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Introduction

Synthetic or natural surfactants that can self-assemble as bilayers are the elementary molecules of vesicles or liposomes. The most common surfactants forming liposomes are phospholipids, the surface-active compound present in cell membranes; liposomes can then mimic biological membranes. The structure of vesicles depends on the dispersion process [START_REF]New RCC: Liposomes: A Practical Approach[END_REF]. The most common structures are multilamellar large vesicles (MLV), small unilamellar vesicles (SUV) of submicron diameter made of a single closed bilayer membrane, and giant unilamellar vesicles (GUV) of a few tens of microns in diameter.

Water-soluble agents can be encapsulated in the inner cavity of the vesicle; water-insoluble agents can be incorporated into the bilayer membrane. Membrane permeability can be greatly reduced by the addition of cholesterol to the bilayer membrane of phospholipids [START_REF] Demel | Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with natural and synthetic lecithins[END_REF]. In addition, phospholipids, as the main component of biomimetic vesicles, have distinct advantages over synthetic materials including lack of toxicity, biodegradability and biocompatibility.

A c c e p t e d m a n u s c r i p t

Consequently, biomimetic vesicles are utilized as versatile carriers in medical, therapeutic, and analytical applications.

Biomimetic vesicles have attracted great attention for applications in the biosensor field over a number of decades as a means to amplify the signal [START_REF] Edwards | Liposomes in analyses[END_REF][START_REF] Liu | Liposomes in biosensors[END_REF]. Biomimetic vesicles can encapsulate various signal probes including dyes, enzymes, salts, chelates, electrochemical and chemiluminescent probes. Consequently, biomimetic vesicles are an excellent candidate component for biosensors to transduce and amplify signals.

Biomimetic vesicles can also serve as cell membrane models because, like liposomes, they have similar components and structure to cell membranes. They can therefore provide a simple platform to simplify the investigated system in the research into related interactions and physiological phenomena with cells [START_REF] Jelinek | Biomimetic approaches for studying membrane processes[END_REF].

The technology for the surface modification of vesicles ensures that a variety of biorecognition elements can be conjugated to the surface of liposomes, including peptide, protein, enzyme, antigen, biotin, avidin and DNA segments. For lysis strategy, surfactant (or detergent) and natural lytic agents, such as pore-forming toxins [START_REF] Lebegue | Responsive polydiacetylene vesicles for biosensing microorganisms[END_REF], have been reported. This review paper focuses on biomimetic vesicles for electrochemical biosensing.

Electrochemistry is a sensitive, fast and convenient analytical technique widely used in the sensor field. There are several advantages to electrochemical detection. First, the electrochemical signal is a stable and sensitive signal that can be rapidly and easily detected.

Secondly, the electrochemical devices are readily miniaturized for the development of portable sensors, without the need for larger detectors. Therefore, electrochemical biosensors based on electrochemical probes encapsulated in biomimetic vesicles as a signal amplifier, have attracted great attention in biochemical analysis.

Biomimetic vesicles in electrochemical bioassays

The general schematic for how a liposome might be deployed in a simple biosensor is illustrated in Fig. 1. A number of different types of vesicle-based assays have been reported using biomimetic vesicles as a signal amplifier, including vesicle immunosorbent assay (VISA) (Fig. 1A) and vesicle DNA hybridization assay (V-DNA-HA) (Fig. 1B), electrochemical redox probes encapsulated in biomimetic vesicles as signal amplifiers being successfully utilized in these assays. technique. Ascorbic acid, uric acid, ferrocene carboxylic acid, potassium ferrocyanide and ferrocene were used as the electrochemical probes for the detection of carcinoembryonic antigen at 5 x 10 -7 g/mL [START_REF] Viswanathan | Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode[END_REF], cholera toxin at 1x10 -16 g [START_REF] Viswanathan | Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes[END_REF] and insulin at 10 pg/mL [START_REF] Viswanathan | Dual electrochemical determination of glucose and insulin using enzyme and ferrocene microcapsules[END_REF], respectively.

Nucleic acid sequences and Escherichia coli O157 based on V-DNA-HA [START_REF] Chumbimuni-Torres | Amplified potentiometric transduction of DNA hybridization using ion-loaded liposomes[END_REF][START_REF] Liao | Attomole DNA Electrochemical Sensor for the Detection of Escherichia coli O157[END_REF] for electrochemical signal amplification, using its substrate ascorbic acid 2-phosphate (AA-p).

A detection limit as low as 0.007 ng/mL for PSA was detected using this approach. ALP loaded vesicles have also been used for HIV-p24 antigen detection. The produced ascorbic acid donated an electron to the graphene/g-C3N4 nanohybrid based photoelectrode, provoking an increased photocurrent signal. A detection limit of 0.63 pg/mL was obtained with the proposed PEC method [17].

Biomimetic vesicles in electrochemical microfluidic chip devices

In was captured through anti-CTB (cholera toxin subunit B) antibody conjugated magnetic beads, a GM1-containing vesicle being then linked to CTB; the magnetic immobilization of the magnetic bead, the washing step, the vesicle lysing and the ferri/ferrocyanide detection were performed in the microfluidic chip device. A detection limit of 31.7 ng/mL was obtained [21  ].

Mimicking cell membranes for biosensing

Synthetic vesicles or liposomes based on phospholipids mixed with polyacetylene have been extensively used for mimicking cell membranes [START_REF] Jelinek | Biomimetic approaches for studying membrane processes[END_REF]. For this purpose, the molecular system produced should retain, as much as possible, the physico-chemical properties of the actual cell membrane (such as lipid and protein organization and fluidity). The elaboration of biosensors for hemolytic bacteria is based on the detection of their emitted toxin that has the specific property of forming pores in the cell membrane. The redox-encapsulated vesicle is lysed under the influence of the species presenting pore-forming functions such as bacterial toxins (Figure 2). 

Biomimetic vesicles for biosensing towards potential commercialization

In this final section, progress towards the commercialization of a vesicle-based diagnostic chip and related techniques are discussed.

A new technology based on a commercial personal glucosemeter has been developed to quantitatively detect a broad range of disease biomarkers and was proven to be portable, economical and conveniently accessible. Measurements were performed based on releasing encapsulated glucose from antibody-tagged vesicles and subsequently detecting the released glucose using a commercial glucosemeter. The innovative aspect of this approach lies in the quantification of target biomarkers through the detection of glucose, thus expanding the original concept, biomarker phospho-p53 has been detected, with a detection limit of 50 pg/mL

[30] and aflatoxin B1, a contaminant of foodstuffs, has been detected with a detection limit of 0.6 pg/mL [31]. Thrombin was also detected using a commercial glucosemeter: 29-mer aptamer against thrombin functionalized glucoamylase encapsulated vesicles were used, allowing a secondary enzymatic amplification, in the presence of the enzymatic substrate amylose [32]. Redox-inactive molecules-encapsulated vesicles could also be used in electrochemical bioassays. It has been reported that electrochemical nanoimpact titration could allow the determination of the attomole content of redox-inactive molecules such as glutathione within individual vesicles, by using copper (II) as a catalyst [37].

A continuous process to produce hybrid liposome/protein microvesicles has been reported using microfluidics and electrospray [38  ], opening the way to an industrial process for producing biomimetic vesicles.
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Figure 1A :

 1A Figure 1A : Vesicle immunosorbent assay (VISA). Vesicles are presented as hemivesicles to show the inside.

Figure 1B :

 1B Figure 1B : Vesicle DNA hybridization assay (V-DNA-HA). Vesicles are presented as hemivesicles to show the inside.

  the 90s, a series of vesicle-based immunoassays with a strip format, working on a lateral flow principle, were developed; the first one was proposed by Durst [18] for the detection of the herbicide alachlor. Recently, microfluidic chips produced by means of microtechnology facilities, were preferred. The advantages of the vesicle-based microfluidic chip are the shortening of detection time to only 20 min, and a significantly lower limit of detection, down to pmol/mL. For example, a low concentration of Dengue fever virus was detected using the vesicle-based microfluidic chip through a sandwich DNA hybridization assay [19,20]. Cholera toxin was detected in fecal samples by Baeummer et al using a microfluidic biosensor; the toxinA c c e p t e d m a n u s c r i p t

Figure 2 :

 2 Figure 2 : Amperometric biosensing of pore-forming bacterial toxin based on biomimetic vesicle encapsulation of redox probes. Vesicles are presented as hemivesicles to show the inside.

  applicability of the glucosemeter by broadening the range of target biomarkers instead of detecting only one analyte, glucose. Because of the bilayer membrane of biomimetic vesicles, which can accommodate tens of thousands of glucose molecules, the sensitivity was greatly enhanced by using glucose-encapsulating vesicles as signal output and amplifier. Based on this A c c e p t e d m a n u s c r i p t

Following

  the same design, DNA methyltransferase activity was detected [33  ]. Several biomimetic vesicle-based assays were conducted in real samples: AFB1 was detected in contaminated/spiked peanuts samples and serum samples, using glucosemeter [31; the practicability of the liposomes-amplified PEC sensing strategy was demonstrated by assaying human serum samples and its universality was also demonstrated by developing it into a sensitive microRNA detection method [17].

Figure 3 :

 3 Figure 3 : Working Principle of Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay with Beads/Protein/Liposome "Sandwich" Structure [32].
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