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Abstract

Ultrasonographic examination, either as visual inspection or quantitative
analysis, is the most widely diagnostic resource. However, speckle noise is one
of the drawbacks that makes it less effective than other medical imaging sys-
tems. Several speckle reduction methods often offer effective speckle reduction
but generally suffer from oversmoothing, a blurring effect and a man-made ap-
pearance. In this paper, we propose a Multi-Output Filter based on the Multi-
plicative Multiresolution Decomposition (MOF-MMD). This multi-scale based
method enables the enhancement of the original image and provides three en-
hanced outputs: global, edge and texture images. The multi-output filter aims
at offering an enhanced image according to the features desired by radiologists.
The different structures, textures and edges are filtered according to the contour
image obtained by morphological operators. Three radiologists with different
years of experience, have subjectively evaluated the speckle reduction methods
according to enhanced features. The results of objective metrics and subjective
evaluation showed that the proposed method reduces speckle and could help ra-
diologists, according to their years of experience, in the diagnostic task. Finally,
the correlation between three objective metrics and the perceived quality of con-
trast, diagnostic, texture and edges show that an objective metric is suitable for
assessing quality of ultrasound images.

Keywords: Subjective evaluation, Objective metrics, Ultrasound, Medical
images, Speckle, Multi-Output filter, Multiplicative Multiresolution
Decomposition (MMD) .

1. Introduction

The great potential of Ultrasound (US) imaging in diagnostics means that
it is viewed as the stethoscope of the future. Ultrasonographic examination is
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carried out in two ways: qualitative visual inspection based on the clinician’s
interpretation and quantitative analysis by extracting measures or biomarkers
that aid in the diagnosis. In obstetrics, measurement of the nuchal translu-
cency can detect a number of anomalies such as trisomy or congenital heart
disease. Moreover, the measurement of nuchal fold thickness is a marker for
Down syndrome with a false positive rate of 1.4% ?.

In Gastroenterology, liver parenchymal texture is a subjective characteristic
for the detection of cirrhosis ?. Moreover, the Sonographic HepatoRenal Index
(SHRI) is a measure based on comparison between liver and kidney brightness.
It has been reported that more than 34 biopsies could have been avoided among
a series of 101 performed for different diagnostic reasons if the SHRI method
had been used prospectively ?.

Nevertheless, US imaging has a main drawback of visual quality. It shows a
granular structure called "speckle", making visual interpretation difficult. Speckle
is an undesirable property of the image as it masks small differences in gray
level ? ?. This specific artefact for US, corrupts the image in a multiplicative
manner. The speckle in a clinical image is generated mainly by constructive
and destructive interference of subresolution tissue scatterers at fixed spatial
locations. It appears as a light and dark mottled grainy pattern.

Speckle is detrimental, because it adds texture to the image making it more
difficult to discern subtle variation in image signal, particularly for small struc-
tures and boundaries.

For instance, on a conventional B-mode US image of a liver, the speckle
pattern changes with both steatosis and fibrosis. This can make the changes in
microarchitecture imperceptible to the naked eye and lead to misinterpretation
of the US image ? ?. Finally, speckle impedes post-processing techniques such
as image segmentation, registration, data classification, texture analysis or even
automatic diagnostic application.

However, this "granular" texture (speckle) is not truly noise in the typical
engineering sense because its texture often carries useful information about the
image being viewed ?. Many researchers have investigated the statistical speci-
ficities of speckle in ultrasound images since the seventies such as ? and et
al. ?. In this last study about statistics of speckle in ultrasound, the authors
point out that the texture in the image of parenchymal tissue could be viewed
either as image signal or undesirable noise ?. Hence, it is necessary to reduce
the speckle while preserving meaningful data.

A large amount of research has investigated speckle reduction and improved
the quality of US images. There are two main categories of despeckling methods:
compounding methods and post-processing ones. The compounding speckle
reduction methods include both spatial and frequency compounding ?. Post-
processing speckle reduction techniques are widely used. These techniques de-
crease speckle after the US image is formed.

However, speckle reduction techniques present some limitations such as over-
smoothing of texture, loss of subtle details during the filtering process or more-
over blurring the edges. Finally, some filtering methods give an artificial ap-
pearance to the enhanced images ?.
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We can notice that the existing speckle reduction studies propose only a
unique viewing possibility, while the interpretation of US image is based on
multiple evaluation tasks: general aspect, echo pattern, outer border and size.

To counter this problem, we extend our recently proposed Multi-Output Fil-
ter based on Multiplicative Multiresolution Decomposition (MOF-MMD) ?. In
this paper we propose to make the MOF-MMD where the enhancement of dif-
ferent characteristics of the image implies the calculation of noise statistics per-
formed automatically with the respect of extracted features and multi-resolution
analysis to make this algorithm more practical in daily clinical practice.

Since the end-user of the ultrasound images is the radiologist, we believe
that it is more reasonable to evaluate the algorithm using human observers.
Thus, the second part consists in conducting a subjective experiment involving
three radiologists with different years of experience to assess the final perceived
quality of filtered in vivo abdominal liver US images. The correlations between
the subjective scores and the objective metrics’ outputs will be presented and
analyzed. The impact of the radiologists’ years of experience on their way of
scoring will also be discussed. The MOF-MMD filter is compared with two
recent and efficient speckle reduction filters: Optimized Bayesian NL-Means
with block selection (OBNLM) ? and Anisotropic Diffusion filter with Memory
based on Speckle Statistics (ADMSS) ?.

The rest of this paper is structured as follows. In section ?? related works
are presented. Section ?? describes the proposed fully automatic multi-output
filter. In Section ?? the dataset, objective metrics and subjective tests are
depicted. Section ?? discusses and analyzes the experimental results. Finally,
Section ?? concludes the paper with some perspectives.

2. Related works

As described in Section ?? many filters were developed to attempt to reduce
speckle in US images. Within the state-of-the-art, image speckle reduction
approaches could be categorized into four types namely, adaptive statistics,
anisotropic diffusion, multi-scale analysis and non-local based filters.

2.1. Adaptive local statistics filters
The adaptive filters are based on the statistical information calculated from

a pre-defined neighborhood. Indeed, multiplicative speckle noise corrupts the
Synthetic Aperture Radar (SAR) images in the same manner as it does US
images. These filters were initially proposed to reduce speckle in SAR data. The
Median filter ? replaces the gray level of the neighborhood’s center pixel with
the median graylevel of the considered neighborhood. The statistical properties
of the image were used by Lee filter ? ?, Frost ? and Kuan ? who proposed
to reduce speckle to obtain a speckle-free image by the Minimum Mean Square
Error (MMSE) criterion.
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2.2. Anisotropic diffusion filter
The Anisotropic Diffusion (AD) process was introduced by Perona and Ma-

lik ? for smoothing images. Yu and Acton ?, by introducing Speckle Reducing
Anisotropic Diffusion filter (SRAD), applied anisotropic diffusion filter for the
first time to speckle noise. This was done by introducing the instantaneous
coefficient of variation for an edge-sensitive speckle reduction. An improved
version of the SRAD was then proposed with the Detail Preserving Anisotropic
Diffusion (DPAD) ?. This improved version of the SRAD includes an estima-
tion of the variation coefficient of both signal and noise based on the Kuan
filter. In ? the authors extended the SRAD and DPAD methods to an Oriented
Speckle Reducing Anisotropic Diffusion (OSRAD). This method is combined
with matrix anisotropic diffusion allowing different levels of filtering in the gra-
dient and the principal curvature directions. In ?, an Anisotropic Diffusion filter
with Memory based on Speckle Statistics (ADMSS) was proposed. This recent
method embeds a memory mechanism that speeds up the diffusion process in
meaningless regions and adaptively preserves relevant structures.

2.3. Multi-scale filter
Several multi-scale based methods were proposed for speckle reduction in

ultrasound imaging mainly based on wavelet, curvelet or contourlet transforms.
Most of these filters use the wavelet transform, as the wavelet theory provides
a powerful representation of the image and is widely used for image processing
such as image compression, segmentation and noise reduction.

The wavelet-based speckle reduction filters include three main steps: wavelet
decomposition, modification of wavelet coefficients, reconstruction of the modi-
fied wavelet coefficients and "noise free coefficient" by invert wavelet transform.
The wavelet shrinkage denoising was first proposed by ?, later this thresholding
method was applied to medical imaging for speckle reduction ?. The authors in
? proposed to balance the degree of noise reduction for the preservation of rel-
evant details. Extension of wavelet transform are also involved in despeckling:
dual tree complex wavelet transform in ? or monogenic wavelet transform ?.
Other multi-scale approaches based on the pyramid transform were suggested
to reduce speckle in US images as in ???

2.4. Non-local means filter
The Non-Local (NL) approach is a new paradigm that proposes to replace

the local comparison of pixels by the non-local comparison of patches ?. Firstly
introduced in ?, NL-means methods were used for US noise reduction with a
Bayesian formulation by Coupé et al. ? in the Optimized Bayesian NL-means
(OBNLM) filter. The OBNLM introduces a Pearson distance to compare non-
local patches and select the most relevant, and uses it as features for denoising
images. Related hereto, ? propose to incorporate a Gamma model in the NL-
means denoising. In ? and ?, Yang et al. found that increasing the searching
region can lead to improved noise-suppression performance in low dose CT image
processing. In ?, they incorporated a structure-adaptive fuzzy estimation into
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iterative NL-means for random-valued noise estimation. It was also found that
NL-means estimation can be used to build the regularization term for medical
image reconstruction ?. The main drawbacks of these methods are the over-
smoothing of the images, and the computational complexity.

The review of the state-of-the art methods shows that: first, the speckle
reduction methods either oversmooth the ultrasound or do not reduce speckle
significantly in some regions; second, all the algorithms provide only one viewing
possibility, while doctors may have different requirements of image features in
different situations. These motivate us to propose an improved speckle filtering
method without oversmoothing effect and with multiple viewing possibilities.

3. Proposed method (MOF-MMD)

The proposed MOF-MMD is schematically represented in Fig. ??. It consists
of five steps:

• Preliminary step of features-like segmentation achieved using morpholog-
ical operators;

• Calculation of noise level on local window;

• Multi-scale decomposition using MMD;

• Thresholding process according to the features;

• Reconstruction of enhanced images using MMD synthesis.

The details of each step are given below.

3.1. Multiplicative multiresolution decomposition
3.1.1. Multiplicative decomposition

The nonlinear multiplicative decomposition is a multi-scale analysis/synthesis
representation of 2D signals ?. This nonlinear decomposition is suitable for mul-
tiplicative noise reduction and has been used to reduce multiplicative noise in
Synthetic Aperture Radar ? and medical US images ?. It uses filter banks with
critical sub-sampling and perfect reconstruction (reversible). In ? the authors
consider a description of the analysis and the synthesis inputs-outputs systems
with equal symbol rates at both the input and the output. The image is de-
composed into an approximate output subband y1 and three detail images y2h,
y2v and y2d characterized by horizontal, vertical and diagonal directions. The
desired structure is obtained by performing a polyphase decomposition of the
2D signal (the image) ?. To avoid division by zero, the value 1 is added to the
original image to provide the input image (I). The four poly-phase components
x11; x12; x21 and x22 of the input image I of size N ×M are defined by:

xij (n,m) = I (2 (n− 1) + i, 2 (m− 1) + j) i, j ∈ {1, 2} (1)

where n = 1, ..., N2 and m = 1, ..., M2
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Figure 1: MOF-MMD Diagram

The multiplicative decomposition could be used within its undecimated ver-
sion, with an equal number of coefficients at each resolution scale. The four
polyphase components for practical implementation of this undecimated algo-
rithm are defined by:

xij (n,m) = I (n+ i− 1,m+ j − 1) i, j ∈ {1, 2} (2)

where n = 1,...,N and m = 1,...,M
For (i, j) ∈ {1, 2}, the linear filter hij and fij are given by:{

hij (k, l) = h((2k + 1) + i, 2 (l + 1) + j)
fij (k, l) = 1

hij(k,l)
(3)

where h and f are bi-dimensional linear filters. The approximation y1 is
given by

y1 =
2∑
i=1

2∑
j=1

hijxij . (4)

The nonlinear analysis filters D illustrated in Fig. ??, is defined by the
following equations:

y2v =
{

β x12
x11

, x11 ≥ x12

β
(

2− x11
x12

)
otherwise

(5)
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Figure 2: The 2D MMD analysis scheme

y2h =
{

β x21
x11

, x11 ≥ x21

β
(

2− x11
x21

)
otherwise

(6)

y2d =
{

β x22
x11

, x11 ≥ x22

β
(

2− x11
x22

)
otherwise

(7)

where β is a positive scalar fixed to 0.5. The details y2h, y2v and y2d vary
within the interval [0; 1]. It should be noted that high contrasted details cor-
respond to values far from β, whereas, values close to β correspond to smooth
regions.

3.1.2. Multi-resolution decomposition
Multi-resolution decomposition is based on subband decomposition using

analysis filter bank that operates at different stages of the outputs. The ap-
proximate output subband y1 (the low-frequency coefficients) is decomposed
into one or more coefficient outputs of the preceding stage. In the subband, y1
is split into its polyphase y11, y12, y21 and y22 and then filtered. At the first
resolution j = 1:

y
(j)
11 = x11, y(j)

12 = x12, y(j)
21 = x21 and y(j)

22 = x22.

At the highest resolution J , the original discrete image is represented by the
set R defined by

R =
(
y1

(j),
(
y2h

(j), y2v
(j), y2d

(j)
))

2≤j≤J
. (8)

Fig. ?? illustrates the undecimated multiplicative multi-resolution decom-
position for one resolution level of an US image of an agar gel phantom that
mimicking the phenomena of the inhomogeneous scattering. This phantom was
homemade using: 12 g gelatin, 8 grs agar agar, 500 ml hot water, 40 ml glycerin.
A latex glove finger filled with water was immersed to mimic a cyst. The upper
left panel is the approximation image of the original image constituted by the
low-frequency coefficients. The bright ring is the Cyst mimic.
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Echelle 1

Figure 3: 2D MMD undecimated decomposition of US image of an agar gel phantom: approx-
imation image (upper left), detail images vertical, horizontal and diagonal

3.2. Features-like segmentation by morphological operator
In this paper, the features-like segmentation enables the enhancement of the

different features and structures of the image. It is performed using mathemat-
ical morphology.

3.2.1. Morphological Operators
Morphological operators are used here to segment features-like structures.

Indeed, mathematical morphology is a well established domain used for image
analysis. Based on the algebra of non-linear operators, it performs better and
faster than the standard approaches in many tasks such as pre-processing, seg-
mentation using object shape and object quantification ?. We will define some
basic morphological operators. Firstly, a shape parameter called structuring
element, characterized by its shape and size, is used to perform morphological
techniques. Depending on the type of morphological transformation, the pixel
value is set to the minimal or maximal value of the pixels ?.

3.2.2. Features-like segmentation
As medical images generally contain more round shapes than straight lines

and angles, the disk-shaped structuring element is a more appropriate choice.
An algorithm for the efficient computation of morphological operations for gray
images with a circular structuring element has been proposed in ?.
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Let I be the original US image and C the circular structuring element with
a radius of eight pixels. The features-like segmentation is obtained as follows:

I(o) = I ◦ C (9)

I(oc) = I(o) • C (10)

I(e) = I(oc) 	 C (11)

I(d) = I(oc) ⊕ C (12)

S = I(d) − I(e) (13)

where ⊕, 	, ◦ and • denote dilatation, erosion, opening and closing oper-
ators, respectively. S represents the contour image obtained by morphological
treatment and illustrated in Fig. ??.

(a) Original image (b) Contour image

Figure 4: Features-like segmentation

3.3. Calculation of Noise Statistics
The MOF-MMD is sensitive to noise statistics, indeed the thresholding step

depends on the knowledge of these statistics. Therefore, we propose an auto-
matic method to select a homogeneous window Harea to calculate the noise.
The speckle filtering framework proposes an automatic estimation of the noise
variance ?. In the case of homogeneous areas Harea, where the signal compo-
nent can be considered constant and the image variation is only attributable to
noise, the coefficient of variation R of the speckle noise is given by:

R = StdHarea

µHarea

(14)

where StdHarea
and µHarea

stand for standard deviation and mean values of
Harea, respectively. The location of Harea require that:
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(a) Auomatic selection (b) Manual selection

Figure 5: Local window selection for calculation of Cn and T

• The Harea must be inside the extracted features features (contour S)
obtained in the previous Section ??.

• The Harea has to be homogeneous area. In order to detect Harea we use
MMD’s coefficient properties (described in Section ??), in smooth regions,
the values of the MMD’s coefficient components are close to β. Harea

corresponds to the one that minimized the median absolute deviationmad
around β

mad = 1
n

n∑
i=1

∣∣∣y1
2(h,v,d)(i)− β

∣∣∣
i∈Harea

(15)

The noise level is then calculated within the selected window W = Harea.
So, at each resolution, one could estimate the normalized standard deviation

Cn =
√
varW
µW

(16)

where varW the variance and µW the mean value of the selected window. The
latter parameter is defined in this section and it will be used later in this paper
as a parameter of our method for speckle reduction.

The manual selection of multiple windows W is possible, thanks to the qual-
ity criterion selection (cf. Section ??). Fig. ?? and Fig. ?? depict the results
of obtained areas by using automatic and manual processes, respectively. A
good agreement is obtained by automatic calculation of noise statistics. rred
This automation makes it possible to divide the length of the manual selection
process by at least N (number of manually selected windows).

3.4. Thresholding: Multi-Output filter
The existing speckle reduction methods propose a unique enhancement for

the overall image. Sometimes a stopping criterion is applied for specific struc-
tures of the image. Nevertheless, there is only one viewing possibility. Herein,
we propose a new method that allows to the medical observer to view multi-
ple enhancement possibilities of the original US image. This can respond to the
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specific need for a diagnosis, according to which it ismore relevant to examine
edges, texture, thickness, etc.

As indicated in Section ??, in smooth regions the values of the MMD’s
coefficient components are close to β. This property helps to enhance the image
while preserving structural details and avoiding a blurring effect. In the rest of
this section, we will refer to MMD coefficient details y2H , y2V , y2D by DC where
C stands for ′H ′ horizontal, ′V ′ vertical and ′D′diagonal details.

The selection of the optimal threshold is the main limitation of the thresh-
olding filter. To overcome this we propose to adapt thresholding to the local con-
text. Thus, this is done according to the pixel intensity of the images obtained
from features-like segmentation. This allows multiple enhancement possibilities
of the original US image.

In this aim, at each resolution j, the MMD’s coefficient D(j)
C is thresholded

in three ways to provide the thresholded coefficient D̂(j)
C,k with k = 1, 2, 3.

3.4.1. Filter first output - Sharp edge enhancement
This first output of the filter is an image with enhanced edges. It is pertinent

for measures conducted in US images such as lesion size, distance and so on.
For each pixel of the contour image, a thresholding is applied as follows:

D̂
(j)
C,1 =


β if β − βt ≤ D(j)

C ≤ β + βt

D
(j)
C × ν − (γ × α× S) if D

(j)
C + τ ≤ β

D
(j)
C × ν + (γ × α× S) if D

(j)
C − τ ≥ β

β otherwise

(17)

where D(j)
C and D̂(j)

C,1 represent the MMD’s coefficients at scale j of the original
noisy image I and its thresholded version, respectively. βt is a threshold that
aims to reduce the speckle of the coefficient components in the smoothest pixels.
βt is set experimentally to 0.0016. τ = (T × ν × α× S), with T = Cn × j/J is
the threshold calculated from the noise level at each scale j while J represents
the number of scales. α is set to 0.25 to avoid the displacement of edge pixels
in the filtered images. ν and γ are given by ν = 1√

1+Cn
2
and γ = 1− 1√

1+Cn
2
.

Notice that the thresholding is proportional to the contour images i.e., the
thicker is the edges the more it is enhanced.

3.4.2. Filter second output - Texture enhancement
This second output of the filter is an image with enhanced texture. It is

pertinent to enhance texture by reducing speckle while preserving the texture
pattern. Let S̄ denote the image of pixels that belong to the original image and
do not belong to the contour S. The second output results from the following
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thresholding:

D̂
(j)
C,2 =


β if β − βt ≤ D(j)

C ≤ β + βt

D
(j)
C × ν −

(
γ × S̄

)
if D

(j)
C + ξ ≤ β

D
(j)
C × ν +

(
γ × S̄

)
if D

(j)
C − ξ ≥ β

β otherwise

(18)

with ξ = T × ν × S̄t,

3.4.3. Filter third output - Global image enhancement
The third output of the filter is a global enhancement of the image. Based on

the complement of the image contour (CoS), which is obtained by subtracting
the pixel value of the contour image S from the maximum pixel value of (S),
Smax is as follows:

CoS = Smax − S (19)

The MMD’s coefficients are thresholded according to the CoS image values,
as follows:

D̂
(j)
C,3 =


β if β − βt ≤ D(j)

C ≤ β + βt

D
(j)
C × ν − (γ × CoS) ifD(j)

C − (γ × CoS) ≤ β
D

(j)
C × ν + (γ × CoS) ifD(j)

C + (γ × CoS) ≥ β
β otherwise

(20)

3.5. MMD reconstruction
The three obtained D̂

(J)
C,1, D̂

(j)
C,2, D̂

(j)
C,3 are reconstructed by MMD synthesis

into the enhanced images Î1, Î2, Î3. It should be noted that the approximate
component y1 is the same for the three outputs and that D̂(J)

C,j are computed as
follows:

D̂
(J)
C,1 = (y(J)

2H , y
(J)
2V , y

(J)
2D )1

D̂
(J)
C,2 = (y(J)

2H , y
(J)
2V , y

(J)
2D )2

D̂
(J)
C,3 = (y(J)

2H , y
(J)
2V , y

(J)
2D )3

Here, we will describe a reconstruction on an image Î from (y1, y
(J)
2H , y

(J)
2V , y

(J)
2D ).

Let us consider one resolution of the reconstructed signal: the nonlinear syn-
thesis filters rij represented on Fig. ??, are defined by the following equations:

r11 (y2h, y2v, y2d) = 1
1 + h12

h11
γv + h21

h11
γh + h22

h11
γd

(21)

r12 (y2h, y2v, y2d) = γvr11 (y2h, y2v, y2d) (22)

r21 (y2h, y2v, y2d) = γhr11 (y2h, y2v, y2d) (23)
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r22 (y2h, y2v, y2d) = γdr11 (y2h, y2v, y2d) (24)

where

γv =
{

y2v

β , y2v ≤ β
1

2−y2v/β
otherwise

(25)

γh =
{

y2h

β , y2h ≤ β
1

2−y2h/β
otherwise

(26)

γd =
{

y2d

β , y2d ≤ β
1

2−y2d/β
otherwise

(27)

According to equations (??)-(??), the nonlinear response filters rij are ex-
pressed as a function of the nonlinear outputs y2h, y2v and y2d. The recon-

f11r11
r12
f12

y
1
y
2v
y
2h

y
2d

f21r21
f22r22

 × 

 × 

 × 

 × 

Pinv Î(n,m)

 xx11

 xx12

 xx21

 xx22

Figure 6: The 2D MMD synthesis scheme

structed polyphase components x̂kl are expressed as follows:

x̂11 = f11 × y1 × r11 (y2h, y2v, y2d) (28)

x̂12 = f12 × y1 × γv × r11 (y2h, y2v, y2d) (29)

x̂21 = f21 × y1 × γh × r11 (y2h, y2v, y2d) (30)

x̂22 = f22 × y1 × γd × r11 (y2h, y2v, y2d) (31)

These equations represent the reconstructed signal as a product of a smooth
component fij × y1, and a component containing all the signal variations ex-
pressed as localized directional ratios y2h, y2v, y2d. Then, the reconstructed
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image Î by MMD synthesis, is obtained by subtracting the value 1 from the
result of the reconstructed polyphase components as follows:

Î (n+ i− 1,m+ j − 1) = x̂ij (n,m) i, j ∈ {1, 2} (32)

where n = 1,...,N and m = 1,...,M
For the multi-resolution synthesis, the reconstructed process is iterated to

produce successive approximations based on the set R (cf. equation ??). The
final synthesized image is obtained at resolution j = 1.

4. Experimental framework

In order to evaluate the performance of the proposed MOF-MMD, two kinds
of tests are conducted: quality assessment using objective metrics and qualita-
tive visual evaluation by medical experts. The proposed filter performance is
compared with two recent and efficient speckle reduction filters, OBNLM ? and
ADMSS ?.

4.1. Image dataset
The original clinical US images of in vivo abdominal liver were obtained

from a retrospective database of the University Hospital of Angers in France.
The 21 experimental images of different liver with different image size (1080×
810, 1024×768 ) were captured by SuperSonic Aixplorer and the Siemens Acuson
S2000 system. The images are of granular, smooth, cirrhotic and non-cirrhotic
liver. The ethical approval to use image after anonymization was obtained from
the University Hospital of Angers. The images were registered in an external
PC and processed offline.

4.2. Evaluation metrics
The evaluation is carried out, on the 21 ultrasound images, in terms of

speckle reduction capacity and the improvement of image quality. To quantify
the speckle reduction achieved by different filters, the speckle’s signal-to-noise
ratio (SSNR) is measured ?. For the quality evaluation metrics, three Image
Quality Assessment (IQA) metrics were also chosen to assess the quality of
the filtered images. As there is no genuine reference image in our cases, we
consider blind objective metrics. In this paper, we use two state-of-the-art no-
reference metrics (NIQE ? and BIQES ?) and our previously proposed blind
metric NIQE-K ?.

4.2.1. SSNR
It is measured in a fully formed region and expressed by

SSNR = µ

σ
(33)

where µ is the mean intensity value and σ is the standard deviation in the region
of fully formed speckle. A higher value of the SSNR indicates less speckle.
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4.2.2. NIQE
The NIQE ? is a perceptual metric originally proposed for evaluating the

quality of a natural image. In ?? the authors conclude that the NIQE shows a
good performance in medical image quality evaluation even if it is not specifically
designed for this purpose. It is based on constructing a collection of features
from a corpus of natural images, and fitting them to a multivariate Gaussian
(MVG) model. The NIQE is both opinion- and distortion-unaware. It is ex-
pressed as the distance between constructed features and features extracted
from the assessed image:

NIQE =

√(
(ν1 − ν2)T

(∑
1 +
∑

2
2

)
(ν1 − ν2)

)
(34)

where ν1, ν2 and
∑

1,
∑

2 are the mean vectors and covariance matrices of the
reference image’s MVG model and the distorted image’s MVG model, respec-
tively. It estimates the image quality only from spatial domain.

4.2.3. BIQES
The BIQES ? uses intrinsic features of the image. It transforms the test

image into a scale-space representation, and measures the global dissimilarity
with the co-occurrence histograms of the original and its scaled images (i.e.,the
dissimilarity between the image itself and its lower resolution versions). The
first dissimilarity, called low pass error QL, is calculated by comparing low pass
versions across scales with the original image. The second dissimilarity, called
high pass error QH , is computed from the variance and gradient histograms,
weighted by the contrast sensitivity function in order to make it perceptually
effective. These two dissimilarities are combined together to derive the final
quality score:

BIQES = k

σ
QL + σQH (35)

where k and σ are the kurtosis and the standard deviation of the log amplitude
of the image's Fourier spectra, respectively. · denotes the mean operation of QL
and QH the calculated low pass error and high pass one.

4.2.4. NIQEK
The NIQEK ? combines some low level features of the image from BIQES

with the NIQE to assess the quality of processed medical images.

NIQEK = NIQE × k

σ
(36)

A lower value of the metrics (NIQE, BIQES and NIQE-K) indicates a better
quality of the image.
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4.3. Subjective experiment
4.3.1. Human observer

For our study, three radiologists with different years of experience (3 years,
7 years and more than 10 years experience) were asked to score the perceived
quality of the filtered images, based on four criteria: the image contrast, the
ability to diagnose, the texture conspicuity and the edge sharpness. The radiol-
ogists are from the affiliated Hospital of Nanjing Medical University in China,
thus they haven’t seen the test images before. The assessment was conducted
in an environment similar to the one in which radiologists practice daily.

The number of radiologists in this study is comply with the European guide-
lines on quality criteria for diagnostic radiographic images ?, which recommends
to involve two observers at least to assess each image with the criteria indepen-
dently.

4.3.2. Subjective test methodology
The subjective testing methodology impacts both the accuracy and the re-

liability of the collected perceived quality scores. For the subjective quality as-
sessment of the medical images, various testing methods have been used through
the literature. The most used methodologies are:

• The Double-Stimulus Continuous Quality Scale (DSCQS) where the ob-
server is presented two stimuli side by side, typically the reference and the
impaired one ?

• The Subjective AssessMent for VIdeo Quality (SAMVIQ) where the ob-
server freely views and scores a collection of test stimuli associated with
an explicitly identified reference stimulus ?

• The Absolute Categorical Rating (ACR) where the observer is presented
with a stimulus, then the display is set to a constant gray background and
the observer is immediately requested to provide an opinion score of the
viewed stimulus ?

According to ? Simple Stimulus (SS) protocols perform better than Double
Stimulus (DS) ones in terms of subject fatigue and avoidance of mistakes due to
accidentally reversing scores in DS. Additionally, SAMVIQ scores with greater
accuracy compared to ACR for the same number of observers (on average 30%
fewer observers were required) and is more reliable for the perceived quality
scores of the collected data ?. For the above cited reasons, we choose the
SAMVIQ method in this test since it provides more accurate and reliable per-
ceived quality scores on collected data.

In the SAMVIQ protocol the images are presented to the observer (assessor)
such that he can evaluate all processed versions of the image as well as against
the reference. SAMVIQ offers the possibility to visualize each image several
times and re-evaluate a previously scored image. The test according to SAMVIQ
is conducted task by task. Each task includes an explicit reference, a hidden
reference and all processed versions: MOF-MMD OUTPUT1-2-3, ADMSS and
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OBNLM. The explicit and the hidden are used as quality anchors that stabilize
the results and improve the consistency of the scores. The number of reference
images is limited to 12 as the subjective test, particularly with the SAMVIQ
protocol, is intrinsically time-consuming.

The stimuli are randomized in order to prevent the assessors from attempting
to vote in an identical way according to an established order ?. A training
session is conducted by a test supervisor in order to make the assessor familiar
with image artifacts and the user interface ?. Fig. ?? shows the graphical user
interface (GUI) of the experiment. The observer is asked to score each stimulus
using a continuous rating scale from 0 to 100. The rating scale is categorized
according to the adjectives Low, Medium and High. The observer is allowed to
view a stimulus multiple times in a task and change the score, which lengthens
the duration of the test session.

In the purpose avoiding observer fatigue, the test is divided into 2 sessions.
In each session, 2 criterion are evaluated by asking the following questions to
assessors:

• Session 1

– Diagnosis: Please score how well the enhanced image helps the diag-
nosis.

– Contrast: Please score the contrast improvement of the enhanced
image (difference between the tissue and the background).

• Session 2

– Texture conspicuity: Please score the general clarity of the texture.
– Edge sharpness: Please score the visibility of the tissue border

Representative images for each criterion with associated score are shown in
Fig. ?? and ??.

The image ?? has less difference in brightness between the light and dark
parts (i.e., contrast) than image ??. On the other hands some edges are depicted
in Fig. ??, and are more visible inside the blues circles than inside the reds ones.

The images ?? and ?? show more clearly the difference in texture enhance-
ment. The red and blue circles represent two areas where the grain pattern is
smooth and raised, respectively.

4.3.3. Subjective scores
The obtained scores were averaged across despeckling methods to yield a

Mean Opinion Scores (MOS) for each subject.

MOSj = 1
nb

nb∑
i=1

rij (37)

Where nb is the total number of the image, rij represents the raw score of the
i-th image given by the j-th subject.
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(a) Contrast score=16.66 Edge score=23.33 (b) Contrast score=80 Edge score=80

Figure 7: Illustration of evaluated contrast and edge criterion with associate subjective score.

(a) Texture score=16.66 (b) Texture score=86.66

Figure 8: Illustration of evaluated texture criterion with associated subjective score
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Figure 9: Graphical User Interface

5. Results and discussions

5.1. Objective evaluation results
For objective comparison, the SSNR and the three quality metrics are calcu-

lated and depicted with a box plot in Fig. ??. Considering the speckle reduction
capacity shown by the SSNR in Fig. ??, the proposed method as well as the
OBNLM and ADMSS reduce the speckle while the OBNLM filter has a slightly
better performance. However, the OBNLM filter offers a bad image quality due
to the over-smoothing effect, cf. Fig. ??and ??.

Regarding the three outputs of the proposed method, the NIQE, NIQE-K
and BIQES indicate that they render a higher quality compared to the OBNLM
and the ADMSS. Moreover, the standard deviations of the three outputs are
lower than those of the ADMSS and OBNLM, which indicates a lower dispersion
and a higher uniformity of the processed images. The MOF-MMD substantially
reduces the speckle while improving the quality of the image. It provides three
outputs that are useful for the diagnosis of general aspect, echo pattern and
outer border.

5.2. Subjective evaluation results
Table ?? shows the MOSs given by radiologists for five sets of processed

images shown in Fig. ??. For the four considered criteria (contrast, texture
conspicuity, edge sharpness and diagnostic) the three medical experts mostly
scored the proposed method as better. The OBNLM method has relatively
lower scores due to the artificial appearance and the oversmoothing texture
which is unnatural for the radiologists. Considering the texture conspicuity, the
three radiologists find Output1 more noticeable, meaning that the features-like
segmentation based on mathematical morphology is also valuable for texture
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(a) SSNR (b) NIQE

(c) NIQE-K (d) BIQES

Figure 10: Box plots of SSNR and quality assessment metrics of US images and their filtered
versions: ADMSS, OBNLM, proposed OUTPUT1-3. (A higher SSNR indicates less speckle.
The lower values of metrics means higher performances)
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enhancement. For contrast enhancement, according to three radiologists, the
MOF-MMD Output1 improves contrast. Considering the edge sharpness and
the diagnostic parameters, radiologist 1 indicates a better diagnostic and sharp-
ness of the edges on output3, radiologist 2 scores output1 as that which best
enhances the edges and radiologist 3 finds output2 as the best one. This result
suggests that the edge sharpness coincides with the diagnostic facility and that
the years of experience of the radiologist may be an important factor for mak-
ing a diagnosis. The great interest of the proposed method is that it provides
radiologists with the possibility of choosing an output as they wish according
to their experiences and needs in different circumstances.

Another observation from the subjective scoring is the difference between
the initial hypothesis and the results. In fact, the multi-output filter supposes
initially output 1 for edge sharpness, output 2 for texture enhancement and out-
put 3 for general improvement of the image quality supposed to facilitate the
diagnostic task. This experiment shows that output 1, considering the scores
of radiologists and all criteria (contrast, texture conspicuity, edges sharpness
and diagnostic), is generally the most adequate as it is ranked best most often,
all parameters combined. Finally, this latter finding about output 1 suggests
that the features-like segmentation by morphological operators is a very inter-
esting step for enhancing, and could help the application of image processing
techniques in US images.

Table 1: Subjective mean scores of speckle filtering methods
Radiol1 Radiol2 Radiol3

Contrast Texture Edges Diagn. Contrast Texture Edges Diagn. Contrast Texture Edges Diagn.

ADMSS 43.33 50 43.33 39.16 46.66 52.5 50.83 48.33 55.83 56.66 52.5 51.66
OBNLM 45.45 34.54 32.72 37.27 49.09 40.83 47.27 41.81 33.63 38.18 30.91 26.36
Proposed
Output1 50 76.66 79.16 77.5 55.83 66.66 79.16 64.16 76.66 78.33 69.16 69.16

Proposed
Output2 39.16 75.83 79.16 80.83 55 65 69.16 55.83 75.45 70 72.73 79.09

Proposed
Output3 42.5 75.83 81.66 81.66 53.33 66.66 76.66 56.66 74.16 66.66 70.83 75.83

5.2.1. Statistical analysis
The collected scores are further analyzed statistically with ANOVA (Analy-

sis of Variance) using MATLAB’s ANOVA function. For each test, the perceived
quality is selected as the dependent variable. The image content’s, the despeck-
leing algorithms and the observers are selected as independent variable. The
results are summarized in Table ??, and show that there is no significant differ-
ence between observers (P-value>0.05) in scoring the image quality. Further-
more, the image content and despeckling method both have a significant effect
on perceived quality (P-value<0.05). The impact of image content is probably
due to the fact that the original images are different in terms of parenchymal
tissue echogenicity (i.e., the tissue ability to bounce an echo). A statistical
T-test is further performed for pairwise comparisons with hypothesis testing
between the despeckling algorithms. The results are summarized in Table ??,
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(a) Original (b) ADMSS

(c) OBNLM (d) Proposed Output1: Edges

(e) Proposed Output2: Texture (f) Proposed Output3: Global
7

Figure 11: Subjective comparison of speckle reduction of liver US image
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and indicate that the perceived quality is significantly better for the proposed
method (OUTPUT1, OUTPUT2 and OUTPUT 3). For the pairwise compar-
isons: OUTPUT1 vs OUTPUT2, OUTPUT2 vs OUTPUT3 and OUTPUT1 vs
OUTPUT3 the difference is not statistically significant for each case.

Table 2: Results of ANOVA to evaluate the effect of the observer, content and despeckling
on the perceived quality

Factor dF F P-value
Observer 2 2.25 0.106
Content 11 2.27 0.009

Despeckling algorithms 4 68.04 <0.001

5.2.2. analysis
In this section we briefly analyze the correlation between objective metrics

and the collected perceived scores. Being able to predict the perceived image
quality would help to shorten the times of the subjective tests. The two well-
known correlation coefficients: PLCC (Pearson Linear Correlation Coefficient)
and SROCC (Spearman Rank Order Correlation Coefficient) are used as correla-
tion metrics. PLCC requires constructing nonlinear mapping between objective
metrics and subjective scores using Logistic regression ?.

Table 3: T-Test of statistical significance for pairwise comparisons of despeckling method.
Three symbols: "1" means that the method for the row is significantly better than the method
for the column, "-1" means that it is significantly worse, and "0" means that it is statistically
indistinguishable

ADMSS OBNLM OUTPUT1 OUTPUT2 OUTPUT3
ADMSS 0 -1 1 1 1
OBNLM 1 0 1 1 1

OUTPUT1 -1 -1 0 0 0
OUTPUT2 -1 -1 0 0 0
OUTPUT3 -1 -1 0 0 0

MP = β1

(
1
2 −

1
1 + exp(β2(M − β3))

)
+ β4M + β5 (38)

where M and Mp are the original and the fitted objective NR-IQA scores re-
spectively. β1, β2, β3, β4, β5 are the regression parameters of the logistic function.
The results of correlation between the three metrics and the perceived quality of
contrast, diagnostic, texture and edges, are summarized in Table ??. One can
conclude that the NIQE metric is reliable to predict the perceived quality by
radiologists for the diagnostic task. Moreover, the characterization of the lesion
is well predicted by the NIQE as edge and texture perception by radiologists
is highly correlated with the NIQE. However, the contrast perceived by the
radiologists is far from the one assessed by the three objective metrics used.
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Table 4: PLCC after nonlinear regression and SROCC between MOS and NR-IQ metrics
PLCC SROCC

Criterion NIQE NIQEK BIQES NIQE NIQEK BIQES
Contrast 0.34 0.30 0.23 0.25 0.10 0.37
Diagnostic 0.82 0.50 0.33 0.56 0.38 0.30
Texture 0.79 0.43 0.65 0.46 0.34 0.56
Edges 0.88 0.61 0.72 0.61 0.54 0.60

5.2.3. Limitation of the proposed method
The selection of optimal threshold is the main limitation of the thresholding

filter. Hence, the thresholding may be improved particularly to adapt it to
other imaging modalities. The statistical analysis suggests that the content of
the image has a significant effect on the perceived quality. It would be beneficial
to study the impact of the image content: healthy versus pathological, granular
versus smooth on the diagnostic performance. Finally, one can note that the
ultrasound examination is used in real time for a wide variety of clinical tasks.
So, it would be of great interest to embed a speckle filter into ultrasound imaging
systems. Also, further improved results can be expected by incorporating some
feature learning based strategies into the proposed methods, such as dictionary
learning or deep convolution learning ???.

6. Conclusion

Speckle reduction is useful preprocessing step for US imaging. In this pa-
per a fully automatic multi-output filter based on multiplicative multiresoution
decomposition (MOF-MMD) is proposed to improve the ability of interpreting
the ultrasound image for the medical user. The MOF-MMD permits enhance-
ment of the image in multiple ways, according to the structure that needs to
be viewed. We employ both the specificity of the multi-scale decomposition
(MMD) and the advantage of mathematical morphology to delimit the unde-
sirable structures. To evaluate the performance of the proposed method, the
SSNR and three blind quality metrics are used to quantify the speckle reduction
and quality improvement of the US image. Moreover, a subjective evaluation is
carried out according to the recommendation with the SAMVIQ protocol. The
visual evaluation shows that the proposed method with its various outputs is
more or less valuable according to the different years of experience of the radiol-
ogists. The NIQE metric has the best correlation with the subjective scores in
our test, this alternatively allows comparison of the medical ultrasound, how-
ever its performance is still not satisfied and can be further improved in future
works. In our future work we propose to study the impact of the image content
on the perceived quality on the one hand and to include this depeckeling method
in a lossy multiresolution compression on the other hand.
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