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Abstract

Where there are a limited number of patients, such as in a rare disease, clinical trials in these small populations
present several challenges, including statistical issues. This led to an EU FP7 call for proposals in 2013. One of the three
projects funded was the Innovative Methodology for Small Populations Research (InSPiRe) project. This paper
summarizes the main results of the project, which was completed in 2017.
The InSPiRe project has led to development of novel statistical methodology for clinical trials in small populations in
four areas. We have explored new decision-making methods for small population clinical trials using a Bayesian
decision-theoretic framework to compare costs with potential benefits, developed approaches for targeted treatment
trials, enabling simultaneous identification of subgroups and confirmation of treatment effect for these patients,
worked on early phase clinical trial design and on extrapolation from adult to pediatric studies, developing methods
to enable use of pharmacokinetics and pharmacodynamics data, and also developed improved robust meta-analysis
methods for a small number of trials to support the planning, analysis and interpretation of a trial as well as enabling
extrapolation between patient groups. In addition to scientific publications, we have contributed to regulatory
guidance and produced free software in order to facilitate implementation of the novel methods.

Keywords: FP7 small populations methodology projects, Statistical methods, Rare disease clinical trial

Background
A disease is defined as rare by the European Union if
the prevalence is no more than 5 per 10,000 [1], and
by the United States if it affects fewer than 200,000
people in the US [2], equivalent to 62 per 100,000 in 2015
[3]. European regulatory guidance [1] states that “patients
with [rare] conditions deserve the same quality, safety and
efficacy in medicinal products as other patients; orphan
medicinal products should therefore be submitted to the
normal evaluation process”. This is in agreement with
United States guidance [4] that “The Orphan Drug Act
[. . . ] does not create a statutory standard for the approval
of orphan drugs that is different from the standard for
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drugs for common conditions. Approval of all drugs –
for both rare and common conditions – must be based
on demonstration of substantial evidence of effectiveness
in treating or preventing the condition and evidence of
safety for that use”. Rigorous clinical trial evaluation of
treatments is thus as necessary in rare diseases as in
more common ones. The European Medicines Agency
acknowledges that this represents a challenge, however,
indicating that “it may be that in conditions with small and
very small populations, less conventional and/or less com-
monly seenmethodological approachesmay be acceptable
if they help to improve the interpretability of the study
results”. This suggests that there is a need for development
of novel methodology for the design and conduct of clin-
ical trials and analysis of the trial outcomes in research
in small patient populations. It was this need that led
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to a call for proposals under the European Union’s Sev-
enth Framework Programme for Research, Technological
development and Demonstration (EU FP7) in 2013 for
projects that would “develop new or improved statisti-
cal design methodologies for clinical trials aiming at the
efficient assessment of [. . . ] a treatment for small popula-
tion groups in particular for rare diseases or personalized
[. . . ] medicine” [5]. Three projects were funded under this
call; the Innovative Methodology for Small Populations
Research (InSPiRe) project (www.warwick.ac.uk/inspire),
the Integrated Design and Analysis of Small Populations
Group Trials (IDeAl) project (www.ideal.rwth-aachen.de)
and the Advances in Small Trials Design for Reg-
ulatory Innovation and Excellence (Asterix) project
(www.asterix-fp7.eu) [6].
The aim of this paper is to summarize the main

results of the InSPiRe project. This project, completed
in 2017, brought together a team of experts from
eight institutions, including academia, industry and reg-
ulatory authorities, in five European countries, with
additional guidance from an Advisory Board includ-
ing methodological and clinical experts and patient
representatives.
Faced with the challenge of the design, conduct and

analysis of clinical trials in small population groups, we
have focused on a number of areas where we felt that
methodological development was both needed and fea-
sible. In particular, we have developed novel statistical
methodology in the two broad areas of efficient study
design and improved analysis and evidence synthesis.
Efficient study design is particularly important for clini-
cal trials in small populations as it enables the maximum
information to be obtained from the sometimes necessar-
ily limited small sample size, whilst improved analysis and
evidence synthesis ensures that as much relevant informa-
tion as possible is obtained and used in the analysis and
interpretation of the results. This can include use of infor-
mation on endpoints other than the primary endpoint in
the trial as well as information from sources external to
the trial, including data from other trials, observational
studies and disease registries [7]. The latter can include
extrapolation methods, for example, between studies in
adults and children. This is an area that can be controver-
sial, but is one where we believe further methodological
and applied work is clearly justified.
In the InSPiRe project we have developed new methods

in four specific areas (see Table 1), two relating to efficient
design and two to improved analysis and evidence synthe-
sis; the determination of optimal designs for confirmatory
studies using decision-theoretic and value-of-information
(VOI) approaches, the design of confirmatory studies
with stratified populations for personalized medicines,
the incorporation of pharmacokinetics (PK) and pharma-
codynamics (PD) data in early-phase dose-finding studies,

Table 1 Main project topics and outputs

Efficient study design

Optimal designs for
confirmatory studies
using decision-theoretic
and value-of-information
(VOI) approaches

Design of confirmatory studies with
stratified populations for personalized
medicines

Key publications: [12–15] Key publications: [17, 20–23]

Improved analysis and evidence synthesis

Incorporation of
pharmacokinetics (PK) and
pharmacodynamics (PD) data
in early-phase dose-finding studies

Meta-analysis methods for small trials
or small numbers of trials

Key publications: [25, 27–30] Key publications: [33, 34, 36–38, 40, 41]

Open-source R software:
dfpk [26], dfped [29]

Open-source R software:
bayesmeta [35], nmaINLA [42]

and meta-analysis methods for small trials or small num-
bers of trials. The work in these four areas is described
below.

Decision-theoretic and value-of-information
designs for clinical trials in small populations
Most methodology for clinical trial design makes no refer-
ence to the size of the population in which the research is
conducted. Whilst this may be reasonable in a large popu-
lation, in rare diseases or other small populations it could
lead to designs that are inappropriate.
In order to establish the context for future research

work, we completed an analysis of trials in rare dis-
eases recorded in the ClinicalTrials.gov database as well
as exploring novel methods. This showed that the sample
sizes in phase 2 trials in rare diseases were similar for dif-
ferent prevalence but that phase 3 trials in rare diseases
with lowest prevalence were statistically significant lower
than those in less rare diseases and were more similar to
those in phase 2 as shown in Fig. 1 [8].
We have considered determination of appropriate

decision-making methods for small population clinical
trials. In particular we have explored the use of a Bayesian
decision-theoretic framework [9] to compare the costs of
clinical trial evaluation with the potential benefits to cur-
rent and future patients, assessing how the cost-benefit
balance differs between large and small patient popula-
tions when in the latter patients recruited to a clinical trial
could be a substantially proportion of the population. As
recruitment to one clinical trial may also affect the num-
ber of patients that can be recruited to other trials when
the population under investigation is small [10], we have
also considered the design of a series of trials in a small
population group.
We completed a systematic literature review on the use

of decision-theoretic approaches in clinical trial designs,
with a view to providing an overview of the current trends.

www.warwick.ac.uk/inspire
www.ideal.rwth-aachen.de
www.asterix-fp7.eu
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Fig. 1 Jittered boxplot of phase 2 and phase 3 trials with either actual (brown triangle) or anticipated (blue dot) sample size by prevalence class.
Each symbol represents one observation and the mean sample size is indicated by the red diamond. Number of trials contributing to the plot is
given at the top row, median sample size in the second row, first quartile in the third row and the third quartile in the last row of the bottom of each
boxplot. Figure reproduced from [8] under CC BY 4.0 License [49]

This systematic review identified 67 articles proposing
decision-theoretic design methods relevant to small clin-
ical trials. The review discusses these in detail, classifying
them according to the type of study design and gain
function proposed [11].
Building on this existing work, we have developed

methodology for the use of a VOI method for a
confirmatory phase III trial, particularly in the small
population setting [12]. This has two important con-
sequences in terms of optimal design; it challenges
the usual method of sample size determination based
on frequentist error rates and shows that in a small
population setting a smaller trial than usual may be
optimal.
In detail, we determined the optimal sample size and

significance level for a frequentist hypothesis test at the
end of a trial, and investigated how these change with
the population size. We showed how decision-theoretic
VOI analysis suggests a more flexible approach with both
type I error rate and power (or equivalently trial sample
size) depending on the size of the future population for
whom the treatment under investigation is intended. Tak-
ing a more general viewpoint, we have shown that for a
wide range of distributions, including those for continu-
ous, binary or count responses, and gain function forms,
the optimal trial sample size is proportional to the square
root of the population size, with the constant of propor-
tionality depending on the gain function form and prior

distribution of the parameters of the distribution of the
data [13].
We have compared this method with alternative sam-

ple size approaches in three case studies; Lyell’s disease,
adult-onset Still’s disease and cystic fibrosis [14]. In each
case we outline in detail the reasonable choice of param-
eters for the different approaches and calculate sample
sizes accordingly. This work illustrates the influence of the
input parameters in the different approaches and we rec-
ommend investigating different sample size approaches
before deciding finally on the sample size.
We have also developed decision-theoretic methods for

the simultaneous design of a series of trials in a small fixed
population. Use of the methodology has been illustrated
through retrospective application in an example in small
orthopaedic surgery trials [15].
Further work to extend the models developed is ongo-

ing. In particular, we are exploring the optimal design
of multistage trials, settings in which the disease preva-
lence is considered unknown, with information obtained
from the rate of recruitment to the trial itself, and designs
that are optimal for more different stakeholders such as
regulatory authorities and industrial sponsors.

Research in confirmatory trials for small
populations and personalizedmedicines
The development of targeted therapies that act on certain
molecular mechanisms of diseases requires specific trial
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design and analytical methods. Their objective is the pre-
diction of patients’ outcomes based on genetic features
or other biomarkers, to identify and confirm subgroups
of patients for which the therapy’s benefit risk balance is
positive.
We performed a literature search to summarize the cur-

rently available methodology for the identification and
confirmation of targeted subgroups in clinical trials [16].
In total 86 scientific articles proposing relevant meth-
ods were identified that were classified as confirmatory,
exploratory or applicable in a confirmatory as well as
exploratory settings. The review identified a wide range
of trial designs, including fixed sample, group sequential,
and several types of adaptive designs.
In our work we have considered designs where sub-

groups are defined based on a continuous biomarker and
several thresholds are considered to define the subgroup.
We derived confirmatory testing procedures that con-

trol false positive rates if several thresholds are under con-
sideration [17] and show that the type I error rate of earlier
proposed testing procedures based on group sequential
rejection boundaries may be inflated if the biomarker has
a prognostic effect (e.g., if it is correlated with the prog-
nosis of patients in the absence of a treatment effect).
Consequently, we propose improved hypotheses testing
approaches based on regression models and combination
tests that robustly control the familywise error rate. We
also investigated adaptive enrichment designs. In these
two-stage designs, in the first stage patients are recruited
from the full population. Following an interim analy-
sis, based on the interim data, the design of the second
stage may be modified. For example, recruitment may be
limited to patients in a subgroup of biomarker positive
patients and/or the sample sizes in the subgroups may be
adapted [18].
We provided a comprehensive description of the sta-

tistical methodologies for confirmative adaptive designs
with multiple objectives and their application in adap-
tive two-stage enrichment designs [19, 20]. For the special
case of adaptive designs with a survival endpoint, hypoth-
esis tests were developed that allow for early rejection
of the null hypothesis at an interim analysis. This work
generalizes earlier adaptive procedures that control the
familywise type I error rate in the strong sense but have
limitations in that they either cannot use information
from surrogate endpoints for adaptive decision making or
do not allow early rejections at an interim analysis.
To guide the design of clinical trials for the develop-

ment of targeted therapies, working together with the
IDeAl project, we developed a decision-theoretic frame-
work to optimize single stage and adaptive two-stage
designs [21–23]. To address the incentives of different
stakeholders, we proposed utility functions representing
the benefit of a particular clinical trial from a sponsor’s

and society’s perspective. Here we assume that the util-
ity of the sponsor is the net present value of a trial, while
for society it is the expected health benefit adjusted for
the trial cost. In the planning phase, expected utilities for
different trial designs and different utility functions are
computed based on Bayesian prior distributions for the
effect sizes in the subgroup and the full population. Then
optimal trial designs are identified that maximize these
expected utilities by optimizing the sample size, the mul-
tiple testing procedure and the type of the design. The
considered types of trials include classical designs, where
no biomarker information is used and only the full popu-
lation is tested, enrichment designs, where only biomarker
positive patients are included, stratified designs, where
patients from the full population are included and the
treatment effect is tested in the subgroup and the full pop-
ulation, and partial enrichment designs, where the preva-
lence of the subgroup in the trial is a design parameter that
can be chosen to maximize the expected utility.
We found that the optimal trial designs depend on the

prevalence of the subgroup, the strength of the prior evi-
dence that the treatment effect varies across subgroups,
and on the cost of biomarker development and determi-
nation. Furthermore, we observe that optimal designs for
the sponsor and the societal view differ. Trials optimized
under the sponsor view tend to have smaller sample sizes
and are conducted in the full population even in settings
where there is substantial prior evidence that the treat-
ment is effective in the subpopulation only. This is due to
the fact that the variability of treatment effect estimates
means a treatment might appear effective in a subpopu-
lation (and bring a gain for the sponsor) even if it is not
effective and has no benefit for patients.
We also extended the work to consider adaptive two-

stage enrichment designs. We showed that adaptive
enrichment designs can lead to a higher expected util-
ity than single stage designs, especially in settings where
there is high uncertainty if the treatment is effective only
in a subgroup. Figure 2 illustrates the results of optimiz-
ing interim adaptation rules to maximize the expected
utilities by extensive simulations and a dynamic program-
ming algorithm. As for single stage designs, we observe
differences in the optimized designs if trials are optimized
under the sponsor or the societal perspective. An impor-
tant advantage of adaptive designs compared to single
stage designs is their increased robustness with regard to
a misspecification of the planning assumptions.

Extrapolation and use of available information in
early-phase studies
Early phase dose-finding studies aim to obtain reliable
information on an appropriate dose for use in further clin-
ical trials. The designs used have generally relied primarily
on observed toxicity data [24]. We have proposed novel
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Fig. 2 Optimal adaption rules of adaptive enrichment designs, optimized for a sponsor (left graph) and a societal perspective (right graph).
Depending on the observed standardized treatment effects in the biomarker positive (plotted on the x-axes) and negative (plotted on the y-axes)
population, the graph indicates the optimal second stage design option: futility stop (white area), enrichment design, recruiting biomarker positive
patients only (red area), or partially enriched design (grey area). In addition, the second stage sample sizes are optimized (not shown in the graph).
The optimisation is based on an a priori distribution on the effect sizes corresponding to the assumption that the treatment effect is either
independent of the biomarker or that it is larger (or only present) in biomarker positive patients. See Ondra et al. [23] for details. Figure reproduced
from [23] under CC BY-NC License [50]

methods for (i) incorporating of the PK/PD information in
the dose-allocation process, (ii) planning and conducting
clinical trial for reducing neonatal seizures for which no
other method was available, (iii) proposing extrapolation
methods for bridging studies from adults to children and
(iv) incorporating subjective information, such as physi-
cians’ elicitation weighted by their degree of expertise,
into the study design.
We proposed and compared methods to incorporate

PK measures in the dose allocation process during phase
I clinical trials. PK observations were incorporated in a
number of different ways; as a covariate, as a dependent
variable or in a hierarchical modelling approach. We con-
ducted a large simulation study which showed that adding
PK measurements as a covariate alone does not improve
the efficiency of dose-finding trials either in terms of
reducing the number of observed toxicities or improv-
ing the probability of correct dose selection. However,
incorporating PK measures through a hierarchical model
leads to better estimation of the dose-toxicity curve whilst
maintaining the performance in terms of dose selection
compared to dose-finding designs that do not incorpo-
rate PK information [25]. We developed an R package,
dfpk, to provide a tool for physicians and statisticians
involved in such clinical trials implementing the new
method [26].
We developed and applied a novel dose-finding

approach in the LEVNEONAT (NCT 02229123) trial that
aims to find the optimal dose of Levetiracetam for reduc-
ing neonatal seizures with a maximum sample size of 50.
In the trial, 3 primary outcomes were considered: efficacy
and two types of toxicity that occur at the same time but
can be measured earlier or later in time. The primary

outcomes were modelled using a Bayesian approach with
a logistic model for efficacy and a weighted likelihood
with pseudo-outcomes for the two toxicities taking into
account the correlation between the outcomes. This trial
has received ethical committee approval and recruitment
started in October 2017.
We have also focused on the development of possible

extrapolation methods using information from studies in
adults in the design of clinical trials in pediatrics. A unified
approach for extrapolation and bridging adult information
in early phase dose-finding studies was proposed. Using
this approach we have investigated the choice of the dose
range and calibration of prior density parameters of the
dose-finding models for clinical trials involving children.
The method uses adult observations, such as PK data,
toxicity and efficacy. A large simulation study has shown
that our method is robust and gives good performance in
terms of dose selection [27, 28]. An R package, dfped,
was developed to enable implementation of the new
method [29].
In addition to developing methods to incorporate addi-

tional objective information in early phase trial design,
we have also explored the possibility of incorporating
subjective information such as expert opinion in a trial
analysis. In particular, we have developed a method
that reflects, when eliciting experts’ opinions, how these
depend on differences in experience, training and medical
practice. The novel method proposed has been illustrated
through a clinical trial comparing two treatments for idio-
pathic nephrotic syndrome, a rare disease in children
(NCT 01092962). For each expert, a marginal prior was
fitted from their elicitation of the distribution of treat-
ment success. An overall prior was then constructed as a
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mixture of the individual physicians’ priors using charac-
teristics of the experts to weight their contribution in the
mixture. A simulation study was used to evaluate several
versions of the methodology [30].

Meta-analysis and evidence synthesis methods in
small population clinical trials
In order to survey the methodological challenges faced
and the current practices applied in rare diseases, we per-
formed systematic reviews of the literature in two exem-
plary rare indications, namely pediatric multiple sclerosis
and Creutzfeldt-Jakob disease, focusing on design aspects,
patient characteristics and statistical methodology. Our
review yielded a total of 19 publications. While the quality
of evidence appeared to be variable between the different
fields, with mostly observational evidence in one and
several randomized studies in the other, the design and
analysis in most cases were based on standard techniques,
suggesting that the use of more sophisticated statisti-
cal methods may contribute to some progress in these
fields [31].
Meta-analysis methods are most commonly based on a

normal model including variance components to account
for estimation uncertainty as well as for potential het-
erogeneity between estimates [32]. We investigated this
normal-normal hierarchical model (NNHM) with a focus
on its performance and its limitations in the special case

of only a few available estimates, and considering both
classical and Bayesian approaches.
It is known that classical frequentist approaches to

meta-analysis within the framework of the NNHM tend
to run into problems when only few studies are available.
We investigated the use of adjustments that had been
proposed to ameliorate the poor behavior and found
that a previously suggested modification of the common
Hartung-Knapp-Sidik-Jonkmanmethod performed better
than other approaches especially in the common case of
imbalanced study sizes [33].
A Bayesian approach offers another way to perform

random-effect meta-analyses within the NNHM frame-
work. One of the advantages is that the solution remains
coherent also for small numbers of studies; on the other
hand, careful prior specification is required, and the
approach is usually computationally more demanding.We
developed a general semi-analytical approach to solve
the meta-analysis problem (and, in fact, a more general
class of problems involving mixture distributions) via the
DIRECT approach [34]. We have implemented this in
the bayesmeta R package, to provide an efficient and
user-friendly interface to Bayesian random-effects meta-
analysis [35, 36]. The developed software allowed us to
perform large-scale simulations to compare the different
approaches in the special case of few studies; for an
example of such a scenario, see Fig. 3. Here we could

Fig. 3Meta-analyses of few studies are particularly challenging. Here, effect estimates from two studies in pediatric transplantation [51] are shown
along with 5 different combined estimates based on several common approaches: two Bayesian analyses with different prior specifications, a
normal approximation that is usually appropriate for large sample sizes, and two small-sample adjustments based on a Student-t distribution. We
systematically investigated the long-run properties of popular meta-analysis procedures with a focus on few small studies [37, 38]. Figure
reproduced from [38] under CC BY-NC-ND License [52]
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show that Bayesian methods perform well with respect to
confidence/credible interval coverage and length [37, 38].
The Bayesian model also allows implementation of a

number of more advanced analysis strategies. We con-
ducted further simulations to study different (arm-based
and contrast-based) model variations in the special sce-
nario of a single trial with available external evidence
(Unkel, S., et al.: A Bayesian hierarchical framework for
evidence synthesis for a single randomized controlled trial
and observational data in small populations. In prepa-
ration.) motivated by an ongoing trial in Alport disease
[39]. A series of studies may also be used to inform the
analysis when the focus is not on an overall synthesis,
but rather on a particular study that is to be viewed in
the light of previously accumulated evidence. In this sce-
nario, we investigated the use of shrinkage estimates to
support data from a single trial in the light of external
information [40].
Although a Bayesian approach holds promise for net-

work meta-analysis, its considerable complexity hampers
its general and easy application. We investigated the use
of integrated nested Laplace approximations (INLA) to
simplify and speed up computations, including continu-
ous (normal) as well as count data (binomial) endpoints
[41]. The implementation is available in the nmaINLA
R package [42].

Conclusions
Along with the Asterix and IDeAl projects, the InSPiRe
project has provided substantial insights and further
information to assist in clinical trial design for small
patient populations, and to better inform regulators and
decision-makers. Starting with a jointly-organised work-
shop, the three projects worked closely together both to
pool expertise and to avoid overlapping research work.
This paper has summarized the methodological work
conducted as part of the InSPiRe project and refer-
enced the main scientific publications where more details
can be found. A summary of the project outputs in
each of the methodological areas covered is given in
Table 1. More details are available in the full project
report [43].
In spite of the achievements of the InSPiRe, Asterix

and IDeAl projects, the methodological work that can
be completed in such relatively short-term projects is
inevitably limited, with the move to widespread imple-
mentation of new methods in clinical trial practice
extending well beyond the period of the projects them-
selves. This remains an area of ongoing work. The high
level of regulation in clinical trials for evaluation of
novel healthcare interventions, particularly novel medic-
inal products, means that application of our research
results following the publication of innovative methodol-
ogy often can occur only following dissemination to and

engagement with regulatory authorities. A major regula-
tory development of relevance to clinical trials in small
populations during the time of the InSPiRe project has
been the production of the draft EMA PDCO Reflec-
tion paper on extrapolation of efficacy and safety in
pediatric medicine development [44]. Following the pub-
lication of the EMA Concept paper, a workshop of an
EMA Extrapolation expert group was held in September
2015, leading to the production of the draft Reflection
paper in March 2016 [45] and a public workshop held
by EMA in May 2016. InSPiRe team members have been
fully involved in these meetings and in development of
these drafts along with colleagues from the Asterix and
IDeAl projects. The level of interest in and commitment
to the InSPiRe, Asterix and IDeAl projects by the EMA
is also demonstrated by their hosting of a joint meet-
ing of the three projects in March 2017. Along with the
coordinators of the Asterix and IDeAl projects, members
of the InSPiRe team also joined the Steering Commit-
tee of the Small-populations Clinical Trial Task Force
of the International Rare Diseases Research Consortium
(IRDiRC). The task force produced a report of their rec-
ommendations at a workshop held at EMA in March
2016 [46]. Together with colleagues from the Asterix and
IDeaAl projects, members of the InSPiRe team have also
contributed to ongoing regulatory discussions on data
sharing [47].
Besides issues of regulatory harmonization, another

hurdle to the widespread implementation of novel statisti-
cal methods is the availability of software. To address this
issue, we have produced open access statistical software
to run on the freely available software environment R [48]
to implement the new approaches that we have developed
in meta-analysis and network meta-analysis (packages
bayesmeta and nmaINLA) and in dose-finding (package
dfpk and dfped). These software packages are avail-
able for download from the Comprehensive R Archive
Network (https://cran.r-project.org).
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