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19 Being able to explore the metabolism of broad metabolizing cells is of critical importance in many 20 research fields. This article presents an original modelling solution combining metabolic network 21 and omics data to identify modulated metabolic pathways and changes in metabolic functions 22 occurring during differentiation of a human hepatic cell line (HepaRG). Our results confirm the 23 activation of hepato-specific functionalities and newly evidence modulation of other metabolic 24 pathways, which could not be evidenced from transcriptomic data alone. Our method takes 25 advantage of the network structure to detect changes in metabolic pathways that do not have gene 26 annotations, and exploits flux analyses techniques to identify activated metabolic functions.

27 Compared to usual cell-specific metabolic network reconstruction approaches, it limits false 28 predictions by considering several possible network configurations to represent one phenotype, 29 rather than one arbitrarily selected network. Our approach significantly enhances the 30 comprehensive and functional assessment of cell metabolism, opening further perspectives to 31 investigate metabolic shifts occurring within various biological contexts.

The HepaRG cells, kindly given by Dr C. Guguen-Guillouzo, were cultured according to the 108 standard protocol described by Aninat et al. [START_REF] Aninat | Expression of Cytochrome P450 Enzymes and Nuclear 837 Receptors in Human Hepatoma HepaRG Cells[END_REF] . Briefly, HepaRG cells were seeded at a density of 109 2.4x104 cells/cm² in a growth medium composed of William's E medium (Gibco, Illkirch, France) 110 supplemented with 10% fetal bovine serum (HyClone, Thermo Scientific, Illkirch, France), 100 111 U/ml penicillin and 100µg/mL streptomycin, 5 µg/mL insulin, 2mM glutamine (Sigma, Saint-112 Quentin Fallavier, France) and 50 µM hydrocortisone (Serb, Paris, France). Undifferentiated 113 HepaRG cells were collected after 3 days of culture on this medium ("3-day cells"). To obtain 114 differentiated HepaRG cells, cells were cultured in the initial medium for 2 weeks, then switched 115 to a medium supplemented with 2% DMSO (Sigma) and cultured on this supplemented medium 116 for 2 more weeks. Addition of DMSO induces of HepaRG cells to two different cell types:

117 hepatocyte-like cells and biliary like-cells. HepaRG cells corresponding to fully differentiated 118 hepatocytes were called "30-day cells".

119 Microarray analyses 120 Total messenger RNA (mRNA) from four biological replicates was extracted from 3-day and 30-121 day HepaRG cells. mRNA was checked for purity and integrity, using an Agilent Bioanalyser 122 (Agilent Technologies, Palo Alto, CA). Genome-wide expression profiling was performed using 123 the low-input QuickAmp labeling kit and human SurePrint G3 8x60K pangenomic microarrays 124 (Agilent Technologies, Santa Clara, CA, USA). Gene expression data were processed using Feature 125 Extraction and GeneSpring software (Agilent Technologies).

126 Genes were classified in 2 categories according to their expression level. Genes whose expression 127 level was below the defined threshold of 150 were considered as not detected or not expressed 128 (NE), whereas genes whose expression level was above 150 for all replicates were considered as 163 First, gene expression data were mapped to the network reactions by using the Gene-Protein-164 Reaction (GPR) association rules defined in the network reconstruction. We used these GPR 165 associations to determine a set of a priori highly expressed reactions (HEr) or not expressed 166 reactions (NEr) according to the expression level of their associated gene(s). In the case of "AND"

167 GPR associations, we classified the reaction as HEr (or NEr respectively) if all genes were HE (or 168 NE respectively), whereas in the case of "OR" associations, the reaction was considered as HEr if 169 any of the associated gene was HE. In the initial Recon 2 reconstruction, 4821 reactions had defined 170 GPR associations.

171

We then implemented the iMat algorithm 10 , that we adapted, in order to predict which reactions 172 from the generic metabolic network Recon 2 were specifically active in the HepaRG cells (Figure 173 S1). As initially proposed by We performed flux balance analysis to test whether our generated subnetworks were able to 272 achieve some defined metabolic functions. A list of 155 metabolic functions (SI Table S1), 273 including 111 generic functions (i.e., functions assumed to be fulfilled by any tissue or cell 274 independently of its type) and 44 hepato-specific functions, was gathered from previous 275 publications [START_REF] Mardinoglu | Genome-Scale 792 Metabolic Modelling of Hepatocytes Reveals Serine Deficiency in Patients with Non-793 Alcoholic Fatty Liver Disease[END_REF][START_REF] Bordbar | t e d m a n u s c r i t p t[END_REF][START_REF] Gille | HepatoNet1: A Comprehensive Metabolic 888 Reconstruction of the Human Hepatocyte for the Analysis of Liver Physiology[END_REF] . For each of these tasks, we defined a corresponding objective function and 276 maximized it to check whether it could carry a non-zero flux. The sets of metabolites that could be 277 taken up and released was restrained to mimic a minimal standard medium and adjusted depending 278 on the specific metabolic objective tested. For instance, we tested the ability of our models to 279 perform gluconeogenesis (the formation of glucose from various gluconeogenic substrates) by 280 restraining the set of metabolites that could be taken up to only non-carbon sources (O 2 ) except for 281 lactate and glucogenic amino acids (alanine, glutamine …) and maximize the excretion of glucose.

282 This functional testing was performed for each of the generated subnetworks at both d3 and d30.

283 We verified that all the 155 defined metabolic functions could be achieved by the initial Recon 2 284 model. The complete list of tested metabolic functions and corresponding applied constraints for 285 uptake and secretion is provided in supplemental Table 1.

286

Analysis of the variability among generated subnetworks

287

PCA was performed on all generated subnetworks, independently of the stage. Reactions were 288 used as variables and each subnetwork was represented by a vector of binary values corresponding 289 to the predicted activity state of each reaction (0 for predicted inactive reactions and 1 for predicted 290 active reactions).

291

Pathway enrichment analyses for identification of activated and inactivated pathways

A c c e p t e d m a n u s c r i t p t 292 Reactions were considered as inactivated during the differentiation if they were predicted to be 293 active in at least one subnetwork (R or PA) at d3 and inactive at d30, and conversely activated if 294 they were predicted to be inactive at d3 and R or PA at d30. Pathway enrichment analyses were 295 performed over activated and inactivated reactions to assess whether the given reactions were 296 significantly over-represented in a metabolic pathway. Pathway enrichment statistics were 297 performed using one-tailed exact Fisher test, with a Bonferroni correction for multiple tests [START_REF] Cottret | MetExplore: A Web Server to Link Metabolomic Experiments and Genome-Scale 892 Metabolic Networks[END_REF] , 298 using the metabolic pathways defined in Recon 2.04. Blocked reactions, identified using flux 299 variability analysis, were excluded from the background set of Recon 2 reactions. Pathway 300 enrichment analyses were also performed for the sets of highly or not expressed genes.

301

Assessing the benefits of the developed approach: comparison with predictions made from

transcriptomic data only 303

To assess the interest of using the network topology and stoichiometry to predict the metabolic 304 modulations occurring during the differentiation process, we performed pathway enrichment 305 analyses on genes identified as up or downregulated between the two stages. Genes were 306 considered as upregulated if they were classified as NE at d3 and HE at d30 and inversely, 307 downregulated, if they were classified as HE at d3 and NE at d30.

308

Assessing the benefits of the developed approach: comparison with predictions made from 309 single solutions 310 We compared our predictions with predictions that would be obtained when considering only 311 one individual optimal subnetwork instead of a set of optimally adequate subnetworks for each 312 stage. For each stage, we selected two distinct individual solutions "iMat-A" and "iMat-B" among 313 all the equally adequate generated subnetworks. "iMat-A" is the first initial optimal solution, 314 corresponding to the one returned by the iMat algorithm such as implemented in the CobraToolbox.

315 "iMat-B" is one other randomly selected solution among all optimal solutions. We also compared 316 our results with results obtained by using the FASTCORE algorithm [START_REF] Vlassis | Fast Reconstruction of Compact Context-Specific 894 Metabolic Network Models[END_REF] , which provides with one 317 particular solution minimizing the number of active reactions ("FASTCORE solution"). For each 318 stage, we used the set of reactions associated with highly expressed genes as input for the "core 319 reactions set" in the FASTCORE algorithm, which then returns a minimal flux consistent 320 subnetwork containing all the reactions from this core set and a minimal set of additional reactions.

321 To compare individual solutions to the whole set of subnetworks, we considered the union of 322 subnetworks. For liver-specific genes, we considered all the genes that were predicted to be 323 expressed in any of the cell-specific subnetworks. For reactions predicted to be activated in the 324 union of equally adequate subnetworks, we considered all the reactions that were predicted to be 325 active in any of the 30-day cell-specific subnetworks but inactive in all 3-day cell-specific 326 subnetworks. Inversely for reactions predicted to be inactivated in the union of subnetworks, we 327 considered all the reactions that were predicted to be inactive in any of the 30-day subnetworks but 328 active in all 3-day subnetworks.

329

Data availability 330 Gene expression data have been deposited in the Gene Expression Omnibus (GEO) database 331 under the accession number GSE112123. NMR metabolomic data are provided as Supporting 332 Information (Table S2).

333

A c c e p t e d m a n u s c r i t p t

334 RESULTS

335

In this study, we aimed at comparing the differences in metabolic functions expressed in 3-day 336 (non-differentiated) progenitor HepaRG cells ("3-day cells") vs. 30-day fully differentiated 337 hepatocyte-like HepaRG cells ("30-day cells"), using a large-scale modelling approach. To that 338 purpose, we defined consistent metabolic models that distinctively represent the functional 339 metabolism of 3-day cells and 30-day cells. We used the generic genome scale metabolic 340 reconstruction Recon 2 [START_REF] Thiele | A Community-Driven 796 Global Reconstruction of Human Metabolism[END_REF] as a scaffold to integrate transcriptomic and metabolomic data and 341 predicted which of the Recon 2 reactions would be specifically active or inactive at each 342 differentiation stage in HepaRG cells. Prediction of the reaction activities was computed using the 343 iMat algorithm proposed by Shlomi et al. 10 that we adapted to fit the specific objectives of our 344 study. Figure S2 illustrates the pipeline followed in this study.

345

Experimental transcriptomic and metabolomic data provide only partial coverage of the 346 metabolic network 347 For each differentiation stage, we identified expressed (HE) or not expressed (NE) genes from 348 the experimental data set and transferred this information to reactions using the GPR associations.

349 As expected, only a small proportion (9%) of the genes classified as HE or NE from the 350 experimental data set could be mapped into Recon 2, these mapped genes representing 32% of the 351 metabolic genes currently annotated in Recon 2 (Figure S3A&B). According to GPR associations, 352 29-31% of Recon 2 reactions could be linked to gene expression data (Figure S3C). More precisely, 353 16% and 21% of Recon 2 reactions were associated with HE genes at day 3 (d3) and day 30 (d30), 354 respectively, whereas 13% (d3) and 10% (d30) were associated with NE genes. Of note, the relation 355 between reactions and genes is not bijective: one reaction can be linked to several distinct genes, 356 for instance when several isoenzymes are involved, and conversely one gene product can control 357 more than one reaction. For instance, for the carnitine palmitoyltransferase 1A gene (CPT1A,

A c c e p t e d m a n u s c r i t p t 382 details), which means that there was no specific disagreement between transcriptomic and 383 metabolomic data. The number of predicted active reactions was significantly higher in 30-day 384 cell-specific models than in 3-day cell-specific models, ranging from 2842 to 3036 at d30 (median:

385 2931) and from 2445 to 2673 (median: 2567) at d3 (Figure S4). The predictions of reactions activity 386 for all subnetworks are provided in Table S4.

387

Rather than selecting only one arbitrary subnetwork, we chose to take into account all the 388 alternative solutions we found to be equally adequate with the experimental data for each 389 differentiation stage. Reactions that were consistently predicted to be active in all subnetworks for 390 one differentiation stage were considered as "required reactions" (R) whereas reactions whose 391 predicted activity varied across subnetworks were considered as "potentially active" (PA) (Figure 392 S2B). 56% and 60% of Recon 2 reactions were globally predicted to be active, either PA or R (i.e., 393 active in at least one subnetwork), at d3 and at d30 respectively. At d30, 37% of these active 394 reactions were predicted to be required, whereas a slightly lower proportion of R reactions was 395 found at d3 (27%) (Figure 1A). We identified two main causes contributing to the high number of 396 alternative possible subnetworks. The first one is the lack of gene expression information for some 397 reactions. Globally, we observed that reactions with a variable predicted activity state (PA 398 reactions) are associated with gene expression data in a higher proportion (2%) than reactions with 399 consistent predicted activity among stage-specific models (R reactions; 58%). The second one is 400 the existence of several alternative reactions performing the same metabolic transformation. For 401 instance, some biochemical conversions happen to be described by two alternative paths that use a 402 different number of reaction steps or the same reactions are sometimes duplicated with more than 403 one tissue-specific annotation. As a striking example, in the N-glycan synthesis pathway of the 404 Recon 2 network, two alternative paths of 22 reactions enable the synthesis of the glycan precursor 405 before it is bound to a protein in the endoplasmic reticulum (ER) and further processed in the ER 438 to the production and breakdown of proteins, fats, and carbohydrates and to urea metabolism [START_REF] Tong | Structure and Function of Biotin-Dependent Carboxylases[END_REF] , 439 which are indeed essential in fully functional hepatic cells. The essential amino acid tryptophan is 440 mainly metabolized in the liver through the kynurenine pathway, which accounts for about 95% of 441 its degradation in normal physiological conditions [START_REF] Badawy | Tryptophan Metabolism, Disposition and Utilization in Pregnancy[END_REF] . The prediction of the activation of this 442 pathway in mature hepatocytes is consistent with the observation of the increased activity of 443 enzymes involved in this pathway during the development in rat liver [START_REF] Suda | Developmental Changes in the Enzymatic 900 Capacity for Reduction and Oxidation of Alpha-Ketoadipate in Rat Liver, Heart, Kidney, 901 and Brain[END_REF] . Conversely, the activity 444 of the extracellular transport pathway and of the FA synthesis pathway was predicted to be lower 445 in 30-day HepaRG cells (Table 1 Although pathway enrichment analysis offers a first global view of the pathways modulated 452 during the differentiation process, some of these pathways, such as the FA synthesis and oxidation 453 pathways, include a very large number of reactions (126 and 868 reactions, respectively). A deeper 454 examination of the reactions modulated within these pathways was carried out using the 455 MetExplore web server for visualization [START_REF] Cottret | MetExplore: A Web Server to Link Metabolomic Experiments and Genome-Scale 892 Metabolic Networks[END_REF]43 . We observed that FA oxidation reactions predicted 456 to be activated between d3 and d30 were specifically located in the peroxisome, whereas most 457 mitochondrial FA oxidation reactions were predicted to be active at both differentiation stages 458 (Figure 3). Notably, peroxisomal FA oxidation allows the specific degradation of very long-chain 459 FAs (>C 20 ) whereas the shortened FAs are further oxidized in the mitochondria [START_REF] Wanders | Metabolic Interplay between A c c e p t e d m a n u s c r i t p t 907 Endoplasmic Reticulum[END_REF] . Our results 460 therefore imply that increased peroxisomal FA oxidation induced by drugs or FA overload [START_REF] Kersten | Integrated Physiology and Systems Biology of PPARα[END_REF] cannot 461 occur in progenitor cells. Although limited peroxisomal FA oxidation can reduce energy 462 production, it primarily induces the accumulation of toxic very long-chain FA metabolites [START_REF] Fan | Hepatocellular and Hepatic Peroxisomal Alterations in Mice 912 with a Disrupted Peroxisomal Fatty Acyl-Coenzyme A Oxidase Gene[END_REF] .

463 Regarding the FA synthesis pathway, the visualization highlighted that reactions predicted to be 464 inactivated between d3 and d30 were more specifically involved in the elongation of the carbon 465 chain, suggesting that the synthesis of long-chain FAs cannot be achieved anymore in fully 

594

The originality of the approach we propose in this study mainly relies on the fact that we chose 595 not to arbitrarily select one specific model among all equally optimal cell-specific models 596 identified, but rather to consider them conjointly for each differentiation stage. We observed that 597 the existence of a high number of alternative possible subnetworks is partly due to the existence of 598 redundant reactions in the initial generic reconstruction that often reflect artifactitious redundancies 599 rather than a true biological alternative. Manual curation of these redundancies would contribute 600 to decrease the number of computed equally adequate stage-specific models and therefore reduce 601 the uncertainty in the prediction of reaction activity. Despite this well identified issue, we showed 602 that the comparison of sets of several similarly adequate subnetworks for two distinct conditions 603 still enables evidencing stage-dependent differences, as stage-dependent differences contributed 604 more to the discrimination among all subnetworks than the variability between the subnetworks at 605 each stage (Figure 2). Other methods used to generate cell-specific metabolic models have adopted 606 a different strategy, which consists in selecting one specific solution which optimizes an additional 607 criteria, such as minimizing the total sum of fluxes in the network (Euclidean FBA), maximizing 608 the biomass production or cell growth [START_REF] Becker | Context-Specific Metabolic Networks Are Consistent with A c c e p t e d m a n u s c r i t p t 928 Experiments[END_REF] , minimizing the number of active reactions [START_REF] Vlassis | Fast Reconstruction of Compact Context-Specific 894 Metabolic Network Models[END_REF] or being 609 able to achieve a set of predefined metabolic tasks [START_REF] Agren | Identification of 819 Anticancer Drugs for Hepatocellular Carcinoma through Personalized Genome-Scale 820 Metabolic Modeling[END_REF] . This entails to make some additional and a 610 priori assumptions about the "optimal" metabolic state of the cells or some target metabolic 611 functions. This can be relevant in the case of rapidly growing cells, such as cancer cells. However, 612 it is much less relevant for cells that are not in a permanent proliferative status and are able to 613 achieve a wide span of metabolic activities, such as liver cells. We assessed the benefit of our 614 approach by comparing our results with results obtained when considering only one subnetwork 615 for each stage, either arbitrarily selected among all the subnetworks identified by the iMat A c c e p t e d m a n u s c r i t p t 640 involving a minimal number of biochemical reactions as computed by the FASTCORE algorithm 641 is truly a good picture of the actual metabolic capacity of a mammalian cell. We reached the 642 conclusion that, in the case of insufficient experimental data, arbitrarily selecting one possible 643 subnetwork could lead to erroneous conclusions and we argue that our method, which takes into 644 account and compares sets of equally optimal subnetworks, prevents from making potentially false 645 positive, and therefore erroneous, predictions regarding the activation or inactivation of pathways.

646

Getting different results when using different algorithms for identifying cell-specific models is a 647 well acknowledged issue, which has already been reported in several studies [START_REF] Machado | Systematic Evaluation of Methods for Integration of 930 Transcriptomic Data into Constraint-Based Models of Metabolism[END_REF][START_REF] Pacheco | Benchmarking Procedures for High-Throughput Context 933 Specific Reconstruction Algorithms[END_REF] . No method 648 provides more accurate or exact results than others, and the choice of the method should be made 649 depending on the available experimental data, as well as the context and the aim of the study.

650 However, the approach that we propose here has the advantage not to require any other information 651 than transcriptomic data and does not make any biological assumption about the metabolic state or 652 objective of the cell system. For this reason, it can interestingly be applied to poorly characterized 653 cell systems. Such approaches are nowadays absolutely relevant and necessary for a sound and 654 untargeted assessment of metabolic modulations because they allow for an accurate modeling of 655 cellular metabolic networks out of omics data with a minimal number of a priori assumptions and 656 therefore limit the risk of false-predictions. Also, considering all adequately possible subnetworks 657 seem relevant under the hypothesis that the variability observed between the distinct possible 658 subnetworks partly reflects the actual metabolic heterogeneity in a population of cells. Therefore, 659 taking into consideration this variability should provide a better picture of the whole metabolic 660 capability of heterogeneous cellular systems. 

A c c e p t e d m a n u s c r i t p t 152

 152 Implementation and adaptation of the iMat algorithm to generate stage-specific metabolic 153 models of HepaRG cells 154 We used the generic human metabolic network reconstruction Recon 2 ( 5 ; version 2.04, 155 downloaded from http://vmh.uni.lu/#downloadview) as a framework for the prediction of active 156 metabolic reactions in the HepaRG cells. This genome-scale metabolic network reconstruction 157 encompasses 7440 reactions, 2140 genes and 2626 unique metabolites and is supposed to represent 158 the comprehensive metabolic capacity of any human cell or tissue. The network reconstruction is 159 converted into a mathematical model, where the list of metabolic reactions is described as a 160 stoichiometric matrix (S). This matrix defines which metabolites (enumerated as rows) participate 161 in each of the network reactions (enumerated as columns), with numerical entries in the matrix 162 representing the stoichiometric coefficients of the reactions.
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A c c e p t e d m a n u s c r i t p t 406 andFigure 1 .

 4061 Golgi apparatus. The two paths only differ by the fact that the reactions are annotated as liver 407 reactions ("_L") in one and as uterine reactions ("_U") in the other. These 44 reactions have been 408 identified through Principal Component Analysis (PCA) as the reactions that contribute the most 409 to the discrimination between subnetworks within each set of stage-specific subnetworks (Figure410 S5) demonstrating that path redundancy can contribute to the variability among subnetworks. 411 412 Predicted activity of Recon 2 reactions in stage-specific subnetworks.413A c c e p t e d m a n u s c r i t p t 432 reactions were significantly over-represented in known hepato-specific pathways (bile acid 433 synthesis and cytochrome metabolism) but also in the following pathways: biotin metabolism, FA 434 oxidation and tryptophan metabolism. The biotin metabolism pathway acts as a cycle, where the 435 biotin binds to carboxylase enzymes (biotinylation), enabling their activation. Biotin is then 436 released by hydrolysis, to be recycled and re-used for coenzyme activity. Carboxylase enzymes 437 activated by biotinylation are involved in many important cellular functions, related in particular
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 46470349845005 s c r i t p t 466 differentiated hepatocytes. However, transformation of FAs or acyl-CoA, through desaturation or 467 hydrolysis reactions respectively, can be performed at both stages of development (FigureS6). 468 469 Visualization of predicted modulated reactions in the fatty acid oxidation pathway 471 472 Analysis of flux-consistent cell-specific models reveals functional metabolic changes during Simulations of metabolic functions in d3 and d30 models. 499 Predicted activities for reactions in the urea cycle 502 Table 2. Comparison of liver-specific metabolic functionalities between 3-day and 30-day models A c c e p t e d m a n u s c r i t p t A c c e p t e d m a n u s c r i t p t 592 predicted activation of these reactions was masked by the lack of changes of many other reactions 593 in this pathway.

  by implementing a new strategy integrating transcriptomic and metabolomic data 664 within the context of the global human genome-scale metabolic model, we were able to better 665 characterize the metabolic state of HepaRG cells at two stages of differentiation and to identify 666 some metabolic functions that are set up during the differentiation process of this human hepatic 667 model. Our predictions are consistent with the known activation of pathways corresponding to 668 hepato-specific functionalities (bile acid synthesis, cytochrome metabolism) during the 669 differentiation process, but also newly evidenced the modulation of other metabolic pathways, 670 involving the metabolism of biotin, tryptophan and FAs, which could not have been evidenced 671 solely from transcriptomic data. The approach we applied in this study offers several advantages 672 compared to both analyses based on transcriptomic data and common computational approaches 673 used to identify cell-or tissue-specific metabolic models: it especially allows to point out metabolic 674 pathways which do not have gene annotations, to go further the analysis of traditionally defined 675 metabolic pathways by identifying modulated metabolic functions, and to reduce the risk of false 676 predictions by retaining a set of networks instead of a particular (sometime arbitrarily defined) one.677 The result is that it allows a comprehensive and functional assessment of the metabolic capacity of 678 cells with a minimal number of a priori assumptions. It opens interesting potential for the 679 comparison of global metabolic shifts occurring during differentiation process of various cell types, 680 but also in the broader context of long-term metabolic changes, such as induced during the onset 681 of chronic metabolic diseases or chronic exposure to toxics.
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of achievable metabolic functions in generated subnetworks 271

  176 their associated gene(s) and that complies with stoichiometric and thermodynamic constraints. In 177 our modified version of this algorithm, we added some constraints so that the predicted flux 178 distribution is also in agreement with the metabolomics data, meaning that it allows all detected 179 metabolites to be produced. More precisely, for each identified metabolite, at least one reaction 180 that is able to produce it in the model should have a non-zero flux.

	268 predicted to be active in each subnetwork. The precision was calculated as the proportion of
	269 predicted active reactions that had a high confidence level.
	270	Simulation
	181 max 182 ν,y + ,y -,y ∑ 183 subject to 184 S. ν = 0 𝑖 ∈ 𝐻𝐸 𝑟 (𝑦 + 𝑖 + 𝑦 -𝑖 ) + ∑ 185 ν min ≤ ν ≤ ν max 186 ν 𝑖 + 𝑦 + 𝑖 (ν min,𝑖 -𝜀) ≥ ν min,𝑖 𝑖 ∈ 𝑁𝐸 𝑟 𝑦 𝑖 , i  HEr 187 , i  HEr ν 𝑖 + 𝑦 -𝑖 (ν max,𝑖 + 𝜀) ≤ ν max,𝑖 188 , i  NEr ν 𝑖 + 𝑦 𝑖 • ν min,𝑖 ≥ ν min,𝑖 m a n u s c r i t p t (1) (2) (3) (4) (5) m a n u s c r i t p t
	189 190 191 192 193 194 ν is the flux vector and S is the stoichiometric matrix. , i  NEr ν 𝑖 + 𝑦 𝑖 • ν max,𝑖 ≤ ν max,𝑖 , for (j  obs. mets) & (i  RProd j ) (7) (6) ν 𝑖(𝑗) + 𝑥 + 𝑖(𝑗) (ν min,𝑖(𝑗) -𝜀) ≥ ν min,𝑖(𝑗) , for (j  obs. mets) & (i  RProd j )(8) ν 𝑖(𝑗) + 𝑥 -𝑖(𝑗) (ν max,𝑖(𝑗) + 𝜀) ≤ ν max,𝑖(𝑗) , for [j  ExpMets] (9) ∑ 𝑖 𝑥 𝑖(𝑗) ≥ 1 y i + , y i -, y i , x i + , x i - [0;1] 195 Equation (1) ensures that flux values comply with the mass balance constraints. Thermodynamic A c c e p t e d A c c e p t e d
	196 and capacity constraints are imposed by equation (2): restricted direction and values for reaction
	197 flux, according to these constraints, are defined in ν min and ν max vectors (minimal and maximal flux

Shlomi et al., the optimization problem was formulated as a Mixed 174 Integer Linear Programming (MILP) problem, to find a steady-state flux distribution that
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Table 1 .

 1 Predictions of metabolic pathways significantly modulated between d3 and d30
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	ACTIVATED pathways		INACTIVATED pathways	
		% pathway	corrected		% pathway	corrected
	Pathways	reactions	p-value	Pathways	reactions	p-value
	Biotin metabolism	100	1.31e -11	Transport, extracellular	9.6	5.60e -31
	Fatty acid oxidation	15.9	6.80e -07	Fatty Acid Synthesis	45.2	1.30e -15
	Bile acid synthesis	27.9	5.13e -05			
		ACS Paragon Plus Environment		

). Our results therefore suggest a shift in the metabolism of FAs, 446 with a decrease in the FA synthesis and a concomitant increase in FA oxidation in differentiated 447 cells. 448

based mining strengthens metabolic activity comparisons 451

  

This sum represents the "adequacy score" of the flux distribution. The percentage of adequacy is
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Limonene & pinene degradation 3.45e -02 721 Pathway enrichment analysis was performed on set of reactions identified as inactivated (n=200) 722 or activated (n=484) between 3-day and 30-day cell models, after removing blocked reactions. P-723 values were obtained by performing a hypergeometric test followed by a Bonferroni correction. 724 725 Table 2. Comparison of liver-specific metabolic functionalities between 3-day and 30-day models d3 d30

Bile acid formation