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Abstract 

Secondary metabolites from lichens are known for exhibiting various biological effects such as 

anti-inflammatory, antioxidant and antibacterial activities. Despite this wide range of reported 

biological effects, their impact on the formation of advanced glycation end products (AGEs) 

remains vastly unexplored. The latter are known contributors to lifestyle and age-related diseases 

such as Alzheimer and Parkinson. Moreover, the development of atherosclerosis and arterial 

stiffness is causally linked to the formation of AGEs. With this in mind, the present work 

evaluated the inhibitory effects of secondary lichen metabolites on the formation of pentosidine-

like AGEs by using an in vitro, Maillard reaction based, fluorescence assay. Overall, thirty-seven 

natural and five synthetically modified compounds were tested, eighteen of which exhibiting IC50 

values in the range of 0.05 to 0.70 mM, which corresponds to 2 to 32 fold of the inhibitory 

activity of aminoguanidine. In addition, all compounds were evaluated on their radical 

scavenging capacities in an DPPH assay targeting one major inhibiting mechanism of AGEs 

formation. Furthermore, as both AGEs’ formation and hypertension are major risk factors for 
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atherosclerosis, compounds that were available in sufficient amounts were also tested for their 

vasodilative effects. Although some of the active compounds were previously reported cytotoxic, 

present results highlight the interesting potential of secondary lichen metabolites as anti-AGE and 

vasodilative agents.  

Keywords: Inhibition of Advanced Glycation End Products, Maillard reaction, Radical 

scavenging, Lichen metabolites, Vasodilation. 

Declarations of interest: none   
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Introduction 

With increasing affluence, lifestyle diseases have gained significant impact on population’s 

morbidity in industrialized countries. Particularly malnutrition and the lack of exercise 

substantially contribute to the spread of diabetes. Moreover, an aging population is progressively 

affected by neurodegenerative diseases such as Parkinson and Alzheimer.  

Advanced glycation end products (AGEs) are known contributors to many of these diseases as 

their formation is directly linked to diabetic long term complications such as endothelial 

dysfunctions [1], impaired microcirculation [2], as well as β-amyloid formation in Alzheimer [3]. 

Moreover, AGEs were histochemically detected in the frontal cortex of Parkinson patients [4], 

and also found to substantially impact the development of arterial stiffness and atherosclerosis [5, 

6]. For the time being no successful therapeutic intervention targeting the inhibition of AGEs 

formation has been developed.  

Natural products (NPs) are known for exhibiting a wide range of very different pharmacological 

effects [7], including the inhibition AGEs formation [8-12] and consequently the limitation of 

endothelial damage [13]. Moreover, many promising candidates show additional antioxidant or 

radical scavenging activities [14], and belong to different chemical families such as polyphenols 

[11], terpenes, and alkaloids [9]. While plants and their anti-AGEs effects have been thoroughly 

studied, the impact of lichens and their secondary metabolites remains mostly unexplored [15].  

Lichens are symbiotic organisms comprising filamentous fungi and photosynthetic partners such 

as eukaryotic algae or cyanobacteria. This unique combination yields very particular metabolites 

that cannot be found in the isolated partners or elsewhere in nature. Many of these compounds do 

exhibit notable biological activities like anti-inflammatory, antioxidant, antibacterial, and 

cytotoxic effects [16-19], however, very little is known about their effect on the formation of 

AGEs [15]. With this in mind, the present study evaluated thirty-seven secondary lichen 

metabolites as well as five semisynthetic derivatives of usnic acid (a major metabolite found in 

many lichen species) for their potential anti-AGE effects in a fluorescence-based Maillard 

reaction assay [20]. According to previous reports, anti-AGE, antioxidant, and radical scavenging 

effects are often related, so all compounds were additionally tested in an 1,1-diphenyl-2-

picrylhydrazyl (DPPH) assay [14, 21, 22]. Considering that both AGEs but also hypertension are 

known important risk factors for age- and lifestyle related diseases, some compounds, that were 

available in sufficient quantities, were further evaluated in a vasodilation assay. 

2. Experimental 

2.1 Chemical and Material 

Bovine serum albumin (BSA, fraction V), potassium phosphate monobasic, potassium phosphate 

dibasic trihydrate, sodium azide, and aminoguanidine hydrochloride were all purchased from 

Sigma-Aldrich (St Quentin Fallavier, France). D-ribose was obtained from Alfa Aesar 

(Schiltigheim, France) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox ®) and chlorogenic acid were purchased from 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

4 
 

 

Acros Organics (Noisy-Le-Grand, France). Secondary metabolites from lichen were isolated and 

elucidated within preceding research projects and as being outlined in the literature [19, 23, 24]. 

Table S3, (supplementary material) indicates the natural source of the tested compounds. 

Semisynthetic modifications of usnic acid (35) conducted for obtaining compounds 38 and 42 

were performed according to previously published protocols [25, 26]. Detailed information on 

compounds 39-41 is given in the supplementary material section.  

2.2 Advanced glycation end-products inhibition assay 

Inhibition of pentosidine-like AGEs formation was measured according to a previously published 

protocol [27]. In short: depending on available sample material, stock solutions (SS) were 

prepared in DMSO at concentrations of 10 or 30 mM respectively. These SS were then diluted 

with 50 mM phosphate buffer (pH: 7.4) yielding working solutions (WS) at a concentration range 

of 10-2 to 10-5 mol/L. Ten microliter of each WS were deposited in 96 black well bottom plates 

(Fisher Scientific, Illkirch, France) and mixed with 90 µL of a solution containing BSA 

(11 mg/L), D-ribose (0.25 M), and phosphate buffer (50 mM, NaN3 0.02%, pH 7.4). Plates were 

then incubated for 24h at 37°C, before being fluorometrically analyzed (λexc: 335 nm, 

λem: 385 nm) using an Infinite M200 plate reader (Tecan, Lyon, France). Aminoguanidine 

(Sigma-Aldrich) was used as positive control. The formation of AGEs was calculated according 

the following formula (FI = florescence intensity): 

𝐹𝐼 (𝐵𝑆𝐴 + 𝑟𝑖𝑏𝑜𝑠𝑒 + 𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐹𝐼 (𝐵𝑆𝐴 + 𝑠𝑎𝑚𝑝𝑙𝑒) x 100

𝐹𝐼(𝐵𝑆𝐴 + 𝑟𝑖𝑏𝑜𝑠𝑒) − 𝐹𝐼(𝐵𝑆𝐴)
 

Results (table 1) are expressed as IC50 (mM) and fold inhibition compared to aminoguanidine 

(positive control). Samples exhibiting an IC50 of more than 1 mM or less than two fold of the 

activity of aminoguanidine were considered inactive. Dimethyl sulfoxide served as negative 

control and was processed the same way as the WS. 

2.3 Radical scavenging and reductive assay (DPPH) 

Radical-scavenging and reductive activities of test compounds were evaluated in an DPPH assay 

according to a previously reported protocol with small modifications [28]. Stock solutions 

previously used for the AGEs assay were diluted in absolute ethanol to afford WS at 200 and 40 

µg/mL. Due to its high reductive potential, the WS of compound 34 was lowered to 20 and 10 

µg/mL. Next, 100 µL of these WS were transferred into a 96 well plate and mixed with 25 µL 

freshly prepared ethanolic DPPH solution (0.25 mM) and 75 µL absolute EtOH. Samples were 

incubated under light protection for 30 min at 20°C before being photometrically analyzed (λabs: 

517 nm). Ethanol was used as negative, chlorogenic acid (20 µg/mL) as positive control. 

Reference solutions were prepared using Trolox ® at concentrations of 10, 25, 50, and 75 μM. 

Results are expressed as µmol equivalents of Trolox ® per sample. Samples exhibiting activities 

of less than 10% of chlorogenic acid were considered inactive.  
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2.4 Vasodilation assay 

The experimental protocol is based on a previously published report with small modifications 

[29]. Three-month-old male Kyoto Wistar rats (obtained from the “service commun d'animalerie 

hospitalo-universitaire” of the University of Angers) were sacrificed by CO2 exposure. The 

mesentery was removed and the first order mesenteric arteries were dissected. Segments of 

arteries (2 mm long) were mounted on a wire myograph (DMT, Aarhus, Denmark) by two 

tungsten wires (40 µm in diameter) that were inserted into the lumen of the arteries and attached 

to a force transducer and a micrometer. The arteries were rinsed with a physiological buffer 

solution (PBS) at 37°C and pH 7.4. Wall tension was monitored using the AcqKnowledge 

software (BIOPAC Systems, Inc., Goleta, CA). After wall-tension stabilization (45 min), vessel 

viability was tested three times (respecting a five-minute interval) using a potassium-enriched (80 

mM) PBS solution. After 10 min, endothelium integrity was controlled by inducing a 

precontraction with phenylephrine (2 µM), followed by an induced relaxation using acetylcholine 

at the same concentration. Arterial segments were then pre-contracted with phenylephrine (2 µM) 

and a cumulative concentration-response experiment for each compound was performed. 

Compounds were dissolved in DMSO yielding SS at a concentration of 20 mg/mL. These SS 

were then diluted with PBS yielding final sample concentrations of 0.2, 0.6, 2.0, 6.0 and 20.0 

µg/mL. Vasodilative activity is expressed as the effective dose required for obtaining 50% 

vasodilation (ED50) of precontracted vessels. Dimethyl sulfoxide served as negative control and 

was processed the same way as sample solutions. As shown in Fig 2, DMSO by itself exhibited 

some vasodilative effects, however its ED50 was 4-10 fold higher than those of lichen 

constituents. Information showing the exact molar concentrations of all samples was added to the 

supplementary information section (Table S1, S2). 

3. Results and discussion 

3.1 Inhibition of AGEs formation and radical scavenging activities 

As discussed earlier secondary lichen metabolites are well known for exhibiting a large variety of 

different biological activities but also served as model compounds for modern drug design [16, 

19, 30]. The depsidone diploicin for example has inspired the development of clofazimine 

(Lamprene®) and the group of riminophenazine antibiotics [21]. In regard to AGEs, Kumar et al. 

have recently reported the inhibition of their formation by crude extracts of Parmotrema species 

[15], however, to the best of the authors’ knowledge, the present work is the first evaluation of 

that kind on single lichen constituents. 

Results from these experiments are summarized in Table 1 and Fig. 1, which shows the 

structures of all active compounds. A complete compilation of the structures of all tested 

compounds is provided in the supplementary section (Fig. S1).   
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Table 1 Lichen metabolites evaluated for their inhibitory effects on the formation of pentosidine-like AGEs and their radical scavenging capacity.  

Name  
IC50 pentosidine 
like AGEs mM 

Fold inhibition compared to 
aminoguanidine (FIA)  

DPPH expressed as µmol 
Trolox ®/µmol sample 

Fold radical scavenging activity 
of chlorogenic acid  

Acetylportentol (1) 
(1,4)

 NA NA NA NA 

Atranol (2) 
(1,4)

 0.15 12.7 0.11±10.21% 0.10 

Atranorin (3) 
(1,4)

 NA NA NA NA 

β-Collatolic acid (4) 
(1,4)

 0.20 9.5 NA NA 

Chloroatranol (5)
 (1,4)

 0.10 19.0 0.25±5.96% 0.23 

Chrysophanol (6)
 (2,5)

 NA NA NA NA 

Divaric acid (7)
 (2,5)

 NA NA NA NA 

Emodin
 
(8)

 (2,5)
 NA NA NA NA 

Erythrin (9)
 (1,4)

 NA NA NA NA 

Evernic acid (10) 
(2,5)

 NA NA NA NA 
Fumarprotocetraric  
acid (11)

 (2,5)
 

0.70 2.1 NT NT 

Gyrophoric acid* (12) 
(3,6)

 NA NA NA NA 

(+)-Hemoventosin  
(13)

 (2,5)
 

NA NA NA NA 

Leprapinic acid (14)
 (1,4)

 0.08 25.3 0.52±3.45% 0.49 
Lichesterinic  
acid (15) 

(2,5)
 

NA NA NA NA 

Lobaric acid (16) 
(1,4)

 0.40 4.8 NT NT 

m-Scrobiculin* (17 
(3,6)

 NA NA 1.43±1.74% 1.23 

Methyl divarate* (18) 
(3,6)

 NA NA NA NA 

Methyl evernate (19) 
(2,5)

 NA NA NA NA 

Methyl β‐ orsellinate
  
(20) 

(1,4)
 

NA NA NA NA 

Parietin (21) 
(2,5)

 NA NA NT NT 

Pannaric acid (22) 
(1,4)

 0.06 31.7 0.67±1.73% 0.63 
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Name  
IC50 pentosidine 
like AGEs mM 

Fold inhibition compared to 
aminoguanidine (FIA)  

DPPH expressed as µmol 
Trolox ®/µmol sample 

Fold radical scavenging activity 
of chlorogenic acid  

Perlatolic acid (23) 
(1,4)

 NA NA NA NA 

Polyporic acid (24) 
(1,4)

 0.30 6.3 0.28±6.21% 0.26 
Protocetraric  
acid (25) 

(1,4)
 0.50 3.8 NA NA 

Rhizocarpic acid (26)
 (2,5)

 0.40 3.6 0.33±8.75% 0.25 

(+)-Roccellic acid (27) 
(1,4)

 NA NA NA NA 

Scensidin (28)  
(1,4)

 NA NA NA NA 
Secalonic 
acid D (29) 

(2,5)
 0.50 2.9 NA NA 

Solorinic acid (30) 
(1,4)

 NA NA NA NA 

Stictic acid* (31) 
(3,6)

 0.50 2.8 NA NA 
Stictic acid  
(open form)* (32) 

(3,6)
 

0.35 4.0 NA NA 

Thamnolic acid (33) 
(2,5)

 0.30 4.8 NA NA 

2,3,4-Trihydroxy-6-
propylbenzoic acid methyl 
ester* (34) 

(3,6)*
 

0.40 3.5 2.83±4.85% 2.44 

(+)-Usnic Acid* (35) 
(3,6)

 NA NA NA NA 

Variolaric acid (36) 
(2,5)

 0.05 29.0 NA NA 

Vulpinic acid (37) 
(1,4)

 0.10 19.0 0.39±1.45% 0.36 

DU2 (38) 
(1,4)

 NA  NA NA 

DU3 (39) 
(1,4)

 NA  NA NA 

DU4 (40) 
(1,4)

 0.13 14.6 NA NA 

DU5 (41) 
(1,4)

 NA  NA NA 

PI-O (42)  
(1,4)

 NA  NA NA 
AGEs assay, positive control: aminoguanidine (IC50: 1.90

(1)
, 1.45

(2)
, 1.40

(3)
 mM). DPPH assay, positive control: chlorogenic acid 1.07±(0.69%)

(4)
, 

1.3±(3.35%)
(5)

, 1.16±(4.25%)
(6)

, the error range is expressed in percent of relative standard deviation. NT: not tested, NA: not active; *Additionally 

evaluated on vasodilative effects (Fig. 2). 
_ _ _

 Semisynthetically modified compounds.   
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Fig.1. Secondary lichen metabolites exhibiting inhibitory effects on the formation of pentosidine-like AGEs. Compounds were 

grouped according to their chemical classification: blue monoaromatic phenolic compounds, red depsidones, green pulvinic acid 

derivatives, orange depsides and diphenylethers, black dihydroxy benzoquinone and xanthone derivatives, pink dibenzofurans and 

their dimers.  
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Overall, seventeen natural and one semisynthetically modified compound exhibited notable inhibition of AGEs formation IC50 < 1.0 

mM, fold activity of aminoguanidine (FAA)  2.0. Best activities (IC50 < 0.1 mM, FAA  25) were observed for variolaric acid (36), 

pannaric acid (22) and leprapinic acid (14), which are in the range of previously tested flavonoids such as pinobanksin, pinobanksin-5-

methyl ether and pinobanksin-3-acetate as well as cinnamic acid derivatives 2-acetyl-1,3-dicoumaroylglycerol and prenyl caffeate 

(IC50: 0.05-0.09 mM) [31]. In terms of potential structure-activity relationships, it was interesting to observe that the entire group of 

tested depsidones (compounds 11, 16, 25, 31, 32 and 36) exhibited inhibitory effects (IC50: 0.05-0.70 mM, FAA 2.1-29.0). 

Noteworthy, most active 36 (IC50: 0.05 mM, FAA: 29.0), shows an additional dihydrofuran-2-one moiety, which is missing in the 

other depsidones. However, the general substitution pattern within this group is quite diverse thus preventing conclusive reasoning on 

structural key elements underlying the observed variation of activities.  

Within the group of depsides and diphenylethers, compounds 4 and 33 (IC50: 0.20, 0.30 mM, FAA: 9.5, 4.8) exhibited best inhibitory 

effects, while active monoaromatic phenols were identified as 2, 5 and 34 (IC50: 0.15, 0.10, 0.40 mM and FAA: 12.7, 19.0, 3.5). For 

both groups, no clear structure activity relationship was observed. While compound 34 was active, 18 was not, and the only difference 

between the two structures is that 18 exhibits one phenolic group less than 34. On the other hand, structurally related 2, which shows 

the same number of phenolic functions as 18, was activity. The rest of active compounds was distributed among the following 

chemical groups: dihydroxy benzoquinone and xanthone derivatives 24, 29 (IC50: 0.30, 0.50 mM, and FAA: 6.3, 2.9), pulvinic acid 

derivatives 14, 26 and 37 (IC50: 0.08, 0.40, 0.10 mM, and FAA: 25.3, 19.0, 3.6) as well as the dibenzofuran 22 (IC50: 0.06 mM, FAA: 

31.7) and its semisynthetically modified derivative 40 (IC50: 0.13 mM, FAA: 14.6). Particularly the group of synthetically modified 

derivatives of usnic acid (38-41) was quite interesting to study. It seems that the length of the connecting aliphatic diamine bridge has 

significant impact on the inhibition of AGEs formation. Solely compound 40 (bridge length five CH2 units) was active, while 

compounds with shorter or longer bridges did not show any inhibiting effects. 

Contrary to some previous reports [14, 32], reductive and radical scavenging activity was not necessarily linked to the inhibition of 

AGEs formation. Solely eight out of the eighteen AGEs concurrently showed notable activity in the DPPH assay of at least 10% of 

chlorogenic acid (positive control). This inconsistency most likely indicates different modes of action for the inhibition of AGEs. 

Metal ions and reactive oxygen species (ROS) are key participants in the Maillard reaction [33], so the inhibiting effects of compounds 

like atranol (3), leprapinic acid (14) and pannaric acid (22) may be (in parts or in total) explained by their radical scavenging activities. 

Next to the latter also chelation is a reported mechanism for AGEs inhibition [33], and any compound shown in Fig 1 exhibits 

structural elements that may contribute to this effect. In this regard the complexation of human serum albumin (HSA) with cinnamic 

acid (CA) was reported to block one of the major glycating sites in HSA, thus preventing the formation of AGEs in the presence of 

glucose [34]. It is reasonable to assume that similar effects may occur under current experimental conditions. Nevertheless, it should 
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be keep in mind that the current the experimental setting was not designed to allow conclusive reasoning on this specific mode of 

action and that in vivo AGEs formation involves additional and more complex mechanisms such as reported enzyme activities of 

superoxide dismutase and catalase [35]. 

For the time being, the present study has evaluated a limited number of compounds compared to the thousands of reported lichen 

metabolites. Besides, synergistic, activity-enhancing effects due to the presence of several active compounds as found in crude lichen 

extracts have not been studied but may have significant impact. Recently the crude acetonitrile extract of Parmotrema austrosinense 

has been reported to exhibit notable inhibitory effects on the formation of pentosidine-like AGEs [15]. The same study also reported 

atranorin (3), methyl-orcinol--carboxylate (20) and lecanoric acid as its major constituents. Considering the presently observed 

inactivity of 3 and 20, it is reasonable to assume that lecanoric acid may exhibit anti-AGEs effects. With all this in mind, present 

results provide a first, yet useful, indication of the promising potential of lichen metabolites as inhibitors of AGEs formation. 

 

3.2 Cytotoxic effects and their potential impact 

Beside various biological effects, some lichen compounds were also found to exhibit cytotoxicity [17, 19, 36], which may be a limiting 

factor for future therapeutic applications. Therefore a compilation of reported cytotoxicity for all lichen compounds that inhibited 

AGEs formation was added to the supplementary section of the manuscript (Table S3). In this regard β-Collatolic (4), leprapinic (14) 

and pannaric acid as well as (22) thamnolic acid (33) and 2,3,4-trihydroxy-6-propylbenzoic acid methyl ester (34) represent most 

interesting candidates for follow up studies. They all show notable anti-AGEs effects (IC50 0.06-0.5 mM) but no reported cytotoxicity. 

Further attention should also be given to atranol (2) and chloroatranol (5) as observed cytotoxicity (20-30% of growth inhibition 

against PAM2.12 cells in an MTT assay at 0.6 mM after 24h) is lower than their anti-AGEs effects (IC50: 0.10-015, mM) [37]. At this 

point, it is important to mention that a precise and meaningful evaluation of cytotoxicity of lichen metabolites requires an extended 

experimental protocol comprising different cell lines, different time points of evaluation and at least two mechanistically different 

bioassays. This is best exemplified by 31 and 32, which yielded contradicting results when being tested in a tetrazolium salt (WST-1) 

and a trypan blue (TrypB) cytotoxicity assay [19]. While both compounds showed strong cytotoxic against cancerous HL60 cells in the 

TrypB assay after 24h, results from the WST-1 assays seemingly indicated intense cell growth (160-180% compared to the DMSO 

control) at that time. Eventually this discrepancy could be explained by a highly increased metabolic activity of cells that were still 

alive after 24h, thus masking cytotoxicity in the WST-1 assay. The effect lasted for up to 72 hours after incubation. Moreover, both 31 

and 32 showed selective cytotoxicity against cancerous HL60 and HeLa cells while being inactive against non-cancerous Vero cells. In 

fact, the selectivity towards cancer cell is reported for many lichen compounds [19, 36, 38]. Consequently, potential follow up studies 
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on biological material should include an adapted cytotoxicity protocol based on cell lines from to the target region of the desired anti-

AGEs effect (e.g. endothelial cells when analyzing the impact AGEs formation on atherosclerosis)  

 

3.3 Vasodilative effects of lichen metabolites  

Next to the formation of AGEs, hypertension is another major risk factor for many age and lifestyle related diseases. It was shown that 

the age-related progressive augmentation of blood pressure beyond levels of 115/75 mm Hg is accompanied by an incremental rise in 

cardiovascular risk [39]. With this in mind, compounds 12, 17, 31, 32, 34, and 35 (which were available in sufficient quantities) were 

additionally tested on their impact on vascular reactivity. The latter is an accepted parameter for estimating the general state of the 

vascular system, which is progressively impaired in the course of diabetic long term complications [40]. Figure 2 shows the 

vasodilative effect of these six lichen metabolites evaluated on mesentery arteries of healthy male Wistar rats. For preserving best 

visibility, error bars (relative standard deviations) were not added the graph. This information is provided in Tab S1 and S2 

(supplementary material).  
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Fig. 2. A: Vasodilative effects of compounds 12, 17, 31, 32, 34, and 35 on mesentery arteries pre-contracted with phenylephrine at a 

concentration of 2 µM. B: Structures of vasodilative compounds not shown in Fig 1. 

All tested compounds exhibited notable vasodilative effects (ED50: 1.5-3.0 µM) compared to DMSO (ED50: 11.6 µM), which served as 

negative control. Neither radical scavenging activity nor the inhibition of AGEs seems to correlate with observed vasodilation. 

Vasodilative 12 (ED50: 1.46 µM) and 35 (ED50: 2.13 µM) did not show any further effects, while 31 (ED50: 2.97 µM) and 32 (ED50: 

1.71 µM) inhibited the formation of AGEs, and 17 (ED50: 1.77 µM) exhibited additional reductive and radical scavenging activity. 

Interestingly compound 34, which notably inhibited AGEs’ formation and which exhibited strong radical scavenging effects, was least 

active in the vasodilation assay (ED50: 8.3 µM).  
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Hitherto, very little is known about the impact of lichen metabolites on the vascular system. Solely vulpinic acid (37) and 

leprapinic acid (14) were previously described as vasodilators [41, 42]. However, the presently identified vasodilative compounds 

belong to different chemical groups such as depsides (12, 17), depsidones (31, 32) and dibenzofurans (35). Although not studied in the 

present work, it is reasonable to assume that further compounds from these groups may exhibit similar effects.   
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3.4 Inhibition of AGEs, AGEs’ breakers and vasodilation as common therapeutic strategies 

As discussed earlier, the formation of AGEs severely impacts vessel functioning and is a major contributor to the development of 

atherosclerosis [6]. Moreover, arterial stiffening, an age-related effect but also an important long term complication of diabetes, is 

causally linked to the formation of AGEs on elastin and collagen [5]. Although there is no direct link between vasodilation and the 

inhibition of AGEs’ formation, compounds exhibiting both effects may provide interesting leads for future drug design. Therapeutic 

interventions may limit or even prevent the formation of AGEs related arterial stiffening, while simultaneously lowering elevated 

levels of blood pressure by vasodilation. Moreover, some of the identified anti-AGEs compounds may potentially exhibit AGE cross-

link breaking effects as observed for the thiazolium salt alagebrium. The latter was shown to partially reestablish vascular reactivity in 

type-2 diabetic rats [43], but did not show significant effects on arterial stiffness in healthy elderly humans [44]. Consequently, 

particularly the evaluation of presently identified anti-AGEs compounds in a diabetic vascular model represents an interesting subject 

for follow-up projects.  

4. Conclusion 

The present study has identified secondary lichen metabolites as potent inhibitors of AGEs’ formation showing 2 to 32 fold higher 

activity than aminoguanidine. Some compounds additionally exhibited notable radical scavenging effects and vasodilation on pre-

contracted mesentery arteries of healthy Wistar rats. For a better understanding of the underlying processes, active compounds should 

be tested in more complex biological in-vitro or in vivo systems targeting specific modes of action. This should also include a tailored 

cytotoxicity evaluation. In this respect, particularly the evaluation of AGE crosslink breaking activities may represent an interesting 

objective. Overall, the present work provides a first glimpse of future applications of secondary lichen metabolites and broadens the 

scope of their potential therapeutic utilization.  
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