 10.05 (dd, H₇, J = 5.4 Hz, J = 1.8 Hz, 1H), 9.76(dd, H₇', J = 5.4 Hz , J = 1.8 Hz, 1H), 8.52 (dd, H₅, J = 8.1 Hz, J = 1.8 Hz, 1H), 8.47(d, H₃, J = 8.6 Hz, 1H), 8.36 (dd, H₅', J = 8.1 Hz, 1.8 Hz, 1H), 8.35 (d, H₄, J = 8.9 Hz, 1H), 8.17(d, H₃', J = 8.6 Hz, 1H), 8.09 (d, H₃, J = 8.9 Hz, 1H), 8.05 (m, Ph, Ph', 3H), 7.82 (dd, H₆, J = 8.1 Hz, J = 5.4 Hz), 7.79 (d, Ph', J = 8.7 Hz), 2H), 7.64 (dd. H₆', J = 8.1 Hz, J = 5.4 Hz). Yield 67%. MP 368 °C (d). IR (KBr, cm⁻¹) M-CO 2050.2; 1985.6. Calcd. (%) for $C_{30}H_{18}Br_2N_4O_2Ru$: C, 45.14; H, 2.27; N, 7.02. Found (%): C, 44.96; H, 2.37; N, 6.79.

Cis-[RuCl₂(CO)₂(2-(4'-methylphenyl)-1,8-naphthyridine-κ*N8*)₂] (Ru-4).

¹H-NMR (200 MHz, CDCl₃) 10.47 (dd, H₇, J = 5.5 Hz, J = 1.9 Hz, 1H), 8.85 (dd, H₇, J = 5.4 Hz, J = 1.0 Hz), 8.46 (d, Ph,1H), 8.38 (dd, H₅, J = 7.8 Hz, J = 1.9 Hz, 1H), 8.20 (d, H₄, H₄, J = 8.4 Hz, 2H), 8.05 (d, H₃, J = 8.5 Hz, 1H), 7.78 (m,H₅,H₆, 2H,), 7.70 (d, Ph, J = 7.50 Hz, 1H), 7.69 (d, H₃', J = 8.4 Hz, 1H), 7.50 (m, Ph, 2H), 7.07 (d, Ph', 1H), 6.72 (dd, H₆', J = 7.8 Hz, J = 5.4 Hz, 1H), 6.66 (d, Ph', J = 8.0 Hz, 1H), 6.60 (d, Ph', J = 8.0 Hz), 2.52 (s, Me), 2.25 (s, Me). Yield 69%. MP 341 °C (d). IR (KBr, cm⁻¹) M-CO 2055.0, 1988.9. Anal.Calcd. (%) for $C_{32}H_{24}Cl_2N_4O_2Ru$: C, 57.49; H, 3.62; N, 8.38. Found (%): C, 57.20; H, 4.00; N, 8.28.

Cis-[RuCl₂(CO)₂(2-(4'-metoxyphenyl)-1,8-naphthyridine- $\kappa N8$)₂] (Ru-5).

¹H-NMR (200 MHz, CDCl₃) 10.54 (dd, H₇, J = 5.5 Hz, J = 2.2 Hz,1H), 9.03 (dd, H₇', J = 5.7 Hz, J = 1.8 Hz, 1H), 8.93 (m,H₅, Ph, 2H), 8.71 (d, H₄, J = 8.8 Hz, 1H), 8.68 (d, H₄', J = 8.6 Hz, 1H), 8.59 (d,H₃', J = 8.6 Hz, 1H), 8.42 (dd, H₅', J = 8.1 Hz, J = 1.8 Hz, 1H), 8.21 (d, H₃, J = 8.8 Hz), 8.1 (dd, H₆, J = 8.2 Hz, J = 5.5 Hz, 1H), 7.50 (m, Ph',2H), 7.21 (dd, H₆', J = 8.1 Hz, J = 5.7 Hz, 1H), 6.58 (m, Ph',2H), 4.14 (OMe), 3.91 (OMe). Yield 68%. MP 337 °C (d). IR (KBr, cm⁻¹) M-CO 2050.0, 1988.2. Anal. Calcd. (%) for $C_{32}H_{24}Cl_2N_4O_4Ru$: C, 54.86; H, 3.45; N, 8.00. Found (%): C, 54.09; H, 3.95; N, 7.98.

Cis-[RuCl₂(CO)₂(2-(3'-methoxyphenyl)-1,8-naphthyridine-к*N8*)₂](Ru-6).

¹H-NMR (200 MHz, CDCl₃) 10.47 (dd, H₇, J = 5.4 Hz, J = 1.8 Hz, 1H), 8.80 (dd, H₇', J = 5.3 Hz, J = 1.8 Hz, 1H), 8.41 (dd,H₅, J = 7.9 Hz, J = 1.8 Hz, 1H), 8.23 (m, Ph, 2H), 7.98 (m, H₄', H₄, 2H), 7.79 (m, H₃',H₅', H₃, 3H), 7.58 (m, H₆, Ph, 2H), 7.18 (m, Ph, 1H), 6.91 (m, Ph´,1H), 6.68 (m, H₆, Ph´, Ph, 4H), 4.05 (s, m-OMe), 3.35 (s, m-OMe). Yield 62%. MP 358 °C (d). IR (KBr, cm⁻¹) M-CO 2055.5, 1986. Anal. Calcd. (%) for $C_{32}H_{24}Cl_2N_4O_4Ru$: C, 54.86; H, 3.45; N, 8.00. Found (%): C, 54.06; H, 3.53; N, 8.10.

Cis-[RuCl₂(CO)₂(2-(2'-methoxiphenyl)-1,8-naphthyridine-KN8)₂] (Ru-7).

¹H-NMR (200 MHz, CDCl₃) 10.54 (dd, H₇, J = 5.5 Hz, J = 2.0 Hz, 1H), 9.03 (dd, H₇', J = 5.7 Hz, J = 1,8 Hz,1H), 8.93 (m,H₅, Ph, 3H), 8.68 (d, H₄', J = 8.6 Hz, 1H), 8.71 (d, H4, J = 8.8 Hz, 1H), 8.59 (d, H₃', J = 8.6 Hz, 1H), 8.42 (dd, H₅', J = 8.1 Hz, J = 1.8 Hz, 1H), 8.21 (d, H₃, J = 8.8 Hz, 1H), 8.10 (dd, H₆, J = 8.2 Hz, J = 5.5 Hz, 1H), 7.50 (m, Ph, Ph', 4H), 7.21 (d, H₆', 1H, J = 8.1 Hz, J = 5.7 1Hz, 1H), 6.58 (m, Ph'. 2H), 4.14 (s, o-OMe), 3.91 (s, o-OMe). Yield 50%. MP 287 °C (d). IR (KBr, cm⁻¹) M-CO; 2056.0, 1989.0. Anal. Calcd. (%) for $C_{32}H_{24}Cl_2N_4O_4Ru$: C, 54.86; H, 3.45; N, 8.00. Found (%): C, 54.04; H, 3.91; N, 7.89.

Catalytic procedure.

In a glass reactor fitted with a condenser, NaOH (0.475 mmol) was added to propan-2-ol (5 mL) and stirred for 1 hour at 80 °C under nitrogen. Next, the ruthenium complex (0.0125 mmol), propan-2-ol (4 mL) and a solution (1 mL) of *p*-cymene as internal standard(1.92 mmol) were added to the corresponding substrate (2.56 mmol) dissolved in propan-2-ol completing a total volume of 10 mL. Identities of reaction components were determined by comparison with commercial samples by gas chromatography.

Results and discussion.

A series of ruthenium (II) complexes with different substituted naphthyridine ligands have been prepared and characterized. The ligands **L1-L7** were synthesized from 2-aminonicotinaldehyde and the corresponding substituted acetophenone (Scheme 2).

Scheme 2. Synthesis of 1,8-naphthyridine ligands (1,8 NAPs).

Then, the Ru(II) complexes **Ru-1-Ru-7** were readily prepared by reaction of the carbonyl precursor $[RuCl_2(CO)_2]_2$ and the naphthyridine derivatives L by the procedures reported in the literature [56-60].

Ru-1: R₁=H, R₂=H, R₃=H; Ru-2: R₁=NO₂, R₂=H, R₃=H; Ru-3: R₁=Br, R₂=H, R₃=H

Ru-4: R₁=CH₃, R₂=H, R₃=H ; Ru-5: R₁=OCH₃, R₂=H, R₃=H ; Ru-6: R₁=H, R₂=OCH₃, R₃=H

Ru-7: R₁=H, R₂=H, R₃=OCH₃

Scheme 3. Synthesis of ruthenium complexes containing naphthyridine ligands.

All the complexes $RuCl_2(CO)_2(L)_2$ were isolated in good yield. Two 1,8naphthyridine ligands L coordinate to the metal center in a *N*-monodentate fashion. Whatever the reaction conditions, we do not observe the formation complexes

containing *N*,*N*-bidentate **L** ligands. Examples of *N*,*N*-bidentate coordination of naphthyridines have been reported in the case of the phosphine complex $Ru(L)(PPh_3)_2Cl_2$ [57].

The chemical structure of the complexes, **Ru-5**, and **Ru-7** were confirmed by X-Ray crystallographic studies (Figures 1 and 2). Table 1 presents selected bond lengths and Table 2 selected bond angles. The two complexes have an octahedral geometry, in which the two naphthyridine ligands are *cis* to each other, one is *trans* to a chloride and the second one is *trans* to a carbonyl. The high sterical hindrance of phenyl substituted naphthyridine ligands does not preclude a *cis* configuration.

The bond distances and bond angles are similar to those found in related complexes reported by us [53].

MA

Figure 1. Molecular view of the complex *cis*-[RuCl₂(CO)₂(2-(4'-methoxyphenyl)-1,8-naphthyridine-κN8)₂], **Ru-5** showing the labeling scheme.

10

Figure 2. Molecular view of the complex *cis*-[RuCl₂(CO)₂(2-(2'-methoxyphenyl)-1,8-naphthyridine-κN8)₂], (**Ru-7**) showing the labeling scheme.

Rock

Catalytic results.

Table 3 summarizes the catalytic activity in the transfer hydrogenation of acetophenone shown by the ruthenium (II) complexes **Ru-1** to **Ru-5** in the presence of NaOH. In all cases, only one product, 1-phenyl ethanol, is obtained with 100% selectivity. Entry 6 shows that the best activity (66% and 70% of conversion) after 1 hour of reaction is observed for **Ru-4** and Ru-5 respectively. The lesser is found for **Ru-2** (R_1 =NO₂). In the hydrogen transfer reaction, the first ten minutes of reaction is very important since the reaction of the precatalyst with propan-2-ol allows the formation of the actives species of the reaction, during this time the metal hydride is formed. The proposed mechanism of the hydrogen transfer reaction suggests that the ruthenium hydride is the active species in this reaction (Figure 3).

The results reported here (table 3) show that the formation of the active species (the dihydride complex) (see (Figure 3) could depend on the nature of the ligand L. The presence of the electron-withdrawing group into the ligand (L₃) (NO₂ and Br) could be disfavor the dihydride complex formation showing a lower conversion during the first thirty minutes of reaction. When the ruthenium hydride active species is formed the conversion for all catalysts become similar (Entry 8), where all catalysts converge to a maximum conversion between 80 to 95%. With the aim of optimizing the catalyst activity of **Ru-4** that showed the larger activity, we did comparative studies using two types of base: NaOH and t-BuOK. The role of the base is essential as it activates the coordinated isopropanoxy leading to the formation of the hydride species (Figure 3). The results are summarized in Table 4. During the course of the reaction, the TOF fluctuates, due to the decrease in substrate concentration during the catalytic reaction, affecting the conversion rate.

	Conversion (%) Complexes						
Run	Time(min)	Ru-1	Ru-2	Ru-3	Ru-4	Ru-5	
1	5	32	23	28	36	39	
2	10	35	23	29	38	41	
3	15	35	29	33	40	45	
4	30	42	31	36	56	53	
5	45	53	35	45	63	67	
6	60	57	35	53	66	70	
7	185	78	74	79	84	79	
8	300	87	85	88	91	95	

Table 3. Catalytic activities in the hydrogen transfer reaction of acetophenone with ruthenium complexes containing naphthyridine ligands.

Reaction conditions: acetophenone (2.56 mmol), catalyst (0.0125 mmol), NaOH (0.475 mmol), p-cymene (1.92 mmol), propan-2-ol (10 mL), 80 °C, N₂. Substrate/catalyst ratio = 205/1. *cis*-[RuCl₂CO)₂(2-phenyl-1,8-naphthyridine- κ N8)₂] (**Ru-1**), *cis*-[RuCl₂(CO)₂(2-(4'-nitrophenyl)-1,8-naphthyridine- κ N8)₂] (**Ru-3**), *cis*-[RuCl₂(CO)₂(2-(4'-methylphenyl)-1,8-naphthyridine- κ N8)₂] (**Ru-3**), *cis*-[RuCl₂(CO)₂(2-(4'-methylphenyl)-1,8-naphthyridine- κ N8)₂] (**Ru-4**), *cis*-[RuCl₂(CO)₂(2-(4'-methylphenyl)-1,8-naphthyridine- κ N8)₂] (**Ru-3**), *cis*-[RuCl₂(CO)₂(2-(4'-methylphenyl)-1,8-naphthyridine- κ N8)₂] (**Ru-4**), *cis*-[RuCl₂(CO)₂(2-(4'-methoxyphenyl)-1,8-naphthyridine- κ N8)₂] (**Ru-5**).

Using the inorganic base (NaOH) as a co-catalyst and after 1 hour of reaction, the activity of catalyst **Ru-4** is 66% and the turnover frequency (TOF) is 135 h⁻¹, this activity is similar for catalyst **Ru-5**. This latter value is greater that than obtained by employing of t-BuOK. Our group have been studied the hydrogen transfer using different ruthenium complexes containing polypyridine ligands which showed that the complex containing polypiridine ligands are active catalysts in this reaction [53, 55]. The catalyst loading was also studied with the goal of optimizing the maximum substrate concentration at which the catalyst shows good performance.

Table 4. Effect of the base in the transfer hydrogenation of acetophenone using the complex *cis*-[RuCl₂(CO)₂(2-(4'-methylphenyl)-1,8-naphthyridine- κ N8)₂], (**Ru-4**) as precatalyst.

	Base NaOH		Base t-BuOK	
Time (min)	Conversion	TOF (h ⁻¹)	Conversion	TOF(h ⁻¹)
	(%)		%	
5	36	886	44	1082
10	38	467	44	542
15	40	328	44	361
30	56	230	44	180
45	63	172	50	137
60	66	135	50	103

Reaction conditions: acetophenone (2.56 mmol), catalyst (0.0125 mmol), base (0.475 mmol), p-cymene (1.92 mmol), propan-2-ol (10 mL), 80 $^{\circ}$ C, N₂. Substrate/catalyst ratio = 205/1.

Table 5 shows the conversion and the turnover frequencies obtained using different substrate/catalyst ratio for 1 hour of reaction. If the substrate/catalyst ratio is larger, the TOF value increases. Thus, in the case of a ratio of 1000/1, the TOF value is 390 h⁻¹. We consider that this ratio is optimal, although the conversion, down to 39%, is only 3% lesser than that obtained when the substrate catalyst ratio is 700/1. Although the conversion diminishes as the concentration of catalyst increases, the turnover frequency is higher. By contrast, when the reaction is performed between 3-5 hours, the conversions were close to 95% whatever the substrate/catalyst ratio used. The mechanism of hydrogen transfer reaction has been reported by several authors. Van Leeuwen [61, 62] reported a detailed mechanism for this reaction. In a first stage, the dichloro precursor is converted into the metal dihydride complex (**b**) following the reported mechanism.

Table 5. Effect of the substrate/catalyst ratio in the transfer hydrogenation of acetophenone with the complex cis-[RuCl₂(CO)₂(2-(4'-methylphenyl)-1,8-naphthyridine- κ N8)₂], (**Ru-4**).

Substrate/catalyst	Conversion	TOF(h ⁻¹)
	%	
205/1	66	135
500/1	47	235
700/1	42	294
1000/1	39	390

Reaction conditions: substrate acetophenone, catalyst (0.0125 mmol), NaOH (0.475 mmol), p-cymene (1.92 mmol), propan-2-ol (10 mL), 80 °C, N₂. Reaction time:1 hour.

Then addition of the ketone gives rises to the formation of the [Ru]-OC(CH₃)(H)(Ph) (c) species. The species (c) undergoes reductive elimination to form a tetracoordinate metal complex (d) together with a molecule of the hydrogenated product which leaves the cycle. Then this tetracoordinate intermediate reacts with propanol-2-ol to generate the metal hydride complex (e). Finally, species (e) through a ß-elimination produces acetone regenerating the dihydride hexacoordinate complex (b), thus closing the catalytic cycle.

Correlation between Hammet parameters for the substrate substituent and conversion, is shown in Table 6, when the catalyst Ru-4 was studied in the hydrogen transfer reaction. When a chloride is incorporated in the para-position of the phenyl group, the conversion improves by 20% with respect to the unsubstituted substrate. By contarst, when an electron-donating group, a p-methyl or *p*-methoxy is introduced into the substrate, the activity decreases considerably. Based on the mechanism proposed for this reaction, the presence of an electronwithdrawing on the substrate favors hydride attack (step (\mathbf{c}) \rightarrow (\mathbf{d}), (Figure 3). The hydrogen transfer to the substrate is favored by the presence of the chloride substituent on the phenyl ring, as illustrated by Figure 4 which shows good correlation between Hammet parameters and TOF values. This suggests that the step (c) \rightarrow (d), is the determining step in the transfer hydrogenation reaction of acetophenone by ruthenium(II) complexes incorporating naphthyridine ligands. Additionally, the study of the activity vs. time (Table 3) confirms that the formation of a metal hydride (b) depends on the nature of the naphthyridine ligand.

Table 6. Effect of the substrate in hydrogen transfer reaction of acetophenone using the *cis*-[RuCl₂(2-(4'-methylphenyl)-1,8-naphthyridine- κ N8)₂(CO)₂] complex, **Ru-5**.

Substrate	Conversion	Hammett parameter	
<u> </u>	%		
p-CIC ₆ H ₄ -C(O)-CH ₃	77	0,23	
C ₆ H ₄ C(O)-CH ₃	57	0,0	
<i>p</i> -CH ₃ -C ₆ H ₄ -C(O)-CH ₃	35	-0,17	
ρ -CH ₃ O-C ₆ H ₄ -C(O)-CH ₃	23	-0,27	

Reaction conditions: substrate (2.56 mmol), pre-catalyst (0.0125 mmol), NaOH (4.75 mmol), pcymene (1.92 mmol), propanol-2-ol (10 mL), 80 °C, N₂. Substrate / catalyst ratio = 205/1

Figure 4. Correlation between Hammett parameter and the turnover frequency for different substrates in hydrogen transfer reaction of **Ru-5**.

Conclusions

A series of ruthenium(II) complexes of the general molecular formula Ru $(CO)Cl_2(L)_2$ (where L = substituted naphthyridine ligands) were successfully synthesized and characterized. The characterization of the complexes was accomplished by standard analytical and spectral methods. Single crystal X-ray diffraction analysis confirms the coordination of two naphthyridine ligands to the metal, showing that they are bonded to the metal through a monodentate *N*-coordination mode, generating a distorted octahedral structure.

We have demonstrated that all complexes exhibit a moderate catalytic activity in the transfer hydrogenation of acetophenone in the presence of a base. It is noteworthy that these complexes exhibit 100% selectivity, the corresponding

alcohol being formed and a low load of the base (NaOH) is required in order to achieve the observed activities.

The catalyst (**Ru-5**) shown turnover frequency value between 135-390 h^{-1} , depending the substrate/catalyst ratio. In addition, the catalyst is active for various acetophenone derivatives. The reaction is sensitive to the nature of the substituent on the phenyl ring. The best activity is obtained when the ring was substituted by CI in *para* position, indicating that the rate-determining step is the reductive elimination.

Acknowledgments

This work has been supported by ECOS-CONICYT (Action C14E02) and Fondecyt 1160505. J. C. Araya and J. Gajardo gratefully acknowledge CONICYT-Chile for their doctoral fellowships. S.A.M acknowledges the financial support provided by DICYT-USACH-Chile. This research has been performed as part of the Chilean-French "Joint Laboratory for Inorganic Functional Materials" (LIA MIF).

References

[1] M.A. Ciriano, L.A. Oro, Comprehensive Coordination Chemistry II, vol. 1, Elsevier, Oxford, 2004, pp. 55.

[2] S.P. Stanforth, Comprehensive Heterocyclic Chemistry II, vol. 7, Elsevier, Oxford, 1996, pp. 527.

[3] P. Caluwe, G. Evens, Macromolecules 12 (1979) 803–808.

[4] R.P. Thummel, F.D. Cantu, R.J. Mahadevan, J. Org. Chem. 49 (1984) 2208.

[5] T.G. Majewicz, P. Caluwe, J. Org. Chem. 39 (1974) 720.

[6] E.M. Hawes, D.G. Wibberley, J. Chem. Soc. C (1967) 1564.

[7] a) C.S. Campos-Fernández, L.M. Thomson, J.R. Galán-Mascarós, X. Ouyang, K.R. Dunbar, Inorg. Chem. 41 (2002) 1523. B) N.R. Rivera, Y. Hsiao, J.A. Cowen, C. McWilliams, J. Armstrong, N. Yasuda, D.L. Hughes, Synth. Commun. 31 (2001) 1573.

[8] S. Adhikari, O. Hussain, R.M. Phillips and M.R.Kollipara, J.Organomet.Chem 854 (2018) 27.

[9] M.S. Majumdar, K. Patra, M. Kannan, K.R. Dunbar, J.K. Bera, Inorg. Chem. 47 (2008) 2212.

[10] S.K. Patra, M. Majumdar, J.K. Bera, J. Organomet. Chem. 691 (2006) 4779.

[11] S.K. Patra, N. Sadhukhan, J.K. Bera, Inorg. Chem. 45 (2006) 4007.

[12] S.K. Patra, J.K. Bera, Organometallics 25 (2006) 6054.

[13] P.G. Dormer, K.K. Eng, R.N. Farr, G.R. Humphrey, J.C. McWilliams, P.J. Reider, J. W. Sager, R.P. Volante, J. Org. Chem. 68 (2003) 467.

[14] Y. Hsiao, N.R. Rivera, N. Yasuda, D.L. Hughes, P.J. Reider, Org. Lett. 3 (2001) 1101.

[15] S.A. Moya, J. Gajardo, J.C. Araya, J.J. Cornejo, V. Guerchais, H. Le Bozec, J.C. Bayón, A.J. Pardey, P. Aguirre, Appl. Organomet. Chem. 22 (2008) 471.
[16] Wei-Hung Tang, Yi-Hung Liu, Shie-Ming Peng, Shiuh-Tzung Liu Journal of

Organometallic Chemistry 775 (2015) 94.

[18] E.O. Ozcan, D. Mercan, N. Gurbuz, E. Cetinkaya, B. Cetinkaya, I. Ozdemir, Turk J. Chem. 35 (2011) 699.

S. Adhikari, O.Hussain, R. M. Phillips, M.R. Kollipara . Journal of Organometallic Chemistry 854 (2018) 27.

[19] M.D. Fryzuk, P.A. MacNeil, Organometallics 2 (1983) 682

[20] K. Abdur-Rashid, M. Faatz, A.J. Lough, R.H. Morris, J. Am. Chem. Soc. 123 (2001) 7473.

[21] K. Murata, H. Konishi, M. Ito, T. Ikariya, Organometallics 21 (2002) 253.

[22] P. Maire, T. Büttner, F. Breher, P. Le Floch, H. Grützmacher, Angew. Chem.

Int. Ed. 44 (2005) 6318.

[23] D. Sellmann, R. Prakash, F.W. Heinemann, M. Moll, M. Klimowicz, Angew. Chem. Int. Ed. 43 (2004) 1877.

[24] Y. Ohki, M. Sakamoto, K. Tatsumi, J. Am. Chem. Soc. 130 (2008) 11610.

[25] H.F.T. Klare, M. Oestreich, J.-I. Ito, H. Nishiyama, Y. Ohki, K. Tatsumi, J. Am. Chem. Soc. 133 (2011) 3312.

[26] T. Stahl, K. Müther, Y. Ohki, K. Tatsumi, M. Oestreich, J. Am. Chem. Soc. 135 (2013) 10978.

[27] Y. Misumi, H. Seino, Y. Mizobe, J. Am. Chem. Soc. 131 (2009) 14636.

[28] H. Seino, Y. Misumi, Y. Hojo, Y. Mizobe, Dalton Trans. 39 (2010) 3072.

[29] E.J. Derrah, D.A. Pantazis, R. McDonald, L. Rosenberg, Organometallics 26 (2007) 1473.

[30] P.J. Walsh, F.J. Hollander, R.G. Bergman, J. Am. Chem. Soc. 110 (1988) 8729.

[31] C.C. Cummins, S.M. Baxter, P.T. Wolczanski, J. Am. Chem. Soc. 110 (1988) 8731.

[32] C.C. Cummins, C.P. Schaller, G.D. Van Duyne, P.T. Wolczanski, A.W.E.

Chan, R. Hoffmann, J. Am. Chem. Soc. 113 (1991) 2985.

[33] T.I. Gountchev, T.D. Tilley, J. Am. Chem. Soc. 119 (1997) 12831.

[34] J.L. Polse, R.A. Andersen, R.G. Bergman, J. Am. Chem. Soc. 120 (1998) 13405.

[35] R.E. Blake Jr., D.M. Antonelli, L.M. Henling, W.P. Schaefer, K.I. Hardcastle, J.E. Bercaw, Organometallics 17 (1998) 718.

[36] D.J.M. Trosch, P.E. Collier, A. Bashall, L.H. Gade, M. McPartlin, P. Mountford,S. Radojevic, Organometallics 20 (2001) 3308.

[37] T.E. Hanna, I. Keresztes, E. Lobkovsky, W.H. Bernskoetter, P.J. Chirik, Organometallics 23 (2004) 3448.

[38] N. Hazari, P. Mountford, Acc. Chem. Res. 38 (2005) 839.

[39] H.S. La Pierre, J. Arnold, F.D. Toste, Angew. Chem. Int. Ed. 50 (2011) 3900.

[40] J. Chu, E. Lu, Y. Chen, X. Leng, Organometallics 32 (2013) 1137.

[41] W.A. Howard, M. Waters, G. Parkin, J. Am. Chem. Soc. 115 (1993) 4917.

[42] W.A. Howard, T.M. Trnka, M. Waters, G. Parkin, J. Organomet. Chem. 528

(1997) 95.

[43] J.J. Kennedy-Smith, K.A. Nolin, H.P. Gunterman, F.D. Toste, J. Am. Chem. Soc. 125 (2003) 4056.

[44] A.C. Fernandes, R. Fernandes, C.C. Romao, B. Royo, Chem. Commun. (2005) 213.

[45] T.E. Hanna, E. Lobkovsky, P.J. Chirik, Inorg. Chem. 46 (2007) 2359.

[46] S.C.A. Sousa, I. Cabrita, A.C. Fernandes, Chem. Soc. Rev. 41 (2012) 5641.

[47] Z.K. Sweeney, J.L. Polse, R.A. Andersen, R.G. Bergman, M.G. Kubinec, J.

Am. Chem. Soc. 119 (1997) 4543.

[48] T. Wang, X.Q. Hao, X.X. Zhang, J.F. Gong, M.P. Song, Dalton Trans. 40 (2011) 8964.

[49] E. de Julian, J. Díez, E. Lastra, M.P. Gamasa, J. Mol. Catal. A Chem. 394 (2014) 295.

[50] M. Aydemir, N. Meric, C. Kayan, F. Ok, A. Baysal, Inorganica

Chim. Acta 398 (2013) 1.

[51] G. Chelucci, S. Baldino, W. Baratta, Coord.Chem. Rev. 300 (2015) 29.

[52] S. Karabuga, S. Bars, I. Karakaya, S. Gumus, Tetrahedron Lett. 56 (2015)101.

[53] S.A. Moya, J.C. Araya, J. Gajardo, V. Guerchais, H. Le Bozec, L. Toupet P. Aguirre. Inorg. Chem. Commun, 27 (2013) 108.

[54] P. Aguirre, R. López, D. Villagra, I. Azocar-Guzman, A.J. Pardey, S.A. Moya, Appl. Organomet. Chem. 17 (2003) 36.

[55] S.A. Moya, M. Vidal, K. Brown, C. Negrete-Vergara, G. Abarca, P. Aguirre, Inorg. Chem. Commun. 22 (2012) 146.

[56] J. Gajardo, J.C. Araya, S.A. Moya, A.J. Pardey, V. Guerchais, H. Le Bozec, P. Aguirre, *Appl. Organometal. Chem.* 20 (2006) 272.

[57] P. Aguirre, R. Sariego, S.A. Moya, *J. Coord. Chem.* 54 (2001) 323.

[58] D. Oyama, A. Asuma, T. Hamada, T. Takase, *Inorg. Chem. Acta* 362 (2009) 2581

[59] P.A. Anderson, G. B. Deacon, K. H. Haarmann, F.R. Keene, T.J. Meyer, D.A. Reitsma, B. W Skelton, G.F Strouse, N.C Thomas, J. A Treadway, A.H White, Inorg. Chem. 1995, 34, 6145-6157

[60] B.G. Harvey, A.M. Arif, R.D. Ernst, B, Polyhedron 23 (2004) 2725.

[61] Piet W.N.M Van Leeuwen "Homogeneous Catalysis" Kluwee Academic, 2004. ISBN 1-4020-2000-7.

[62] I. Jun-Ichi Ito, N. Hisao, Tetrahedron Lett. 55 (2004) 3133.

Highlights

1. - Ruthenium complexes containing polypyridine ligands are active catalysts in hydrogen transfer reactions.

2. - The hydrogen transfer reaction is catalyzed by ruthenium 1,8-naphthyridine derivate complexes.

3. - Ruthenium complexes containing 1,8-naphthyridine ligands show high conversions in ketones hydrogenation.

4. - Ruthenium complexes containing polypyridine ligands are alternative catalysts in hydrogenation reactions.

5. - 1,8-Naphthyridine ligands coordinate in a monodentate fashion into the ruthenium monometallic complexes.

6. - The donor properties of the 1,8-naphthyridine ligand stabilize the ruthenium complexes favoring the hydrogenation process.