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Abstract Human obesity is a main cause of morbidity
and mortality. Recently, several studies have demonstrated

an association between the FTO gene locus and early onset

and severe obesity. To date, the FTO gene has only been
discovered in vertebrates. We identified FTO homologs in

the complete genome sequences of various evolutionary

diverse marine eukaryotic algae, ranging from unicellular
photosynthetic picoplankton to a multicellular seaweed.

However, FTO homologs appear to be absent from all other

completely sequenced genomes of plants, fungi, and

invertebrate animals. Although the biological roles of these
marine algal FTO homologs are still unknown, these genes

will be useful for exploring basic protein features and could

hence help unravel the function of the FTO gene in ver-
tebrates and its inferred link with obesity in humans.

Obesity is a major societal issue contributing to increased

morbidity and mortality, as well as rising health care costs.

In 2003–2004, 66% of the human population in the United
States was classified as overweight (body mass index

[BMI] C 25 kg/m2), and 32% was classified as obese

(BMI C 30 kg/m2) (Ogden et al. 2006). Excessive weight
is often associated with an increased risk of several life-

threatening diseases, including cancer, heart diseases, and

type 2 diabetes mellitus (Frayling et al. 2007). Unfortu-
nately, the number of obese people continues to increase

every day, probably as a result of a modified lifestyle (more

food and less exercise). An improved understanding of the
genetic basis, and the associated risk factors, is necessary if

society is to proactively address this epidemic. Recently,

several studies have demonstrated an association between
the FTO gene locus and early onset and severe obesity in

both children and adults (Dina et al. 2007; Field 2007;

Frayling et al. 2007; Frayling 2007; Groop 2007; Scott
et al. 2007; Scuteri et al. 2007). FTO, also known as

FATSO, was originally identified as one of the six genes

deleted in the fused toe (Ft) mutant mouse (van der Hoeven
et al. 1994). Heterozygous animals showed fused toes on

their limbs and a thymic hyperplasia, while homozygous

mice exhibited a lethal malformation of the developing
brain; the embryos lost genetic control of left-right asym-

metry; and, finally, the mice died around the tenth day of

their embryonic development (Peters et al. 2002). The Ft
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deletion spans several genes, of which quite a few remain

of uncharacterized function. Peters and coworkers (1999)
showed that one of these genes, FTO (FATSO), which is

completely deleted in the Ft mutation, is expressed

throughout embryonic development and at a high level in
most organs in wild-type mice. In mouse, this novel gene

spans at least 250 kb and encodes a protein of 502 amino

acid residues of unknown function. It is still not known
whether loss of FTO is a causal factor for the phenotype

observed in Ft mutant mice. Furthermore, no deviations in

BMI have been reported in Ft mutant mice. However, in
human, unlike the associations with BMI initially reported

for GAD, ENPPI, and INSIG2, which have not been

reproduced consistently, association between the FTO
locus and BMI is strongly supported. Frayling and co-

workers (2007) studied almost 40,000 Europeans for vari-

ants of the FTO gene and identified an obesity risk allele.
Depending on the presence of specific single nucleotide

polymorphisms (SNPs) in the first intron of FTO, indi-

viduals weighed 1.2 to 3 kg more and had a 1.67-fold
higher rate of obesity than those lacking the risk allele.

Similar findings were reported by Dina et al. (2007), who

studied 2,900 individuals of European ancestry, and
potential Type 2 diabetes susceptibility has been correlated

with another FTO intron 1 SNP (Scott et al. 2007).

Until recently, homologuey searches using the mouse
FTO gene as a query only recovered sequences from ver-

tebrates. However, with the complete genome sequencing
of several marine algae, these results have been dramati-

cally altered. While no clear homologue is found in

invertebrate animals, fungi, plants, heterotrophic protists,
bacteria, or archaea, we identified FTO homologues in the

genomes of a diverse array of eukaryotic marine algae,

ranging from unicellular photosynthetic picoplankton to a

multicellular seaweed (Fig. 1). Specifically, FTO homo-

logues were retrieved from three species within the
Prasinophyceae (Micromonas pusilla, Ostreococcus tauri,
and Ostreococcus lucimarinus) and two diatom species

(Phaeodactylum tricornutum and Thalassiosira pseudo-
nana), all of which are unicellular and which represent the

only completely sequenced members of their respective

lineages. Two copies of the FTO homologue were identi-
fied in the multicellular brown alga, Ectocarpus siliculosus.

Furthermore, we scanned the Global Ocean Survey (GOS)

dataset (Rusch et al. 2007) and recovered two additional
FTO genes. These two sequences appear to be derived from

the marine prasinophytes, due to high similarity to FTO
homologues in the prasinophyte genomes supported by the
presence of Ostreococcus and Micromonas 18S rRNA gene

sequences in the same GOS sample. Strikingly, all the

algae found to harbor FTO homologues live in marine
environments, given that no FTO homologues were

recovered from freshwater algae. We performed additional

searches for FTO in freshwater algae using the Chla-
mydomonas reinhardtii genome sequence (Merchant et al.

2007), but to no avail. We also performed additional

searches of the finished genome sequence of the red alga
Cyanidioschyzon merolae, which thrives in acidic hot

springs (Matsuzaki et al. 2004 ; Nozaki et al. 2007).

Moreover, we performed these searches iteratively, using
the newly discovered marine FTO sequences as queries,

and still detected no homologues in invertebrate animals,
fungi, plants, heterotrophic protists, bacteria, or archaea,

confirming our initial findings.

As mentioned above, the function of FTO is still not
known. Dina et al. (2007) detected FTO expression in 11 of

11 human tissue types tested, with the highest expression

levels being in the hypothalamus, pituitary, and adrenal

Fig. 1 Maximum likelihood
tree showing the distribution of
the FTO gene. Three major
clades can be discerned: the
previously described FTO genes
in the vertebrates, the newly
detected genes in diatoms and
brown alga, and those of the
chlorophytes and GOS
sequences. All nodes are highly
bootstrap supported ([70%)
except two (indicated by a black
circle ; 50% \ BS \ 70%). See
Supplementary Materials for
more information
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glands. These findings have promoted the hypothesis that

FTO plays a role in body weight regulation through the
hypothalamic-pituitary adrenal axis. FTO is also expressed

in rat and mouse. EST data indicate that the marine FTO
homologues in the diatom P. tricornutum and the prasin-
ophyte M. pusilla are expressed under standard growth

conditions. Although the biological roles of the algal FTO
homologues are still unknown, these genes can be used,
together with the vertebrate sequences, to explore basic

protein features. Based on primary sequence characteris-

tics, FTO proteins are unlikely to be targeted to either
membranes or to organelles but, rather, are predicted to be

globular, cytosolic proteins with mixed a/b structures.

Looking at conserved positions shows a drop from 195
positions conserved among animal sequences to only 44

conserved over all sequences, likely pinpointing the func-

tionally essential residues. Among the most widely
divergent FTO sequences, three amino acid residues (W, Y,

and H) are strikingly overrepresented among the 44 abso-

lutely conserved positions (see Supplementary Fig. 1). In
silico predictions indicate that these residues are more

likely to be located at an active site than to be at a protein-

protein interface or to be surface interacting residues (Ma
et al. 2003). This suggests that FTO may have an enzy-

matic function rather than be involved in protein-protein

interactions. Three of the conserved positions have high
prediction scores for phosphorylated residues, indicating a

potential role for phosphorylation in regulation of FTO.
Our findings do not negate the association between FTO

intron 1 SNPs and obesity. While identification of risk

factors has advanced tremendously, for the most part, the
functional ramifications of these genetic variations remain

uncharacterized. In the case of FTO, Frayling and col-

leagues (2007) raised the alternative hypothesis that the
intron 1 SNP might serve to alter regulation of another

gene, as opposed to having a specific affect on the product

encoded by FTO. While risk factors carry value in pre-
ventive medicine, it is mechanistic knowledge that fosters

therapeutic innovation. Why marine algae harbor and

express FTO is unclear, as is the link with obesity in
humans. However, previous studies have demonstrated that

algal research can be applied to investigation of vertebrate

gene function. For instance, Chlamydomonas is often
referred to as ‘‘the green yeast’’ because it is an easy-to-

work-with eukaryotic model organism which also performs

photosynthesis (see Li et al. 2004). None of the highly
developed but easy to use (i.e., not involving animal work)

model organisms (e.g., Chlamydomonas, Arabidopsis,

yeast, Drosophila, and C. elegans) possesses an FTO gene.
Thus, here we identify alternative systems for functional

studies, such as the genetically tractable diatom Phaeo-
dactylum (Siaut et al. 2007). These in turn will shed light
on FTO function and, should that function be relevant to

vertebrate homologues, thereby streamline research on

genetic factors contributing to human obesity.

Methods

We initially scanned all publicly available nonredundant

databases, as well as our in-house data for homologues of
the mouse FTO gene, using BLASTP (Altschul et al.

1997). Because there was a very clear drop-off in E-value

between homologues and nonhomologues (significant val-
ues, from E-82 to E-27, then dropping to nonsignificant E-

values of C0.71), selection of FTO homologues was

straightforward. No (distantly related) genes homologous
(or partially homologous) to the FTO genes could be

identified. Next, HMMer (Eddy 1998) was used to generate

a specific profile of the FTO gene family with hidden
Markov Models, using all available sequences, and we

searched NCBI EST and genome databases using TBLASTN.

However, no new candidate FTO genes were detected.
Annotation of the FTO gene sequences was manually

checked and corrected using ARTEMIS (Rutherford et al.

2000) when necessary. Protein sequences were aligned
with CLUSTALW (Thompson et al. 1994), and after manual

improvement of the alignments using BIOEDIT (Hall 1999),

only 266 well-aligned positions were taken into account for
tree construction. Pairwise distance trees were constructed

using TREECON (Van de Peer and Wachter 1994), based on
Poisson-corrected distances, while PHYML 2.4.4 (Guindon

and Gascuel 2003) was used to compute the maximum

likelihood tree. Bootstrap analyses with 500 replicates were
performed to test the significance of the nodes. Both

methods gave identical tree topologies and similar boot-

strap support.

Data

Accession numbers are as follows: Ostreococcus luci-
marinus, XP_001420808; Ostreococcus tauri, CAL57236;
Thalassiosira pseudonana, jgi|Thaps3|261481|thaps1_ua_

kg.chr_2000305 (http://genome.jgi-psf.org/Thaps3/Thaps3.

home.html); Phaeodactylum tricornutum, jgi|Phatr
2|41429|fgenesh1_pg.C_chr_30000044 (http://genome.

jgi-psf.org/Phatr2/Phatr2.home.html); and Micromonas
pusilla, EU293868. FTO sequence from and Ectocarpus
siliculosus can be obtained from the authors upon request.
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Note Added in Proof: After acceptance, two papers have been
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