Pierre Boutillier
email: pierreboutillier@hms.harvard.edu

Ferdinanda Camporesi
email: camporesi@ens.fr

Jean Coquet
email: coquet.jean@gmail.com

Jérôme Feret
email: feret@ens.fr

Kim Quyên Lý

Nathalie Théret

Pierre Vignet
email: pierre.vignet@inria.fr

Nathalie Theret
email: nathalie.theret@univ-rennes1.fr

KaSa: A Static Analyzer for Kappa

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PSfrag replacements k PSfrag replacements kp

Introduction

Kappa may be used to describe systems of mechanistic interactions between proteins by the means of site-graph rewriting rules. Each node in graphs denotes an instance of a protein equipped with a kind and a finite set of identified sites. Rules may bind/unbind sites pair-wisely to establish/break links between proteins. Some sites may also have an internal state in order to specify if they are phosphorylated, methylated, and so on, so forth. We give, in Fig. 1, two examples of rules in Kappa. Kappa is context-free: only the information that matters for a given interaction to happen has to be mentioned in rules. This feature is crucial to scale up to the size of large models. Thus Kappa provides the opportunity to design arbitrarily sophisticated models. These models may involve proteins with multiple phosphorylation sites, scaffolds, concurrency for shared resources, different time-and concentration scales, large variabilities in the kinds of molecular compounds, and non-linear feed-back loops. In general, we want to understand how the collective behavior of proteins may emerge from the mechanistic interactions between individual proteins. Yet, there are no modeling wizards and before investigating the long term behavior of a model, it is worth wondering whether the implementation matches faithfully our modeling assumptions. In the case of models written by others, extracting quickly some basic properties about models is also helpful to understand what the models are doing.

This motivates the use of formal methods. KaSa is a static analyzer that abstracts the set of reachable states of models, and then uses this information to collect insightful properties. In particular, KaSa may warn about rules that may never be applied, about potential definitive transformations of proteins and about the potential formation of unbounded molecular compounds. Lastly, KaSa detects the potential influences (activation/inhibition relation) between rules.

In this paper, we illustrate the main features of KaSa on a model of the extracellular activation of the transforming growth factor TGF-b, a protein which controls cell homeostasis in normal tissue, but promotes the development of fibrosis and cancer [START_REF] Horiguchi | Matrix control of transforming growth factor-β function[END_REF]. There has been a nice interplay between the design of the static analysis and the one of this model. On the first hand, KaSa has been helpful to curate the model, on the second hand, we have extended KaSa to cope with new properties of interest that we have identified during the modeling process.

Technical description

Development. The development of KaSa has started in 2006, as a follow up of Complx, a static analyzer that had been designed by Plectix BioSystems (Cambridge, MA, USA). KaSa is now around 68,000 lines of OCaml [START_REF] Leroy | The ocaml system[END_REF] (excluding the front-end). It offers 53 command-line options. Jérôme Feret (2010-present) and Kim Quyên Lý (2015-2017) have been being the main developers.

Distribution. KaSa belongs to the Kappa modeling platform, which is completely open source www.kappalanguage.org. KaSa is partially integrated within the Kappa user interface, In particular, all the functionalities that are described in this paper, but local traces, are available on the fly while editing a model.

The development of the modeling platform is hosted on github https:// github.com/Kappa-Dev/KaSim. An app is provided for MacOs and Windows. The nightly-builds of the development version may be downloaded at https:// tools.kappalanguage.org/nightly-builds/. The modeling platform is also available as an opam package. With a properly installed opam, the instruction opam pin add --dev KaSim will compile all necessary dependencies as well as the current master branch of the git repository.

The manual may be consulted online at: https://tools.kappalanguage. org/docs/KaSim-manual-master/KaSim_manual.htm (see Chp. 6).

Main functionalities

Now we browse the main functionalities of KaSa.

Note that the results computed by KaSa depend all on the choice of the initial state, or more precisely on the set of the proteins and molecular compounds that may be present in the initial state independently of their concentration. KaSa is purely qualitative: its results depend neither on rule rates, nor on initial concentrations.

Reachability analysis. The cornerstone of KaSa is its reachability analysis. KaSa performs a mutual induction over some families of patterns, so as to prove that some of them may never occur in reachable states. Three families of patterns are considered [START_REF] Feret | Reachability analysis via orthogonal sets of patterns[END_REF]. The first one detects relations among the state of sites within each protein instance. The second one targets the relations between the state of sites in the proteins that are directly linked. The third one focuses on detecting whether or not a protein may be bound twice to the same instance of a protein. KaSa outputs a list of refinement lemmas. Each one consists in a precondition, that is a pattern, and a post-condition, that is a list of refinements of this pattern. The formal meaning of a refinement lemma is that whenever an instance of the] Fig. 2. Two refinement lemmas. (left) When TGFB1 is in its latent form, its site a is necessarily free. (right) When TGFB1 has its two sites bound, it is bound twice to the same instance of the protein THSBS1 . In each of these refinement lemmas, the refinement list is made of a single element. In more complicated cases, there maybe a choice of several patterns for refining the precondition.

precondition is found in a reachable state, this instance may be extended to an instance of a pattern in the post-condition. In Fig. 2, we give some of the properties that are found in our case study. The analysis infers that in its latent form, TGFB1 has always its site a (in pink) free. KaSa also detects that TGFB1 may be bound twice to the same instance of the protein THBS1 , but never to different instances simultaneously.

Dead rule detection.

A rule the left hand side of which is in contradiction with the refinement lemmas cannot be applied whatever the evolution of the system is. There may be various reasons for this. Sometimes, several names have been used to denote the same protein. Sometimes, proteins have structural invariants that prevents the application of a rule. In our case study, dead rules have helped in identifying some missing parts in models, hence blocking the signaling pathways. The model has been completed after having consulted the literature.

Influences among rules. Rules may have a positive or a negative influence on each others. There is a positive (resp. negative) influence when an application of a given rule may potentially create (resp. remove) an instance of the left hand side of another rule. Influences provide an overview of the causality of the model.

We give an example in Fig. 3. We consider a protein with two phosphorylation sites. The left site may be freely phosphorylated and dephosphorylated, whereas the right site may get phosphorylated only when the left one is already phosphorylated. Thus the phosphorylation of the left site has a positive influence on the phosphorylation of the right one, while the dephosphorylation of the left site has a negative influence on the phosphorylation of the right one, as indicated in the influence map. This notion of influence is similar to the one that is used in Gene regulatory tools such as GinSIM [START_REF] Naldi | Logical modelling of regulatory networks with ginsim 2.3[END_REF] or reaction networks tools such as Biocham [START_REF] Fages | From reaction models to influence graphs and back: A theorem[END_REF], except that, in Kappa, influences describe to which extent rules may influence each other, and not whether the variation of concentration of each molecular compound may influence the concentration of the other ones.

Since there are many rules, we use a hierarchy of abstractions to avoid the brute force approach which may not scale to large models. Firstly, we compute indirect influences. Indirect influences focus on the states of sites independently. There is a positive indirect influence whenever a rule may take a site into a state that is required by another rule to apply. Secondly, we compute direct influ- ences. Direct influences are obtained by filtering indirect influences by checking that both rules have compatible requirements about their context of application. Thirdly, we refine direct influences further, by checking that the unifying context of both rules cannot be proved unreachable by our reachability analysis.

Local transition systems. It is sometimes useful to understand how a protein may go from one configuration to another. Thus KaSa computes a transition system for each kind of proteins of the model [START_REF] Feret | Local traces: an over-approximation of the behaviour of the proteins in rule-based models[END_REF]. This abstraction completely ignores the context of the protein: the behavior of each protein is described independently without considering the state of the proteins it is attached to. Local traces do not intend to provide information about the collective behavior of proteins (i. e. their concentration): instead it focus on each protein individually.

Non weakly reversible transitions. Most mechanisms may be reverted in one or more steps of computation. This is crucial so that resources may be used several times (for instance an enzyme is expected to activate several instances of its substrate, thus it has to detach from it). However modelers often see signaling as cascades of interactions that push forward the signal.

Tarjan's strongly connected components decomposition algorithm is useful to detect which computation steps will never be reverted. Often, non weakly reversible transitions come from missing mechanisms and the model has to be completed. Sometimes, they come from a definitive degradation of a protein. In this case, the property is helpful to understand the behavior of this protein.

In the first versions of our case study, most rules about unbinding were missing. Our analysis has detected that corresponding binding steps were definitive and the model had to be completed accordingly. Once this done, all the remaining definitive transitions are related to the activation of the proteins TGFB1 , MMP2 , and MMP14 , which is an irreversible process. In Fig. 4 Detection of unbounded polymers. Knowing which complexes may grow arbitrarily is important. Some models may assemble macro-molecules. But sometimes the presence of unbounded polymers is a side-effect of the lack of specification of the potential conflicts between protein interactions. Unbounded polymers may only arise whenever a sequence of proteins may be repeated indefinitely in a reachable molecular compound. Such a sequence necessarily matches with a cycle in the oriented graph in which nodes are the different kinds of bonds between proteins (each kind bond is considered twice, one for each direction) and the edges connect two (oriented) bonds if the target of the first bond and the source of the second one are two different sites in a same kind of protein. We also use Tarjan's algorithm to detect these cycles.

This feature is available at two accuracy levels. At syntactic level, every kind of bonds occurring in the initial state or in the right hand side of a rule is considered. A more precise analysis is obtained by filtering out the pairs of bonds for which the corresponding pattern is proved unreachable.

In our case study, KaSa detects a large strongly collected component related to the formation of the Fibronectin matrix (which may indeed grow arbitrarily).

Benchmarks

We apply KaSa to several Kappa models (e. g. see Fig. 5). The first eight models are translations in Kappa of some of the models which are provided with the BNGL distribution [START_REF] Blinov | Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains[END_REF]. The models 'machine' and 'ensemble' are two versions of the MAPK signaling pathways published by Eric Deeds and Ryan Suderman [START_REF] Suderman | Machines vs. ensembles: effective mapk signaling through heterogeneous sets of protein complexes[END_REF]. Both versions of the model 'korkut' describe the Ras signaling pathways. They have been assembled by John Bachman and Benjamin Gyori (Sorger lab, Big-Mechanisms DARPA Project), following a three steps procedure [START_REF] Gyori | From word models to executable models of signaling networks using automated assembly[END_REF]: automatic natural language processing, automatic assembling into Kappa, and human curation. We analyze two versions of the model of the extracellular matrix of the protein TGF-b that we have used to illustrate the different functionalities of KaSa. The assembling has been done by hand, by inspection of the literature and its curation has been assisted by KaSa. Lastly, we analyze two versions of the Wnt signaling pathway, written by Héctor F. Medina Abarca (Fontana Lab, Big-Mechanisms DARPA Project). This model has also been assembled by hand by inspection of the literature. Some scripts have been used to refine the kinetics of rules according to some contextual information about the proteins.

For each model, we give the number of constraints, of detected dead rules, of detected non weakly reversible transitions, of the rules that are involved in those transitions, of potential influence relation (in each accuracy mode), of strongly connected components that may occur in polymers (in both modes). Then, we give the CPU time used for each of these functionalities. The last column gives the CPU time of the whole analysis, with all functionalities set to the maximal accuracy level. It is worth noting that the CPU time required to compute the direct influence map, is sometimes longer than the one to compute the indirect one. Indeed, dumping an imprecise result may take longer than filtering this result thanks to a more costly but more accurate analysis.

Fig. 1 .

 1 Fig. 1. Two rules. (left) Two proteins may bind. (right) The protein on the left may phosphorylate the right site of the protein on the right.

Fig. 3 .Fig. 4 .

 34 Fig.3. Four rules (left) and the corresponding influence map (right). In rule r p , the right site may be phosphorylated only if the left site is. As a consequence the rule ru inhibits the rule r p , and the rule rp activates the rule r p .

 , we give a local trace associated to the protein MMP2 . Benchmarks (performed on a MacBook Pro, 3.3 Ghz intel Core). For each model, we provide the number of rules, information about what has been discovered by KaSa and about analysis time.

	model							Number of										Analysis time (second)	
		rules	constraints	dead rules	non weakly reversible transitions	reversible transitions	rules with non weakly	indirect influences	direct influences	realisable influences	(Syntactic)	strongly connected components	(Realisable)	strongly connected components	edges per scc in average (Syntactic)	edges per scc in average (Realisable)	reachability analysis	influence map (Indirect)	influence map (Direct)	influence map (Realisable)	polymer detection (Syntactic)	polymer detection (Realisable)	non weakly reversible transitions	local traces	all-in-one (at maxiaml accuracy)
	egfr net	39 17	0	0	0	764	280 280	0	0 N/A N/A 0.02 0.04 0.02 0.04 0.02 0.02 0.03 0.02 0.05
	fceri fyn	46 21	0	8	8	758	304 304	1	0	8 N/A 0.04 0.05 0.03 0.10 0.04 0.04 0.06 0.04 0.10
	fceri fyn lig	48 21	0	8	8	760	306 306	1	0	8 N/A 0.04 0.05 0.03 0.09 0.04 0.05 0.06 0.05 0.10
	fceri fyn trimer	362 22 36 96	96	59971 7405 6763	1	0	10 N/A 0.53 4.63 0.66 2.15 0.54 0.54 0.58 0.54 2.24
	fceri fyn gamma2	59 21	0	0	0	1464	518 518	1	0	8 N/A 0.06 0.10 0.04 0.15 0.06 0.06 0.08 0.06 0.16
	fceri fyn ji	36 16	0	0	0	536	231 231	1	0	8 N/A 0.03 0.02 0.01 0.06 0.03 0.03 0.05 0.03 0.07
	fceri fyn lyn 745	40 18	2	2	2	620	255 243	1	0	8 N/A 0.04 0.04 0.02 0.07 0.04 0.04 0.05 0.04 0.08
	fceri fyn trimer	192 19	0	0	0	21557 2536 2536	1	0	10 N/A 0.24 1.60 0.24 0.81 0.24 0.24 0.27 0.24 0.86
	machine	220 72	7	17	10	5319 2873 2735	0	0 N/A N/A 0.77 0.13 0.10 1.05 0.76 0.77 0.97 0.77 1.22
	ensemble	233 86	0	1	1	4841 2936 2936	0	0 N/A N/A 0.62 0.15 0.13 0.82 0.61 0.63 0.91 0.62 1.14
	korkut (2017/01/13) 3916 1289 1610 2016 2016 75563 75563 39280 1	1	131 131 14 2.49 2.71 16 14 14 14 14 18
	korkut (2017/02/06) 5750 2571 884 1397 1397 81412 75472 55101 1	1 2693 2687 94 4.01 4.16 94 96 115 99 114 119
	TGF (V19)	97 107 10 153 53	3471 3009 2631	1	1	78 74 0.24 0.09 0.09 0.47 0.23 0.25 0.37 0.25 0.63
	TGF (2018/04/19) 292 112 0 314 28	6040 5504 5504	1	1	108 108 0.89 0.18 0.19 1.36 0.86 0.90 1.25 0.92 1.73
	BigWnt (2015/12/28) 356 134 1 833 14	5974 5271 5264	1	1	49 49 3.99 0.16 0.16 4.47 3.98 3.96 125 4.00 127
	BigWnt (2017/03/22) 1486 182 12 61	16 1091187 38110 37958 1	1	84 80 15 26 5.15 25 15 15 260 15 286
	Fig. 5.																							

This material is based upon works partially sponsored by ANR (Chair of Excellence AbstractCell), the Defense Advanced Research Projects Agency (DARPA) and the U. S. Army Research Office under grant number W911NF-14-1-0367, and by the ITMO Plan Cancer 2014 (TGFSysBio project). The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of ANR, DARPA, the U. S. Department of Defense, or ITMO.