Chemical neuroanatomy of the hypothalamo-hypophyseal system in sturgeons
Résumé
The preoptic-hypothalamo-hypophyseal system of sturgeons, located at the base of the brain, has a neurosecretory role exerted by hypophysiotropic neurons most of them located in the preoptic and hypothalamic periventricular region. The majority of those cells are of the cerebrospinal fluid-contacting type and exhibit short processes reaching the ventricular lumen. Moreover, the processes of those hypophysiotropic neurons course along the hypothalamic floor toward the hypophysis forming a preoptic-hypothalamo-hypophyseal tract. This chapter summarizes available data on the distribution of several hypophysiotropic factors, such as galanin, neurophysin, somatostatin, or gonadotropin-releasing hormone, in the preoptic-hypothalamo-hypophyseal system of sturgeons obtained by the use of immunohistochemical techniques. Immunoreactive neurons to those substances were found in the preoptic and hypothalamic nuclei, and immunoreactive fibers were observed along the preoptic-hypothalamo-hypophyseal tract and in the hypophysis, indicating their hypophysiotrophic role in the brain of sturgeons. Thus, most of the neuropeptides and neurohormones found in tetrapods are also present in sturgeons, suggesting that their common ancestors already possessed such regulatory systems. Unfortunately, because of the difficulty in approaching the physiology of sturgeons (size, cost, etc.), the number of experimental studies aiming at deciphering the roles of such neuropeptides and neurohormones is very limited, although we can speculate that part of the functions supported by these neurohormones would be similar. © Springer International Publishing AG, part of Springer Nature 2018. All rights reserved.