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We review the magnetic and orbital ordered states in Ca2RuO4 by performing resonant elastic x-ray scattering
(REXS) at the Ru L2,3 edges. In principle, the point symmetry at Ru sites does not constrain the direction of
the magnetic moment below TN . However early measurements reported the ordered moment entirely along the
�b orthorhombic axis. Taking advantage of the large resonant enhancement of the magnetic scattering close to
the Ru L2 and L3 absorption edges, we monitored the azimuthal, thermal, and energy dependence of the REXS
intensity and find that a canting (mc � 0.1mb) along the �c-orthorhombic axis is present. No signal was found
for ma despite this component also being allowed by symmetry. Such findings are interpreted by a microscopic
model Hamiltonian and pose new constraints on the parameters describing the model. Using the same technique
we reviewed the accepted orbital ordering picture. We detected no symmetry breaking associated with the signal
increase at the “so-called” orbital ordering temperature (�260 K). We did not find any changes of the orbital
pattern even through the antiferromagnetic transition, suggesting that, if any, only a complex rearrangement of
the orbitals, not directly measurable using linearly polarized light, can take place.

DOI: 10.1103/PhysRevB.98.125142

I. INTRODUCTION

As it has been known for more than two decades [1],
magnetic, orbital, and lattice degrees of freedom in transition-
metal oxides can lead to a rich variety of ground states, whose
physical interpretation still defies modern research. Indeed,
several phenomena depending on tiny energy differences [2],
often difficult to determine experimentally, can determine a
strong coupling of orbital and magnetic degrees of freedom.
Among the materials that have been thoroughly investigated
in the last twenty years, Ca2RuO4 stands as a typical Mott
insulator, displaying several phase transitions with tempera-
ture. Ca2RuO4 is a paramagnetic metal for temperatures above
TMI = 357 K [3], below which an insulating, strongly first-
order transition takes place [4]. It then shows, below TN =
110 K [5], an antiferromagnetic (AFM) transition with mag-
netic moment along the �b-orthorhombic axis [6] and �Q = 0
propagation vector. Between the two, another phase transition
was reported [7], below TOO � 260 K, that was interpreted as
due to a ferro-orbital ordering (OO) within the t2g subspace of
Ru 4d orbitals. The nature of the insulating state in Ca2RuO4,
below TMI , has been the subject of intense debate, focused
either on the idea of an orbitally selective scenario, where
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Mott gaps open only on certain orbitals [8–10] or on the rejec-
tion of such a scenario [11–13]. In this other view, the orbital
selection is not required as the crystal-field splitting, via the
compression of the apical RuO bond, is enough to produce a
half-filled dxz/dyz insulating state. Yet, the importance of the
orbital degree of freedom seems justified by former O K-edge
x-ray absorption [14] and resonant elastic x-ray scattering
(REXS) measurements [7] that have observed, respectively,
strong variations in the orbital filling with temperature and an
apparently second-order phase transition at TOO , that cannot
be explained through the coupling with the lattice alone.

The aim of the present paper is to shed light on the exact
trend of the OO with temperature and on the coupling of
magnetic and orbital order parameters (OP), through REXS at
the Ru L2,3 edges. We employ stringent theoretical conditions,
described in Sec. II, that allow a triple projection of both
orbital and magnetic degrees of freedom along the three or-
thogonal orthorhombic axes of the unit cell. Our main results
are the following:

(a) By exploring the critical behavior close to the Néel
ordering we identify unambiguously a nonzero canting of
the magnetic moment along the �c-orthorhombic axis. Anal-
ogously, we could conclude that the magnetic moment along
the �a-orthorhombic axis is practically zero (less than 10−2mb).

(b) After disentangling the magnetic OP, it is possible to
analyze the behavior of the orbital OP alone, both around TN

and around TOO . At TN , it turns out that there is no significant
variation in the square moduli of the orbital filling in the dxy

vs (dxz, dyz) subspaces. So no population transfer from one
subspace to the other. However, the ground state might be
affected by changes in the relative phases of dxz, dyz, and
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dxy orbitals. This might explain the different behavior of the
(103) reflection at the L2 and L3 edges. The analysis around
TOO confirms the experimental results of Ref. [7] at the same
(100) reflection. Yet, moving to the off-specular reflection
(013), sensitive to the same order parameter (OP), as shown
in Sec. II, no abrupt behavior at TOO is registered, but rather
a continuous increase of the signal from 300 K to TN . The
latter seems to point rather to a coupling of orbital and lattice
degrees of freedom, as explained in Sec. IV.

The present paper is organized as follows: In Sec. II the
theoretical framework is introduced. Bragg-forbidden reflec-
tions are divided in three different classes, each sensitive to
a specific component of the magnetic moment. The same
classes are also sensitive to the orbital degree of freedom,
but with a different azimuthal dependence, allowing a full
disentanglement of magnetic and orbital OPs. A complete
analysis of all magnetic and orbital components accessible
via the corresponding Bragg-forbidden reflections is therefore
performed. In Sec. III the experimental setup is described,
together with the structural characterization of the sample.
Section IV is devoted to the discussion of the results and
is divided into three subsections related, respectively, to the
disentanglement of orbital and magnetic OP through REXS,
to the analysis of the orbital behavior both around TN and
TOO , and, finally, to the description of a theoretical model to
explain the antiferromagnetic canting. In Sec. V we draw our
conclusions. We remark that several results can be demon-
strated only after some technical analysis. For the sake of
a clearer reading, we have postponed most of the technical
demonstrations to the four Appendices.

II. THEORETICAL FRAMEWORK

The space group of Ca2RuO4 is Pbca, with 4 Ru atoms
per unit cells at 4a positions [6]. In all the insulating phases,
below TMI , the symmetry at the three atomic sites Ru2 =
(0.5, 0, 0.5), Ru3 = (0, 0.5, 0.5), and Ru4 = (0.5, 0.5, 0) is
related to the one of Ru1 = (0, 0, 0) by the twofold rota-
tions Ĉ2 (around the c axis), B̂2 (around the b axis), and
Â2 (around the a axis), respectively. In the AFM phase,
the Pbca magnetic space group (N. 61.1.497 of [15]) puts
the following constraints on the magnetic components of
the four atoms: �m1 = (ma,mb,mc ), �m2 = (−ma,−mb,mc ),
�m3 = (−ma,mb,−mc ), and �m4 = (ma,−mb,−mc ). Neutron
measurements [6] point to ma = mc = 0. However, an in-
triguing remark is that such a condition does not follow
from any symmetry requirement. The symmetry constraints
of the Pbca magnetic space group allow for both ma and mc

different from zero, provided the four magnetic moments in
the unit cell are related to one another by the above relations.
In this respect, the experimental findings ma = mc = 0 are
puzzling: Is there a hidden symmetry that forbids the mo-
ment from pointing in a and c directions? Or, rather, is the
�m = (0,mb, 0) direction determined by dynamical electronic
interactions? If this were the case, we would rather expect a
canting of the magnetic moment out of the mb direction. We
address this question in Secs. IV A and IV C.

We also notice that another magnetic structure was re-
ported [6] in Ca2RuO4. This alternative structure, not ob-
served in our sample, is characterized by the same propaga-

tion vector, but belongs to a different magnetic space group
(Pbc′a′, N. 61.4.500 of [15] with a different axis choice) and
was reported to occur at different temperature. The alternative
structure is stabilized in the presence of a different stoichiom-
etry or slight doping with La, or Ti [16–18], but it should
be considered as a different case, as it belongs to a different
magnetic irreducible representation of the high-temperature
parent symmetry, Pbca1′. In fact, recently a slight ferromag-
netic canting of the moment toward the a axis was reported to
occur in this case [17], that would be forbidden in Pbca. The
reason why we can definitely exclude the magnetic symmetry
Pbc′a′ in our case is discussed at the end of Appendix A.

The presence or not of the ma and mc components, as
well as the precise determination of the OO throughout the
insulating phase, can be definitively settled by a complete
REXS experiment, looking at all components of the magnetic
moment and all accessible components of the OO. The the-
oretical framework is the following: In resonant conditions,
the atomic scattering factor fi (i = 1 to 4) associated to each
Ru atom becomes a tensor, f

αβ

i (with α and β Cartesian
components along the three crystallographic axes a, b, c), as
detailed in Appendix A. For this reason the structure factor
at the Ru L edges, in both the PM and the AFM insulating
phases, can be written as:

Fhkl = f1 + (−)h+lf2 + (−)k+lf3 + (−)h+kf4

= (1 + (−)h+l Ĉ2)(1 + (−)k+l B̂2)f αβ

1 . (1)

From Eq. (1) we deduce that there are three classes
of Bragg-forbidden reflections that become allowed at L2,3

resonances, each sensitive to a different component of the
magnetic moment and to a different projection of the OO
(measured by the electric quadrupole components Qαβ , de-
fined in Appendix B). In order to find out the t2g and eg

orbital components associated to each Q tensor, we need to
rotate these tensors to the local frame centered at the Ru1

site and directed towards the surrounding oxygen octahedron
(frame xyz in Fig. 1). With the conventions developed in
Appendices A and B, we find the values reported in Table I.

We remind that magnetic dipoles necessarily rotate the po-
larization of scattered x rays, whereas OO also radiates in the
nonrotated σσ channel, except at on-axis reflections related to
the twofold rotation axis, like the (100) or the (003), where the
σσ channel is identically zero, as calculated in Appendix C.
For this reason, it is possible to select angles and/or polar-
ization channels at which specific orbital or magnetic compo-
nents are allowed, in this way investigating just that compo-
nent. The full list of azimuthal scans is given in Appendix C.

III. EXPERIMENTAL SETUP AND SAMPLE
STRUCTURAL CHARACTERIZATION

Single crystals of Ca2RuO4 were grown using a floating
zone furnace and characterized using a molybdenum source
supernova diffractometer (Oxford Diffraction) with a cryojet
(Oxford Instruments) for temperature control. Plate shaped
samples were cleaved from the grown boule, typically
having dimensions ≈1000 × 1000 × 100 μm3 and the (00L)
direction perpendicular to the large face. Several samples were
measured on the materials and magnetism beamline, I16 at
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FIG. 1. Crystal structure of Ca2RuO4. Gray spheres indicate the
canted octahedral Ru sites, light blue spheres are calcium, and red
are oxygen. Blue arrows indicate the magnetic moment on each Ru
site. The local xyz frame around Ru1 is highlighted in the inset.

Diamond Light Source Ltd. Measurements were performed at
the Ru L2 and L3 absorption edges (2.967 keV and 2.828 keV,
respectively) by reconfiguring the beamline for low energies;
performing four bounces on the silicon monochromator, min-
imizing the air path and extending the area detector capability
to low energies. To maximize the possible azimuthal rotation
range for reflections of interest, samples were mounted in

TABLE I. Sensitivity of different reflections to magnetic (mα)
and orbital (Qαβ ) directions, from Eq. (1). The d-orbital sensitivity
is deduced from Qαβ through Eq. (B5).

k + l = even k + l = odd k + l = odd
h + l = odd h + l = even h + l = odd

e.g. (013), (100) e.g. (103), (010) e.g. (110), (003)

ma 0 0 1
mb 1 0 0
mc 0 1 0
Qab 0 1 0
Qac 1 0 0
Qbc 0 0 1
|dxy |2 0.04 0.16 0.00
|dxz|2 0.24 0.03 0.66
|dyz|2 0.60 0.00 0.29
|d3z2−r2 |2 0.12 0.00 0.01
|dx2−y2 |2 0.00 0.81 0.04

TABLE II. Refined structure parameters from single crystal XRD
measurements using an Mo-source diffractometer. RuO1 and RuO2
distances are in Å. O1 and O2 labels refer to Fig. 3 and φ is the
out-of-plane rotation of the RuO6 octahedra. CIF files with full
refinement details are available in the Supplemental Material.

90 K 150 K 300 K 400 K

a 5.3831(3) 5.3906(3) 5.4047(3) 5.3569(3)
b 5.6318(4) 5.6247(4) 5.5089(4) 5.3469(4)
c 11.7288(6) 11.7332(6) 11.9130(6) 12.2575(6)
Volume 355.58(4) 355.76(4) 354.70(4) 351.09(4)
xCa 0.00309(6) 0.00338(7) 0.00779(6) 0.00983(9)
yCa 0.05929(7) 0.05861(8) 0.04665(8) 0.02565(8)
zCa 0.35245(3) 0.35243(3) 0.35106(3) 0.34861(4)
xO1 0.1940(2) 0.1945(2) 0.1969(2) 0.1928(3)
yO1 0.3016(2) 0.3011(2) 0.3013(2) 0.3071(3)
zO1 0.0277(1) 0.0278(1) 0.0245(1) 0.0151(1)
xO2 −0.0696(3) −0.0699(3) −0.0605(3) −0.0388(3)
yO2 −0.0220(2) −0.0213(3) −0.0178(2) −0.0092(3)
zO2 0.1645(1) 0.1645(1) 0.1647(1) 0.1655(1)
RuO1 2.0202(13) 2.018(1) 1.993(1) 1.951(2)
RuO2 1.969(1) 1.970(2) 1.992(2) 2.040(2)
O1RuO1 88.99◦(5) 89.13◦(5) 90.16◦(5) 90.60◦(7)
O1RuO2 89.62◦(6) 89.56◦(6) 89.12◦(6) 88.85◦(6)
RuO1Ru 149.56◦(1) 149.69◦(7) 151.09◦(7) 152.1◦(1)
φ 15.2196◦(4) 15.16◦(4) 14.46◦(4) 13.96◦(5)
Rw(all) 2.43% 2.50% 2.47% 2.45%

the vertical geometry, with either the (001), (100), or (110)
directions perpendicular to the natural polarization plane of
the incident x-ray beam, such that the scattering conditions
for reflections along (00L), (H00), or (HH0), respectively,
were close to the rotation axis of the diffractometer. In all
cases the azimuthal zero angle was defined along the (010)
reflection. When mounted in the (100) or (110) directions,
this meant scattering from the edge of a sample, with a sample
surface <100 × 100 μm2. In either case, it was not possible
to polish the surface without damaging the sample, as such
the surface was scanned for optimal diffraction intensity. The
incident energy was set at 2.828 keV or 2.967 keV and was
scanned 40 eV around each absorption edge in 0.5 eV steps
matching the resolution of the instrument. At this energy, the
focused spot size was ≈180 × 50 μm2. The polarization
of the diffracted beam was analyzed by rotating the
scattering plane of a highly oriented (002) graphite plate. The
cross-channel leakage of the analyzer crystal at this energy
was <5%.

A single crystal sample was measured continuously be-
tween 90 K and 400 K using a temperature controlled x-ray
diffractometer, at each temperature, full coverage to a high
angle of reciprocal space was obtained and refinements were
performed to determine the octahedral bond lengths at each
temperature. The refined structure parameters for 90 K, 150 K,
300 K, and 400 K are given in Table II and the temperature
dependence is shown in Fig. 2. Crystal structures for these
and additional temperatures are included in the Supplemental
Material [19]. These characterization results are in agreement
with the literature on this compound [6].
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FIG. 2. Temperature variation of refined structure parameters
from single crystal XRD measurements. (a) Lattice parameters, with
the c axis on a separate scale. (b) Octahedral distortions angles, as
defined in Fig. 3. Panels (c) and (d) show the change in Ru-O bond
distance and bond angles, respectively. Oxygen ions are labeled as in
Fig. 3.

As previously noted in Ref. [6], at low temperature the
Ru-O octahedra are distorted away from the principle axes
of the system, with the Ru-O2 bonds, pointing roughly along
the c axis (see Fig. 3), shorter than the roughly in-plane Ru-
O1 bonds. However as temperature increases the difference
between the bond lengths decreases until they become equal
just below 300 K [see Fig. 2(c). Above this temperature the
Ru-O2 bonds lengthen and become much longer than the
Ru-O1 bonds in the high temperature phase. It is worth noting
that there is no significant change in the Ru-O1 bond distance
across the MI transition and that this mostly occurs in the
apical Ru-O2 bonds.

FIG. 3. RuO6 octahedra labeling the oxygen atoms and bond
angles for Fig. 2 and for Table II.

The RuO octahedron keeps its symmetric shape throughout
the temperature range. The octahedron rotates with temper-
ature, both away from the c axis and within the plane as
illustrated in Fig. 2(b) by the octahedral distortion angle—
defined as the angle between apical Ru-O2 and the c axis,
see Fig. 3. At low temperature this angle is greater than 10
degrees but decreases with increasing temperature before a
large reduction across the MI transition.

The refined measured structure factors here are in good
agreement with those in previous reports [6,20,21]. Signifi-
cant variations are therefore happening to the atomic structure
across this temperature range and this must be taken into
account to address the changes observed in this system.

IV. RESULTS AND DISCUSSION

A. Disentangling orbital and magnetic signals

Following the theoretical scheme developed in Sec. II,
together with the calculations of Appendices A, B, and C, we
analyzed the three classes of reflections reported in Table I.
We first remark that it is not possible to disentangle the
orbital and magnetic OPs, m and Q, at on-axis reflections. For
example, because of the geometry, at the (100) reflection, we
would have [Eq. (C5)] Iσσ = 0 identically, and Iσπ = (m2

b +
Q2

ac ) cos2 θB cos2 ψ , with the same azimuth dependence for
the magnetic and orbital OPs. In particular, this does not
allow us to attribute the intensity increase below TN to a
magnetic contribution or rather to the onset of an enhanced
OO in correspondence to the magnetic transition [22]. In
order to double check this point, we need to move to off-axis
reflections.

Case mb and Qac. In Figs. 4(a) and 4(b) we represent the
rocking curve of the (013) reflection at the L2 edge, above and

FIG. 4. Rocking curve of reflections (013) and (103) at 2.967
keV, above and below TN . Crosstalk between the polarization chan-
nels has been removed in each case and intensities are corrected for
self-absorption.
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FIG. 5. Temperature dependence of the (013) reflection, showing
the absence of any practical change at TN in the σσ channel. This
implies that the corresponding orbital OP is unchanged at TN .

below TN , in both σσ and σπ channels at the azimuth ψ =
−45◦ (we defined the azimuth ψ = 0◦ when the scattering
plane contains the b axis with positive projection of the outgo-
ing wave vector on it). In this case, we get the following theo-
retical expressions [Eq. (C4)]: Iσπ = 0.65m2

b + 0.19Q2
ac and

Iσσ = 0.32Q2
ac. Above TN , the theoretical ratio Iσσ /Iσπ �

1.7 compares well with the experimental ratio ∼1.75 of
Fig. 4(b). Below TN , we find an increase in Iσπ by a factor
∼40, in correspondence of no practical increase in Iσσ . As
scattering in the σσ channel can only arise from quadrupolar
terms [23], this means that the whole variation in intensity be-
low TN is magnetic. The absence of any variation in the orbital
signal can be also extracted from the practically flat behavior
of the σσ intensity in temperature through the Neel transition
and down to the lowest temperatures, as shown in Fig. 5.

Case mc and Qab. In Figs. 4(c) and 4(d) we represent the
rocking curve of the (103) reflection at the L2 edge, above
and below TN , in both σσ and σπ channels at the azimuth
ψ = −30◦. Using Eq. (C6), we get the following theoretical
expressions (within a common multiplicative constant): Iσπ =
0.57m2

c + 2 × 10−3Q2
ab and Iσσ = 0.49Q2

ab. Above TN , the
experimental σπ signal is practically zero, confirming the
above expression, as mc is zero above TN . The σσ intensity
shows that Qab is not zero and also that it does not change
appreciably throughout the magnetic transition. This is inter-
esting because, when combined to the same behavior of the
σσ (013) reflection (see Fig. 5) and with Table I, it shows
that no orbital rearrangement takes place at TN in the square
modulus of each t2g orbital occupations. We can therefore
attribute unambiguously the increase by a factor of more than
600 in the σπ channel to the onset of a nonzero c component
of the magnetic moment. The relative ratio of the intensity
at the (013), for mb and at the (103), for mc, provides the
following ratio for the two components: mc ∼ 0.1mb.

Case ma and Qbc. The third class of reflections, sensitive
to ma and Qbc, is analyzed at the (110) reflection, as shown in

FIG. 6. Azimuthal scan of the (110) reflection, at 10 K, that
can be described only by the quadrupole term Qbc, in both σσ

and σπ channels, as shown by the ab initio FDMNES calculations
represented here as blue and red continuous lines. This points to the
absence of any magnetic component ma , whose theoretical contri-
bution from Eq. (C8) is also reproduced here, as a black continuous
line.

Fig. 6. In the σπ channel the magnetic and the quadrupole
terms have different azimuthal scans. Based on symmetry
considerations alone [see Eq. (C8)], we can write their am-
plitudes as follows: 0.37 cos(2ψ ) + 0.61 cos ψ for Qbc, and
0.37 + 0.61 cos ψ for ma . As shown in Fig. 6, the zero of
the experimental data in the σπ data around 120◦ cannot be
explained if the magnetic contribution is present. So, only
Qbc is present in the spectrum, both above and below TN .
This is further confirmed, independently, by a fit with both
ma and Qbc terms, that gives 0% weight for ma , and also
by an independent ab initio simulation through the FDMNES
program [24], that allowed us to describe the experimental
data fairly well with no magnetic components, as shown in
Fig. 6. We can conclude therefore that the component ma = 0.

B. Orbital behavior around TN and TO O

The above discussion highlighted the absence of detectable
changes around TN for the orbital degrees of freedom. Yet,
we should remind, from Table I, that in our experiments we
are sensitive only to the square moduli of the orbital fillings.
This means that we can only state that no spectral-weight
transfer takes place, e.g., from dxy subspace to (dxz, dyz)
subspace. However, we cannot exclude that a readjustment of
phases takes place with the onset of complex orbital ordering
(e.g., dxz ± idyz), driven by the spin-orbit coupling. Such a
readjustment might for example explain the increase in the
low-temperature peak associated to the apical oxygen ions in
the O K-edge x-ray absorption experiment of Ref. [14], that
was performed with circular polarization. In fact, only circu-
lar polarization is sensitive to complex linear combinations.
Specific phase relations within the t2g manifold might also
describe the relative changes between the L2 and L3 channels
(see Appendix D), analogously to what happens in iridates,
where, mutatis mutandis, L2 and L3 signals are different
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FIG. 7. Temperature dependence of several reflections in the
insulating region. (inset) Magnetic reflections associated to mb

highlighted in logarithmic scale, with a comparison (see main text
for details) to FDMNES simulations for the (013). Reflections are
measured on multiple samples using an area detector, without po-
larization analysis. Reflections (200), (100), (110), and (003) were
measured at 2.967 keV, whereas (013) and (103) were measured at
2.838 keV.

below TN , because a specific, j = 5/2, linear combination
sets in within the t2g manifold [25].

Concerning the orbital behavior at TOO , we report in Fig. 7
the temperature dependence of several reflections belonging
to each of the above three classes. In particular, we can see
that, of all reflections, only the (100) and the (013) show some
variations in intensity around TOO ≈ 260 K. The (100) reflec-
tion was already studied previously in Ref. [7] and our own
measurements are consistent with it. Shown here in logarith-
mic scale (see inset of Fig. 7), it appears as if no real transition
takes place at TOO , at least for the (013) transition, whereas
the situation is less clear for the (100), in keeping with the
previous results. It should be noted that all these reflections are
allowed in resonant conditions without the need for breaking
any symmetry, so that the assignment of TOO as an orbital-
order phase transition on such a basis should probably be rean-
alyzed. Another element in this direction is that, from Fig. 8,
even the reflection (100) does not show any deviation in its
azimuthal dependence from the expected azimuthal behavior
of the anisotropic tensor of susceptibility (ATS scattering),
in keeping with Eq. (C5). We remind that ATS scattering is
determined by the crystal space group [as in Eq. (1)].

In this view we might wonder if the continuous contraction
of the c axis, reported in Fig. 2, as well as the temperature
dependence of the Ru-O2 bond, with decreasing temperature
might lead to a bigger crystal field along the c axis, leading
in turn to a corresponding increase in the population of the
dxy orbital and therefore an increase in the empty dxz and
dyz orbitals. As REXS at both (100) and (013) reflections

FIG. 8. Variation in intensity of (100) resonant reflections with
azimuthal angle, well described by Eq. (C5) at all temperatures.

mainly probes empty dxz and dyz orbitals, as shown in Table I,
this might explain at least the (013) signal, without the need
to invoke an extra orbital-order origin for this temperature
dependence. We tried therefore to simulate the increase in
the (013) signal using FDMNES [24] with the temperature-
dependent experimental lattice parameters and the refined
atomic positions given in Table II. The result is shown in the
inset to Fig. 7. Though the trend with temperature is correct,
the theoretical calculation produces a smaller increase com-
pared to the values experimentally measured. Such findings
might be interpreted in terms of an extra orbital ordering due
to the electronic correlations (i.e., beyond the one induced
by the crystal-field variations), with the same symmetry as
the local crystal field, that cooperate to produce the intensity
increase. We can state something more precise about this extra
orbital ordering by reminding that both the (013) and (100)
reflections are sensitive to the specific linear combination
[limiting to the (dxz, dyz) subspace, see Eq. (B3)]: 0.49dxz −
0.78dyz. We might therefore conclude that the orbital that
reduces its population in the (dxz, dyz) subspace is the one that
respects the above phase condition and not the orthogonal one.
Unfortunately, the FDMNES calculation does not reproduce
such a phase condition and for this reason misses a big part of
the spectral weight. We turn therefore in the next subsection
to a model Hamiltonian that can at least well describe the
magnetic Ru-Ru correlations at TN , explaining in this way the
magnetic canting experimentally found in Sec. IV A.

C. Theoretical model of the magnetic canting below TN

In this section we investigate the magnetic anisotropy in
the antiferromagnetic phase of Ca2RuO4. We demonstrate
that the nearest neighbor Ru-Ru spin correlations are anti-
ferromagnetic with a dominant in-plane easy axis but also
a nonvanishing out-of-plane component. In particular, in the
electronic regime that is relevant for the Ca2RuO4, one finds
that there is always an out-of-plane magnetic component
which is related to the interplay between the crystal field
potential, associated with a flat octahedral configuration, and
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the atomic spin-orbit coupling. The analysis is performed by
considering both the low-energy description, after integrating
out the high-energy charge degrees of freedom, and by solving
a model Hamiltonian for a Ru-O-Ru cluster that is able to
capture all the electronic processes that contribute to set the
magnetic exchange.

Concerning the Ru-O-Ru cluster, we employ a model
Hamiltonian for the bands close to the Fermi level for the
itinerant electrons within the ruthenium-oxygen plane which
includes the interaction terms at the Ru and O sites and the
kinetic part for the Ru-O connectivity. The local ruthenium
Hamiltonian Hloc [26,27], consists of the complete Coulomb
interaction for the t2g electrons, the spin-orbit coupling, and
the tetragonal crystal field potential. The on-site Coulomb,
spin-orbit, and crystal field contributions are given by:

Hel-el(i) = U
∑

niα↑niα↓ − 2JH

∑
α<β

Siα · Siβ

+
(

U − 5JH

2

) ∑
α<β

niαniβ

+ JH

∑
α<β

d
†
iα↑d

†
iα↓diβ↑diβ↓,

HSOC(i) = λ
∑
α,σ

∑
β,σ

′
d
†
iασ (lαβ · sσσ

′ )diβσ
′ ,

Hcf (i) = εxyni,xy + εz(ni,xz + ni,yz),

Hloc(i) = HHel-el (i) + HSOC(i) + Hcf (i),

where i labels the site and α, β are indices running over the
three orbitals in the t2g sector, i.e., α, β ∈ {dxy, dxz, dyz}, and
d
†
iασ is the creation operator of an electron with spin σ at the

site i in the orbital α. The interaction is parametrized by the
intraorbital Coulomb interaction U and the Hund’s coupling
JH. The strength of the tetragonal distortions is expressed
by the amplitude δ, with δ = (εxy − εz). Furthermore, we
consider the ruthenium-oxygen hopping, which includes all
the allowed symmetry terms according to the Slater-Koster
rules [28] for a given bond connecting a ruthenium to an
oxygen atom along, say, the x direction. Here, we allow
for the relative rotation of the octahedra assuming that the
Ru-O-Ru bond can form an angle θ = (180◦ − φ). The case
with φ = 0 corresponds to the tetragonal undistorted bond,
while a nonvanishing value of φ arises when the RuO6 oc-
tahedra are rotated of the corresponding angle around the c

axis. The angular dependence of the Ru-O-Ru bond and φ =
sin−1 ( �RuO1 · (�a + �b)) are given in Table II and Fig. 2(b).

Since we are interested in the spin-spin correlations of the
nearest neighbor Ru-Ru, it is useful to introduce the total
spin operator at each Ru site as Si = Sixy + Sixz + Siyz, with
i = 1, 2 labeling the two Ru sites. To evaluate the model,
we determine the ground state for the Ru-O-Ru cluster and
the ensuing Ru-Ru spin correlations for the planar Siab and
out-of-plane components Sic, respectively. For the Ca2RuO4

system, since the octahedra become flat below the structural
transition, δ is negative and, according to first principle cal-
culations or estimates employed to reproduce the resonant
inelastic x-ray [29] and the neutron scattering spectra [30],
its amplitude is in the range ∼200–300 meV. To evaluate

the model and the magnetic properties of the ground state,
material specific values λ = 0.075 eV, U = 2 eV, and JH in
the range [0.35, 0.5] eV [14,31] are used. Similar values for δ,
U , and JH have been used for calculations [10] of electronic
spectra in Ca2RuO4 and in another class of ruthenates [32–
34], with the ratio g = δ/(2λ) in the range ∼[1.5, 2] when
modeling the spin excitations observed by neutron and Raman
scattering [30,35]. For the hopping amplitudes, we consider a
representative set of electronic parameters for the Ru-O-Ru
cluster that is consistent with typical amplitudes obtained
from first-principles calculations for the class of ruthenates
[12,29,36].

Due to the competing spin-orbit and crystal field potential,
the spin correlations are expected to be anisotropic. Indeed,
in the d4 ground-state configuration for the ruthenium, with
two electrons occupying the xy orbital stabilized by the com-
pressive tetragonal distortion, the remaining orbitals yz and
zx are mostly half filled due to Coulomb interaction, and thus
the spin-orbit lx and ly components are the dominant ones to
set the in-plane magnetic exchange. This is a general behavior
which is obtained when both varying the angle of relative
rotation of the octahedra around the c axis as well as the
crystal field splitting associated to compressed octahedra. In
Fig. 9 we report the in-plane and out-of-plane Ru-Ru spin cor-
relations evaluated in the ground state of the Ru-O-Ru cluster
for different octahedral configurations and electronic regimes
in terms of Coulomb and Hund couplings. As one can notice,
the change of the Ru-O-Ru bond angle from the tetragonal
(φ = 0) to the distorted one (φ �= 0) generally tends to de-
crease the in-plane and out-of-plane Ru-Ru spin correlations
except for the case of small compression of the octahedra.
When the ratio g gets close to one, e.g., with δ = 0.2 eV, the
evolution of the Ru-Ru spin-correlations is nonmonotonous
and for amplitude of the angles φ above ∼25◦ the in-plane and
out-of-plane components tend to a spin-isotropic limit. Such
behavior is slightly modified by a change in the ratio JH/U in
the direction of shifting the isotropic regime to higher Ru-O-
Ru bond bending when reducing JH /U . Although the regime
of Ru-O-Ru bond angles larger than ∼25◦ is not directly
relevant for the Ca2RuO4 compound, the changeover of the
spin correlations emphasizes the interplay of the compression
and rotation of the RuO6 octahedra in setting the anisotropy of
the antiferromagnet. Finally, we find that the reduction of the
Hund’s coupling generally tends to decrease the amplitude of
the nearest neighbors spin correlations (see Fig. 9).

In order to further understand the origin of the mag-
netic anisotropy, it is useful to evaluate the low-energy pro-
cesses that couple the spin and orbital moments of the Ru
atoms. In the d4 configuration at the Ru site with δ/(2λ) >

0.5 the local lowest energy states are well separated by
the rest of the spectrum [29,30] and the spin-orbital mag-
netism can be described by an effective pseudospin T = 1
Hamiltonian [30]:

Heff =
∑
〈ij〉

{Jxy[Txi · Txj + Tyi · Tyj ] + JzTzi · Tzj }

+Ez

∑
i

T 2
zi +

∑
〈ij〉

[J1xTyi · Tzj + J1yTzi · Txj

+ J1zTxi · Tyj + H.c.] (2)
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FIG. 9. In-plane (Sab) and out-of-plane (Sc) Ru-Ru spin cor-
relations evaluated in the ground state of the Ru-O-Ru cluster as
a function of the Ru-O-Ru bond angle φ at different values of
the crystal field potential for two ratio of the Hund and Coulomb
interaction, i.e., (a) JH /U = 0.175 and (b) JH /U = 0.25.

with Ez being greater than Jxy, Jz and the anisotropic cou-
plings J1x, J1y, J1z and J1α < Jxy, Jz.

The local basis {|0〉, | + 1〉, | − 1〉} for the T = 1 pseu-
dospin are expressed in terms of the original spin and orbital
eigenstates |Sz, Lz〉 of the corresponding operators with angu-
lar momentum one as [30]:

|0〉 = sin(θ0)
1√
2

[|1,−1〉 + | − 1, 1〉] − cos(θ0)|0, 0〉

| + 1〉 = cos(θ1)|1, 0〉 − sin(θ1)|0, 1〉
| − 1〉 = − cos(θ1)| − 1, 0〉 + sin(θ1)|0,−1〉

with tan(θ1) = 1

1+
√

1+g2
and tan(θ0) =

√
1 + β2 − β, with

β = 1√
2
(g − 1

2 ).
Since the anisotropic splitting Ez is the largest energy

scale, then the ground state is mainly due to pseudospin
lying on the xy plane. For such configurations, one can
demonstrate that the spin correlations are also made of only

in-plane components. However, the terms proportional to J1x

and J1y in Heff induce out-of-plane pseudospin correlations
which in turn yield antiferromagnetic spin correlations con-
sistently with the analysis performed on the Ru-O-Ru cluster.
In particular, considering the ground state configuration of
the model Hamiltonian Heff , with constraints consistent with
the second-order perturbation theory, one can show that the
nearest neighbor in-plane Ru-Ru spin correlations S(ab)ij
are antiferromagnetic and proportional to ∼−(cos θ1 cos θ0 +

1√
2

sin θ1 sin θ0)2, while the out-of-plane spin correlations

S(c)ij scales as ∼−(cos θ1 cos θ0)2. As one can notice, the
sign of the spin correlations is always negative, independently
of the amplitudes of the electronic parameters. It is important
to point out that the analysis performed on the Ru-O-Ru bond
applies also when considering a planar cluster with larger
size. Since there are no frustrating interactions, no qualitative
variations in the character of the spin correlations and of the
magnetic anisotropy are expected.

Finally [37], we would like to highlight the different
physical mechanisms acting in the cases of Ca2RuO4 and of
the superconducting cuprate parent compound La2CuO4. The
latter is also characterized by a tilting along the c axis of
the in-plane magnetic moment [38]. In spite of the apparent
analogy, however, the two cases are different for the following
three reasons: (1) The tilting along the c axis of the magnetic
moment in La2CuO4 leads to a ferromagnetic component
along the c axis, as measured by XMCD [39]. This is not
the case for Ca2RuO4, as the c component of the magnetic
moment is compensated at each ab plane (if it is +mc at Ru1,
then it is −mc at Ru4, see Sec. II). (2) Copper magnetism in
La2CuO4 mainly takes place through the spin of the single
dx2−y2 hole and the mechanism behind the canting is a pure
spin Dzjaloshinskii-Moriya effect [38]. In our case, as ex-
plained above, orbital degrees of freedom cannot be neglected,
and the coupled spin-orbital Hamiltonian, Heff , is necessary to
explain the sign of the coupling through the entanglement of
the orbital components, a degree of freedom which is absent
in the La2CuO4 case. (3) As described in Sec. II, in Ca2RuO4

the canting is allowed by the point symmetry (1), whereas this
is not the case for the Cu point symmetry in La2CuO4 at room
temperature, which is 2/m (space group N. 64, Cmca [40]).

V. CONCLUSIONS

An accurate description of the magnetic and orbital pattern
is crucial in a complex system as Ca2RuO4 presenting such an
intricate interplay of the orbital and magnetic degrees of free-
dom. In this paper we comprehensively explored the magnetic
and orbital ordering in an extremely pure sample of Ca2RuO4,
clarifying the relationship between each accessible observable
and the scattering condition in the dipolar approximation. Our
analysis indicates that the magnetic moment is not confined
along the b axis as previously suggested but a fraction of
about one tenth of the moment points along the c axis. This
antiferromagnetic canting is symmetry allowed and can be
quantitatively understood considering the theoretical model
introduced in Sec. IV C: Antiferromagnetic spin correlations
between nearest neighbor Ru-Ru ions, combined with an
interplay between the crystal field potential and spin-orbit
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coupling, lead to an always out-of-plane magnetic component
as well as to a dominant in-plane easy axis. It was not
necessary to invoke any change in the orbital arrangement
through TAF to model the experimental findings. It is in-
teresting to remark that the theoretical findings of in-plane
antiferromagnetic correlations, combined with the constraint
of a twofold symmetry Â2 around the a axis for the two
nearest-neighbor in-plane Ru sites, necessarily implies that
the ma component of the magnetic moment along the a axis is
zero, as experimentally found. In fact, as shown in Sec. II, the
twofold symmetry axis Â2 leads to antiferromagnetic corre-
lations for the mb component and ferromagnetic correlations
for the ma component, the latter being excluded by the model
Hamiltonian. This leads to a zero value for ma .

As detailed in Sec. IV B, no symmetry breaking was mea-
sured near TOO , related to the signal increase in the (013)
and (100) reflections. This aspect, together with the different
behaviors of two reflections (as seen from the logarithmic
scale) probing the same tensors across this “transition,” makes
the origin of this signal unclear. Even if it would be possible to
explain qualitatively the signal as purely due to the contraction
of the octahedra along the c axis, the variation in amplitude
obtained from our simulations quantitatively disagrees with
the experimental observation, suggesting that probably a com-
plex phase relation within the (dxz, dyz) manifold is possibly
at the origin of the experimental observation.
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APPENDIX A: STRUCTURE FACTOR
AND ORBITAL ROTATION

In the resonant regime the elastic scattering amplitude,
A(�q, ω), can be written in terms of the atomic scattering
factors (ASF), fj (ω), of the atoms at positions �ρj in the unit
cell as:

A(�q, ω) = �j e
i �q· �ρj fj (ω), (A1)

where h̄�q is the momentum transfer in the scattering process,
h̄ω the incoming and outgoing photon energy, and the sum
is over the four atoms in the orthorhombic primitive cell.
The ASF is a second-order process in the electron-radiation
interaction, whose explicit expression, for core resonances in
the dipole-dipole approximation and linearly scattered polar-
ization, reads, in atomic units:

fj (ω) = (h̄ω)2
∑

n

〈
�

(j )
0

∣∣�εs · �r|�n〉〈�n|�εi · �r∣∣� (j )
0

〉
h̄ω − (En − E0) − i�n

, (A2)

where |� (j )
0 〉 is the ground state, with the origin taken on the

j th scattering atom, and E0 its energy; the sum is over all the
excited states |�n〉, with corresponding energies En. Finally

�n is a damping term that takes into account the core-hole and
the finite lifetime of the excited states |�n〉. The indices i, s

refer to the incident (scattered) properties of the polarization
�ε and r is the coordinate of the electron in the reference frame
of the scattering atom. As the matrix element in Eq. (A2)
are independent of the photon polarization, the latter can be
factorized, so as to obtain:

fj (ω) = �αβεs
αεi

βf
αβ

j (ω), (A3)

where we introduced the matter-tensor f
αβ

j (ω) ≡
〈� (j )

0 | ∑n

rα |�n〉〈�n|rβ

h̄ω−(En−E0 )−i�n
|� (j )

0 〉 that couples scalarly to the

polarization tensor, εs
αεi

β (here α, β are cartesian coordinates).
The matter tensors at the four equivalent atomic sites j

belonging to the 4a Wyckoff positions are related to one
another by the symmetry operations of Pbca, as listed in the
main text.

The tensor f
αβ

j in the dipole-dipole channel is composed of
three irreducible parts [23]: a scalar part, not contributing to
the analyzed Bragg-forbidden reflections; the antisymmetric
part (an axial vector), proportional to the components of the
magnetic moment, ma , mb, mc along the three crystallo-
graphic axes; the traceless symmetric part, five components
(Qab, Qac, Qbc, Q2c2−a2−b2 , Qa2−b2 ) related to the anisotropy
at the Ru site, proportional, at the t2g energies, to the degree
of OO and, at the eg energies, to the crystal field of the
surrounding oxygen octahedron.

From Eq. (1), we get the following conclusions, sum-
marized in Table I: (1) Reflections with k + l = odd and
h + l = even. In this case, e.g., at the (103): F103 =
(1 + Ĉ2)(1 − B̂2)f αβ

1 , and only the mc component can be
detected, as it changes sign under B̂2 and does not under
Ĉ2. For the same reason, the only nonzero component of
the electric quadrupole, measuring at L2,3 edges the orbital
anisotropy, is Qab.

(2) Reflections with k + l = even and h + l = odd. In
this case, e.g., at the (013): F013 = (1 − Ĉ2)(1 + B̂2)f αβ

1 . The
only nonzero components are mb and Qac, that change sign
under Ĉ2 and does not under B̂2.

(3) Reflections with k + l = odd and h + l = odd. In this
case, e.g., at the (110): F110 = (1 − Ĉ2)(1 − B̂2)f αβ

1 . The
only nonzero components in this case are ma and Qbc, that
change sign under both Ĉ2 and B̂2.

Interestingly, we can perform the same analysis of the main
text for Pbc′a′ magnetic space group (also known in the
literature as B-centered magnetic structure), corresponding to
the 1% Ti-doped compound [17]. Clearly, the only difference
appears for magnetic reflections, due to the action of the T̂

operator that reverses the magnetic signal associated to Ĉ2 and
B̂2 operations. We get in this case:

Fhkl = f1 + (−)h+lf2 + (−)k+lf3 + (−)h+kf4

= (1 + (−)h+l T̂ Ĉ2)(1 + (−)k+l T̂ B̂2)f αβ

1 . (A4)

Therefore:
(1) Reflections with h + l = even and k + l = odd. In

this case: FA
103 = (1 + T̂ Ĉ2)(1 − T̂ B̂2)f αβ

1 . The electric
quadrupole, nonmagnetic, behaves like the Pbca case of the
main text (Qab). The magnetic channel, instead, is propor-
tional to mb, that changes sign under T̂ B̂2 and does not change
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sign under T̂ Ĉ2. We remark the difference with the Pbca case,
where mc was detected at these reflections. This implies that a
magnetic signal at the (103) can either be a consequence of an
mc component in a 100% Pbca crystal, or a ‘contamination’
of a Pbc′a′ component. It was possible however to settle
unambiguously the question in favor of Pbca by performing
an azimuthal scan. The Pbca case behaves like 0.44 sin ψ −
0.535, as experimentally found, whereas the Pbc′a′ case
would have led to 0.44 cos ψ .

(2) Reflections with k + l = even and h + l = odd. In
this case: FA

013 = (1 − T̂ Ĉ2)(1 + T̂ B̂2)f αβ

1 . The electric
quadrupole, nonmagnetic, behaves like the Pbca case of the
main text (Qac). The magnetic channel, instead, is propor-
tional to mc, that changes sign under T̂ Ĉ2 and does not change
sign under T̂ B̂2.

(3) Reflections with k + l = odd and h + l = odd. In
this case: FA

110 = (1 − T̂ Ĉ2)(1 − T̂ B̂2)f αβ

1 . The electric
quadrupole, nonmagnetic, behaves like the Pbca case of the
main text (Qbc). In the magnetic channel, instead, no signal is
allowed, either of the two factors being zero.

APPENDIX B: RELATION OF REXS
CRYSTALLOGRAPHIC TENSORS AND 4d ORBITALS

The electric-quadrupole expectation values derived in the
main text are related to the crystallographic axes of the Pbca

setting. However, in all theoretical descriptions of the system,
the 4d orbitals involved are related to the local octahedral
frame around Ru ions. We call it the xyz frame (orthonormal,
see Fig. 1). We remark that here we do not consider the extra
tilting of the apical oxygens compared to the plane rotation.

The rotation to pass from the abc frame to the xyz

frame is identified by the three Euler angles α, β, and γ

given by:

(i) α = −π/4 is the rotation angle around the z axis so
as to bring the y axis along the line of node of the two
frames (xyz and abc). Notice that this rotation can be ±π/4
according to what is the original choice of x and y in the local
frame (we have chosen the b axis pointing in the positive xy

directions, see Fig. 1). The two choices are not equivalent, the
system being orthorhombic and not tetragonal.

(ii) β ∼ −11π/180 is the rotation angle around the line
of nodes of the two frames that leads z to coincide with c.
It corresponds to the angle called θ in Ref. [6], the angle of
buckling of the oxygen plane with respect to the �a − �b plane
of the Pbca setting. Notice that, as stated above, we consider
at this stage just one rigid rotation of the octahedra, thereby
neglecting the small difference between the rotation of the
4 planar oxygen and of the 2 apical oxygen ions. We also
notice that the angle β is temperature dependent, going from
∼−9π/180 to ∼−13π/180.

(iii) γ � −11.88π/180 is the final rotation around the
c axis. It corresponds to the angle φ in Ref. [6], which is
temperature independent.

Notice that all rotations are negative, because clockwise.
All spherical harmonics rotate through Wigner’s matrices
[42]:

Ylm(θ, φ) =
∑
m′

Ylm′ (θ ′, φ′)e−im′αdl
m′,m(β )e−imγ , (B1)

where dl
m′,m(β ) are the reduced Wigner matrices [42]. In this

way, reminding that the electric-quadrupole REXS expecta-
tion values Q behave like rank-two spherical tensors and in
the hypothesis (see below) that the only available density of
states with l = 2 character originates from 4d Ru orbitals,
we obtain the following expressions in terms of the local 4d

orbitals of Ru ions:

Qbc = d3z2−r2

√
3 sin β cos β sin γ + dyz(cos α cos β cos γ − sin α(2 cos2 β − 1) sin γ )

− dxz(sin α cos β cos γ + cos α(2 cos2 β − 1) sin γ ) + dxy (cos(2α) sin β cos γ − sin(2α) sin β cos β sin γ )

− dx2−y2 (cos(2α) sin β cos β sin γ + sin(2α) sin β cos γ )

� 0.54dyz + 0.81dxz − 0.04dxy + 0.20dx2−y2 + 0.07d3z2−r2 (B2)

Qac = d3z2−r2

√
3 sin β cos β cos γ + dyz(sin α(2 cos2 β − 1) cos γ + cos α cos β sin γ )

+ dxz(cos α(2 cos2 β − 1) cos γ − sin α cos β sin γ ) + dxy (cos(2α) sin β sin γ − sin(2α) sin β cos β cos γ )

+ dx2−y2 (cos(2α) sin β cos β cos γ − sin(2α) sin β sin γ )

� −0.78dyz + 0.49dxz + 0.20dxy − 0.04dx2−y2 + 0.35d3z2−r2 (B3)

Qab = d3z2−r2

√
3

2
sin2 β sin(2γ ) + dyz(sin α sin β cos β sin(2γ ) − cos α sin β cos(2γ ))

+ dxz(cos α sin β cos β sin(2γ ) + sin α sin β cos(2γ )) + dxy

(
cos(2α) cos β cos(2γ ) − sin(2α)

1 + cos2 β

2
sin(2γ )

)

− dx2−y2

(
cos(2α)

1 + cos2 β

2
sin(2γ ) + sin(2α) cos β cos(2γ )

)

� +0.07dyz + 0.177dxz − 0.40dxy − 0.90dx2−y2 − 0.018d3z2−r2 . (B4)

Concerning the above hypothesis of equating the quadrupolar components to Ru 4d orbitals, we remind that it corresponds to
neglecting possible DOS projections of ligand O 2p states with l = 2 character on the central Ru. From the previous expressions,
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it is possible to obtain the values of the intensities reported in Table I:

|Qac|2 → 0.61|dyz|2 + 0.24|dxz|2 + 0.04|dxy |2 + 0.12|d3z2−r2 |2

|Qbc|2 → 0.29|dyz|2 + 0.66|dxz|2 + 0.04|dx2−y2 |2 + 0.01|d3z2−r2 |2

|Qab|2 → 0.005|dyz|2 + 0.03|dxz|2 + 0.16|dxy |2 + 0.81|dx2−y2 |2. (B5)

Unfortunately, the absence of any interference between magnetic and orbital OP makes all possible reflections insensitive to
the difference between d1 = −(dxz + idyz)/

√
2 and d−1 = −(dxz − idyz)/

√
2, which would have been an interesting parameter

to probe, in the light of the possible coupling of orbital and spin magnetic moments. In fact, the previous relations can also be
written as:

|Qac|2 → 0.85(|d1|2 + |d−1|2) + 0.04|dxy |2 + 0.12|d3z2−r2 |2

|Qbc|2 → 0.95(|d1|2 + |d−1|2) + 0.04|dx2−y2 |2 + 0.01|d3z2−r2 |2

|Qab|2 → 0.04(|d1|2 + |d−1|2) + 0.04|dxy |2 + 0.92|dx2−y2 |2. (B6)

However, it is still possible to follow the relative evolution of the dxy orbital compared to the set (dxz; dyz) [or (d1; d−1)] within
the t2g manifold at reflections sensitive to |Qac|2 and |Qbc|2.

APPENDIX C: AZIMUTH SCAN OF SELECTED
REFLECTIONS: DISENTANGLING MAGNETIC

AND ORBITAL OPs

All azimuth scans are referred to ψ = 0 when the scat-
tering plane contains the b-crystallographic axis and the
projection of the scattered wave-vector �k′ along this axis is
positive. In the case of the (103) reflection, the vector �Q =
(103) makes an angle β � 36◦ with the c-crystallographic
axis. In the reference frame where �Q is the z axis and the
x axis is along the b-crystallographic axis, the polarization
vectors can be written as: �εσ = (sin ψ, cos ψ, 0) and �επs

=
(− sin θB cos ψ, sin θB sin ψ, cos θB ), if we suppose to rotate
the sample counterclockwise with respect to the beam around
the �Q vector. The rotation matrix to pass from the previous
reference frame to the crystal reference frame is:⎛

⎝0 − cos β sin β

1 0 0
0 sin β cos β

⎞
⎠.

We get therefore the following expressions for the
polarization components once rotated in the abc-crystal
frame, where Eq. (1) applies: �εcr

σ = (− cos β cos ψ, sin ψ,

sin β cos ψ ) and �εcr
πs

= (− sin θB cos β sin ψ + cos θB sin β,

− sin θB cos ψ, sin θB sin β sin ψ + cos θB cos β ). As in the
crystallographic frame we know from Eq. (1) that Qxy and
mc couple scalarly to the polarization, it means that they have
the following polarization dependence:

Qσπs

xy ∝ (
εcr
σ

)
x

(
εcr
πs

)
y
+ (

εcr
σ

)
y

(
εcr
πs

)
x

� 0.535 cos(2ψ ) + 0.44 sin ψ (C1)

Qσσs

xy ∝ 2
(
εcr
σ

)
x

(
εcr
σ

)
y

� −0.75 sin(2ψ ) (C2)

mσπs

z ∝ (
εcr
σ

)
x

(
εcr
πs

)
y
− (

εcr
σ

)
y

(
εcr
πs

)
x

� 0.535 − 0.44 sin ψ

(C3)

with θB ∼ 41.19◦ at the (103) for the L2-edge energy.
From these amplitudes, we can get the azimuth scan of
the intensity in both the σσ and σπs channels in terms of

the square of the OP mc and Qab (reminding that mag-
netic and nonmagnetic quantities do not interfere in this
case): I

σπs

103 ∝ (0.535 cos(2ψ ) + 0.44 sin ψ )2Q2
ab + (0.535 −

0.44 sin ψ )2m2
c and I σσ

103 ∝ 0.56 sin2(2ψ )Q2
ab

We remark on the fourfold dependence of the OO term, in
contrast to the twofold dependence of the magnetic moment.
This is common to all the reflections, calculated below, ex-
cept for on-axis reflections, where both terms have the same
twofold dependence, so that their disentanglement through the
azimuth scan is no more possible. This aspect becomes clear
by thinking to the appearance, of, e.g., the dac orbital and the
mb magnetic moment if seen from the (100) direction: Both
have the same twofold dependence. We remark that Eq. (1)
does not allow us to detect, e.g., the dac orbital and the mb

magnetic moment at the (001) direction, the only on-axis
direction where they would appear different. Indeed, dac and
mb can only be seen at (2n + 1,0,0) reflections; dbc and ma

can only be seen at (0,0,2n + 1) reflections and dab and mc

can only be seen from (0,2n + 1,0) reflections. In all cases
they appear with the same twofold azimuth scan at these
reflections.

We list here the azimuth dependence for all reflections
given in Table I, deduced on the basis of analogous calcula-
tions as above, with the angle θB corresponding to the L2-edge
energy:

I
σπs

013 ∝ (0.37 cos(2ψ ) + 0.62 cos ψ )2Q2
ac

+ (0.37 + 0.62 cos ψ )2m2
b;

I σσ
013 ∝ 0.32 sin2(2ψ )Q2

ac; (C4)

I
σπs

100 ∝ (
Q2

ac + m2
b

)
cos2 θB cos2 ψ ; I σσ

100 = 0; (C5)

I
σπs

103 ∝ (0.535 cos(2ψ ) + 0.44 sin ψ )2Q2
ab

+ (0.535 − 0.44 sin ψ )2m2
c ;

I σσ
103 ∝ 0.56 sin2(2ψ )Q2

ab; (C6)

I
σπs

010 ∝ (
Q2

ab + m2
c

)
cos2 θB cos2 ψ ; I σσ

010 = 0; (C7)
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I
σπs

110 ∝ (0.37 cos(2ψ ) + 0.61 cos ψ )2Q2
bc

+ (0.37 + 0.61 cos ψ )2m2
a;

I σσ
110 ∝ 0.48 sin2(2ψ )Q2

bc; (C8)

I
σπs

003 ∝ (
Q2

bc + m2
a

)
cos2 θB sin2 ψ Iσσ

003 = 0. (C9)

As stated in the main text, the σσ channel is zero for all
on-axis reflections. It is therefore not possible to disentangle
magnetic and orbital OP at these reflections where they have
the same azimuth dependence in the σπ channel. For the same
reasons, it is not possible to infer, from the equality of the σπ

scattering with the total scattering, that these reflections are
purely magnetic.

APPENDIX D: REXS EXPERIMENTAL RESULTS
AND NUMERICAL FDMNES ANALYSIS

Resonant x-ray diffraction is particularly sensitive to elec-
tronic and magnetic ordering through the excitation of core-
state electrons into unoccupied electronic states. In the case
of the Ru L2,3 edges these unoccupied states are 4d or-
bitals. Hence resonant scattering is potentially sensitive to
the preferential occupancy of specific 4d orbitals. Resonant

FIG. 10. Dependence of resonant intensity at several reflections
at the Ru L3 absorption edge. Each measurement is made at the
specified azimuth using an area detector, summing both σσ and
σπ channels and corrected for self-absorption. The absorption cross
section, μ, is also shown in (a), determined from the fluorescence.
From it, the approximate position of t2g and eg orbitals is highlighted
by vertical lines. The log scale inset in (c) indicates the remain-
ing resonant intensity above the magnetic transition on the (013)
reflection.

reflections were only found for a propagation vector τ =
(0, 0, 0) in the Ca2RuO4 lattice, indicating no period doubling
or incommensurate ordering. Figures 10 and 11 show the
resonant spectra observed in the rotated σπ channel at three
�Q values matching the extinction rules of the Pbca space

group at the Ru L3 (2.828 keV) and L2 edges (2.967 keV),
respectively. At all reflections, two principal resonances are
observed around the resonant edge, where the lower peak
associates with t2g excitations and the higher energy peak
associates with eg excitations. A few of the reflections show
an additional broad resonance at higher energy, around 10 eV
above the edge, whose origin could not be attributed by our
numerical simulations.

Each of the reflections shown is sensitive to a different
projection of the magnetic and orbital components, indicated
in Table I. The temperature dependence of these different
energy spectra is shown as overlapping lines in Figs. 10
and 11.

To determine the azimuthal dependence of the reflections,
two separate samples were aligned with either the 001 or 100
directions within the scattering plane of the diffractometer,
allowing rotations about the azimuth of reflections (003) and
(100), respectively. The intensity variation in each case is

FIG. 11. Dependence of resonant intensity at several reflections
at the Ru L2 absorption edge. Each measurement is made at the
specified azimuth using an area detector, summing both σσ and
σπ channels and corrected for self-absorption. The absorption cross
section, μ, is also shown in (a), determined from the fluorescence.
From it, the approximate position of t2g and eg orbitals is highlighted
by vertical lines. The log scale inset in (c) indicates the remain-
ing resonant intensity above the magnetic transition on the (013)
reflection.
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FIG. 12. Variation in intensity of (003) resonant reflection with
azimuthal angle in σπ rotated channel. The azimuthal reference is
along the (010), meaning that the angle is zero when the b axis is
within the scattering plane of the diffractometer.

presented in Fig. 12 for the (003) and in Fig. 8 for the (100).
In both cases the azimuthal variations exhibit a 180-degree
periodicity although the maxima are out of phase by 90 de-
grees between the two reflections, in agreement with Eqs. (C9)
and (C5), respectively. This periodicity is independent of
temperature in both reflections, only the maximum height
depends on temperature.

As described in Appendix C above, the azimuthal peri-
odicity of any reflection along a principal direction is not
dependent on the source of the scattering (whether magnetic
or orbital) and cannot be used to separate magnetic and

FIG. 13. Variation in intensity around the azimuth of the (013)
off-specular reflection. Both the as-measured and absorption cor-
rected intensities are shown, highlighting the significance of the cor-
rection. The corrected intensity is very close to the signal expected
from a pure magnetic moment along the mb direction.

orbital contributions to the scattering. Reflections that are
not along principal directions are instead separately sensitive
to the magnetic moments and or orbital anisotropies and
produce distinctly different forms depending on the origin of
the signal. Measurements of the off-specular reflection (013)
were taken from a sample with a 001 surface. To correct for
self-absorption, the measured intensities are divided by the
factor:

A(Q, ψ ) = 1

μ

[
1 + sin(φ1(Q, ψ ))

sin(φ2(Q, ψ ))

]−1

, (D1)

where μ is the absorption coefficient and the angles φ1 and
φ2 are the entrance and exiting angles to the sample surface,
respectively. The measured and corrected azimuthal depen-
dence of the (013) reflection is given in Fig. 13, where we
also show the expected shape for magnetic (mb) and orbital
(Qbc) scattering. The form of the measured azimuthal scan
can be very well fitted by an almost purely magnetic signal, in
keeping with the conclusions of Sec. IV A.

FIG. 14. Calculations of the resonant scattering arising solely
from the effect of the atomic structure, as calculated by the FDMNES
code. The σπ resonant spectra of the three measured reflections is
shown as light-to-dark lines for low-to-high temperatures, respec-
tively, with the calculated intensity at the t2g and eg energies given
in the inset.
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Numerical calculations of the resonant spectra were made
using the ab initio FDMNES code [24]. The calculations were
performed in the dipolar (E1-E1) approximation using the
atomic coordinates refined from single crystal x-ray diffrac-
tion in Sec. III. No magnetic or orbital ordering was included
in the calculation. In this way we can infer that the resonant
spectra produced are purely a result of the anisotropic tensor
of susceptibility, or ATS scattering as it is commonly known.
The calculated resonant scattering spectra for the main reflec-
tions measured are shown in Fig. 14. Above the magnetic
and orbital transitions, there is good qualitative agreement

between the calculations and the measured spectra in Fig. 10.
The temperature dependence of these spectra, only due to the
changing atomic coordinates of oxygen and calcium, shows a
gradual increase in peak height with decreasing temperature.
Such an increase is qualitatively similar to the increase seen at
the (013) or (100) reflections, and yet not observed at the (103)
or (003) reflections. In particular, no sharp change in peak
height similar to the intensity change for the (100) reflection
at 260 K was reproduced. Again, as for the main conclusion
of Sec. IV B, this points to a physical mechanism that is not
purely an effect of atomic rearrangements and distortions.
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[22] S. B. Wilkins, N. Stojić, T. A. W. Beale, N. Binggeli, C. W. M.
Castleton, P. Bencok, D. Prabhakaran, A. T. Boothroyd, P. D.
Hatton, and M. Altarelli, Phys. Rev. B 71, 245102 (2005).

[23] S. Di Matteo, J. Phys. D 45, 163001 (2012).
[24] O. Bunau and Y. Joly, J. Phys.: Condens. Matter 21, 345501

(2009).
[25] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H.

Takagi, and T. Arima, Science 323, 1329 (2009).
[26] M. Cuoco, F. Forte, and C. Noce, Phys. Rev. B 73, 094428

(2006).
[27] M. Cuoco, F. Forte, and C. Noce, Phys. Rev. B 74, 195124

(2006).
[28] W. Harrison, Electronic Structure and the Properties of Solids:

The Physics of the Chemical Bond (Dover Publications, New
York, USA, 1989).

[29] L. Das, F. Forte, R. Fittipaldi, C. G. Fatuzzo, V. Granata, O.
Ivashko, M. Horio, F. Schindler, M. Dantz, Y. Tseng, D. E. Mc-
Nally, H. M. Rønnow, W. Wan, N. B. Christensen, J. Pelliciari,
P. Olalde-Velasco, N. Kikugawa, T. Neupert, A. Vecchione, T.
Schmitt, M. Cuoco, and J. Chang, Phys. Rev. X 8, 011048
(2018).

[30] A. Jain, M. Krautloher, J. Porras, G. H. Ryu, D. P. Chen, D. L.
Abernathy, J. T. Park, A. Ivanov, J. Chaloupka, G. Khaliullin,
B. Keimer, and B. J. Kim, Nat. Phys. 13, 633 (2017).

[31] C. N. Veenstra, Z. H. Zhu, M. Raichle, B. M. Ludbrook,
A. Nicolaou, B. Slomski, G. Landolt, S. Kittaka, Y. Maeno,
J. H. Dil, I. S. Elfimov, M. W. Haverkort, and A. Damascelli,
Phys. Rev. Lett. 112, 127002 (2014).

[32] V. Granata, L. Capogna, F. Forte, M.-b. Lepetit, R. Fittipaldi, A.
Stunault, M. Cuoco, and A. Vecchione, Phys. Rev. B 93, 115128
(2016).

[33] F. Forte, M. Cuoco, and C. Noce, Phys. Rev. B 82, 155104
(2010).

[34] M. Malvestuto, V. Capogrosso, E. Carleschi, L. Galli, E.
Gorelov, E. Pavarini, R. Fittipaldi, F. Forte, M. Cuoco, A.
Vecchione, and F. Parmigiani, Phys. Rev. B 88, 195143 (2013).

[35] S.-M. Souliou, J. Chaloupka, G. Khaliullin, G. Ryu, A. Jain,
B. J. Kim, M. LeTacon, and B. Keimer, Phys. Rev. Lett. 119,
067201 (2017).

125142-14

https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1143/JPSJ.66.1868
https://doi.org/10.1143/JPSJ.66.1868
https://doi.org/10.1143/JPSJ.66.1868
https://doi.org/10.1143/JPSJ.66.1868
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1140/epjb/e20020021
https://doi.org/10.1140/epjb/e20020021
https://doi.org/10.1140/epjb/e20020021
https://doi.org/10.1140/epjb/e20020021
https://doi.org/10.1103/PhysRevB.84.235136
https://doi.org/10.1103/PhysRevB.84.235136
https://doi.org/10.1103/PhysRevB.84.235136
https://doi.org/10.1103/PhysRevB.84.235136
https://doi.org/10.1038/ncomms15176
https://doi.org/10.1038/ncomms15176
https://doi.org/10.1038/ncomms15176
https://doi.org/10.1038/ncomms15176
https://doi.org/10.1103/PhysRevLett.98.216403
https://doi.org/10.1103/PhysRevLett.98.216403
https://doi.org/10.1103/PhysRevLett.98.216403
https://doi.org/10.1103/PhysRevLett.98.216403
https://doi.org/10.1103/PhysRevLett.104.226401
https://doi.org/10.1103/PhysRevLett.104.226401
https://doi.org/10.1103/PhysRevLett.104.226401
https://doi.org/10.1103/PhysRevLett.104.226401
https://doi.org/10.1103/PhysRevB.95.075145
https://doi.org/10.1103/PhysRevB.95.075145
https://doi.org/10.1103/PhysRevB.95.075145
https://doi.org/10.1103/PhysRevB.95.075145
https://doi.org/10.1103/PhysRevLett.87.077202
https://doi.org/10.1103/PhysRevLett.87.077202
https://doi.org/10.1103/PhysRevLett.87.077202
https://doi.org/10.1103/PhysRevLett.87.077202
https://doi.org/10.1103/PhysRevLett.115.247201
https://doi.org/10.1103/PhysRevLett.115.247201
https://doi.org/10.1103/PhysRevLett.115.247201
https://doi.org/10.1103/PhysRevLett.115.247201
https://doi.org/10.1103/PhysRevB.95.214408
https://doi.org/10.1103/PhysRevB.95.214408
https://doi.org/10.1103/PhysRevB.95.214408
https://doi.org/10.1103/PhysRevB.95.214408
https://doi.org/10.1103/PhysRevB.98.014429
https://doi.org/10.1103/PhysRevB.98.014429
https://doi.org/10.1103/PhysRevB.98.014429
https://doi.org/10.1103/PhysRevB.98.014429
http://link.aps.org/supplemental/10.1103/PhysRevB.98.125142
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.71.245102
https://doi.org/10.1103/PhysRevB.71.245102
https://doi.org/10.1103/PhysRevB.71.245102
https://doi.org/10.1103/PhysRevB.71.245102
https://doi.org/10.1088/0022-3727/45/16/163001
https://doi.org/10.1088/0022-3727/45/16/163001
https://doi.org/10.1088/0022-3727/45/16/163001
https://doi.org/10.1088/0022-3727/45/16/163001
https://doi.org/10.1088/0953-8984/21/34/345501
https://doi.org/10.1088/0953-8984/21/34/345501
https://doi.org/10.1088/0953-8984/21/34/345501
https://doi.org/10.1088/0953-8984/21/34/345501
https://doi.org/10.1126/science.1167106
https://doi.org/10.1126/science.1167106
https://doi.org/10.1126/science.1167106
https://doi.org/10.1126/science.1167106
https://doi.org/10.1103/PhysRevB.73.094428
https://doi.org/10.1103/PhysRevB.73.094428
https://doi.org/10.1103/PhysRevB.73.094428
https://doi.org/10.1103/PhysRevB.73.094428
https://doi.org/10.1103/PhysRevB.74.195124
https://doi.org/10.1103/PhysRevB.74.195124
https://doi.org/10.1103/PhysRevB.74.195124
https://doi.org/10.1103/PhysRevB.74.195124
https://doi.org/10.1103/PhysRevX.8.011048
https://doi.org/10.1103/PhysRevX.8.011048
https://doi.org/10.1103/PhysRevX.8.011048
https://doi.org/10.1103/PhysRevX.8.011048
https://doi.org/10.1038/nphys4077
https://doi.org/10.1038/nphys4077
https://doi.org/10.1038/nphys4077
https://doi.org/10.1038/nphys4077
https://doi.org/10.1103/PhysRevLett.112.127002
https://doi.org/10.1103/PhysRevLett.112.127002
https://doi.org/10.1103/PhysRevLett.112.127002
https://doi.org/10.1103/PhysRevLett.112.127002
https://doi.org/10.1103/PhysRevB.93.115128
https://doi.org/10.1103/PhysRevB.93.115128
https://doi.org/10.1103/PhysRevB.93.115128
https://doi.org/10.1103/PhysRevB.93.115128
https://doi.org/10.1103/PhysRevB.82.155104
https://doi.org/10.1103/PhysRevB.82.155104
https://doi.org/10.1103/PhysRevB.82.155104
https://doi.org/10.1103/PhysRevB.82.155104
https://doi.org/10.1103/PhysRevB.88.195143
https://doi.org/10.1103/PhysRevB.88.195143
https://doi.org/10.1103/PhysRevB.88.195143
https://doi.org/10.1103/PhysRevB.88.195143
https://doi.org/10.1103/PhysRevLett.119.067201
https://doi.org/10.1103/PhysRevLett.119.067201
https://doi.org/10.1103/PhysRevLett.119.067201
https://doi.org/10.1103/PhysRevLett.119.067201


MAGNETIC ANISOTROPY AND ORBITAL ORDERING IN … PHYSICAL REVIEW B 98, 125142 (2018)

[36] Z. Fang, N. Nagaosa, and K. Terakura, Phys. Rev. B 69, 045116
(2004).

[37] We thank an anonymous referee for suggesting such a
comparison.

[38] L. Benfatto and M. B. Silva Neto, Phys. Rev. B 74, 024415
(2006).

[39] G. M. De Luca, G. Ghiringhelli, M. Moretti Sala, S. Di Mat-
teo, M. W. Haverkort, H. Berger, V. Bisogni, J. C. Cezar,

N. B. Brookes, and M. Salluzzo, Phys. Rev. B 82, 214504
(2010).

[40] D. Vaknin, S. K. Sinha, C. Stassis, L. L. Miller, and D. C.
Johnston, Phys. Rev. B 41, 1926 (1990).

[41] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
[42] D. Varshalovich, A. Moskalev, and V. Khersonskii, Quantum

Theory Of Angular Momemtum (World Scientific Publishing
Company, Singapore, 1988).

125142-15

https://doi.org/10.1103/PhysRevB.69.045116
https://doi.org/10.1103/PhysRevB.69.045116
https://doi.org/10.1103/PhysRevB.69.045116
https://doi.org/10.1103/PhysRevB.69.045116
https://doi.org/10.1103/PhysRevB.74.024415
https://doi.org/10.1103/PhysRevB.74.024415
https://doi.org/10.1103/PhysRevB.74.024415
https://doi.org/10.1103/PhysRevB.74.024415
https://doi.org/10.1103/PhysRevB.82.214504
https://doi.org/10.1103/PhysRevB.82.214504
https://doi.org/10.1103/PhysRevB.82.214504
https://doi.org/10.1103/PhysRevB.82.214504
https://doi.org/10.1103/PhysRevB.41.1926
https://doi.org/10.1103/PhysRevB.41.1926
https://doi.org/10.1103/PhysRevB.41.1926
https://doi.org/10.1103/PhysRevB.41.1926
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970



