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Abstract

Objective. The analysis of surgical motion has received a growing interest with the development of devices allowing
their automatic capture. In this context, the use of advanced surgical training systems makes an automated assessment
of surgical trainee possible. Automatic and quantitative evaluation of surgical skills is a very important step in improving
surgical patient care.
Material and Method. In this paper, we present an approach for the discovery and ranking of discriminative and
interpretable patterns of surgical practice from recordings of surgical motions. A pattern is defined as a series of actions
or events in the kinematic data that together are distinctive of a specific gesture or skill level. Our approach is based
on the decomposition of continuous kinematic data into a set of overlapping gestures represented by strings (bag of
words) for which we compute comparative numerical statistic (tf-idf) enabling the discriminative gesture discovery via
its relative occurrence frequency.
Results. We carried out experiments on three surgical motion datasets. The results show that the patterns identified
by the proposed method can be used to accurately classify individual gestures, skill levels and surgical interfaces. We
also present how the patterns provide a detailed feedback on the trainee skill assessment.
Conclusions. The proposed approach is an interesting addition to existing learning tools for surgery as it provides a
way to obtain a feedback on which parts of an exercise have been used to classify the attempt as correct or incorrect.
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1. Introduction

In recent years, analysis of surgical motion has received
a growing interest following the development of devices
enabling automated capture of surgeon motions such as
tracking, robotic and training systems. Surgical train-
ing programs now often include surgical simulators which
are equipped with sensors for automatic surgical motions
recording [1, 2, 3]. The ability to collect surgical motion
data brings unprecedented opportunities for automated
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objective analysis and assessment of surgical trainees pro-
gression. The main goal of this effort is to support sur-
geons in technical skills acquisition, as these are shown
to correlate with a reduction of patient complications [4].
Hence, automated evaluation of surgical skill level is an
important step in surgical patient care improvement and
is related to the more general initiative of surgical data
science [5].

This article tackles the issue of identifying discrimina-
tive and interpretable patterns of surgical practice from
recordings of surgical motions. We define a pattern as a
series of actions or events in the kinematic data that to-
gether are distinctive of a specific gesture or a skill level.
We show, that by using these patterns, we can reach be-
yond the simple classification of observed surgeons into
categories (e.g., Expert, Novice) by providing a quanti-
tative evidence-supported feedback to the trainee as per
where he or she can improve. The proposed approach,
based on SAX-VSM algorithm [6], considers surgical mo-
tion as continuous multi-dimensional time-series and starts
by discretizing them into sequence of letters (i.e., strings)
using Symbolic Aggregate approXimation (SAX) [7]. In
turn, SAX sequences are decomposed into subsequences
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of few consecutive letters via sliding window. The relative
frequencies of these subsequences, i.e., the number of times
they appear in a given sequence or in a set of sequences,
are then used to identify discriminative patterns that char-
acterize specific surgical motion. To discover the patterns,
we rely on the Vector Space Model (VSM) [8] which has
been originally proposed as an algebraic model for repre-
senting collection of text documents. The identified dis-
criminative patterns are then used to perform classification
by identifying them in to-be-classified recordings. Fur-
thermore, by highlighting discriminative patterns in the
visualization of original motion data, we are able to pro-
vide an intuitive visual explanation about why a specific
skill assessment is provided. We evaluated our method on
the kinematic data from the JHU-ISI Gesture and Skill
Assessment Dataset (JIGSAWS) [9] (the largest publicly
accessible database for surgical gesture analysis) and two
other surgical motions datasets. The main contributions
of this paper are:

• A framework for identifying discriminative and inter-
pretable patterns in surgical activity motion based
on SAX [7] and VSM [6].

• Experimental evaluation highlighting the relevance
of the proposed method for gestures classification,
skill assessment and surgical interface comparison.

• A visualization technique enabling self-assessment of
trainee skills.

2. Background

2.1. Related work
Previous surgical skills assessment methods focused on

evaluating the trainees by a senior surgeon who used a
dedicated check-list [10, 11]. These methods depend on
the senior surgeon’s work hours with too many subjec-
tive variables: the checklists development process, inter-
rater reliability and the rater bias [12]. Another method
consists on evaluating the patients’ outcome after several
surgeries [13]. This type of methods suffers from two im-
pediments: it needs a huge amount of patients’ outcome
data - which is very difficult to acquire for trainees, and
depends largely on the patient’s condition before, during
and after the surgery. Considering these disadvantages,
several researchers considered evaluating surgical skills us-
ing surgical motion analysis which is mainly based on kine-
matic data recorded by surgical robots [14, 15] and video
data [16, 17, 18]. By assuming that the features of a dy-
namic scene (video data) are the output of a Linear Dy-
namical System (a set of linear equation with latent vari-
ables [19]), new video clips were classified in order to show
that skills and gestures classification, based on video data,
can achieve the state of the art performance of methods
based on kinematic data [16, 20]. Sequential feature se-
lection was used in [17] to reduce the number of features

extracted from the videos. The resulting feature vector
was fed to a nearest neighbor classifier with cosine distance
metric. Kinematic data usually include multiple attributes
such as the position of robot’s tools, rotations, and veloci-
ties. From such data, significant amount of work has been
devoted to the segmentation of surgical tasks into more de-
tailed gestures [21, 22, 23] and to the study of teleoperation
and its effect on the spatiotemporal characteristics of the
surgeon’s movements [24, 25]. Segmenting surgical motion
into gestures makes it possible to obtain a finer descrip-
tion of surgical tasks leading to a more detailed feedback
on skill assessment [26, 27, 28]. The need of new skill as-
sessment techniques with a detailed feedback during the
surgical residency programs has been emphasized in [29].
Previous work concerned with gesture segmentation and
surgical skill assessment using kinematic and video data
use Hidden Markov Models [14, 15, 30, 31, 32], Conditional
Random Fields [33] and Linear Dynamical Systems [20].
In [14], a surgeon’s skill level was identified by discretizing
the velocity data into discrete symbols which are used to
train the Hidden Markov Models. [15] used the kinematic
data from a surgical robot to generate smooth trajectories
in order to capture the underlying structure of experts’
trajectories. [30] compared different statistical modeling
techniques (Latent Dirichlet Allocation, Hidden Markov
Models and Gaussian Mixture Models) for surgical skills
evaluation. In [31], Sparse Hidden Markov Models were
introduced for the classification of gestures and skills in
surgical tasks. Markov Models of force and torque signals
(applied by the surgeons on on their instruments) were
used in [32] to characterize surgical skills. [33] proposed
a method that combines Markov and semi-Markov Con-
ditional Random Fields for surgical gestures segmentation
and classification. They also showed how their proposed
approach [33] allows the use of both kinematic and video
data. However, studies in [34, 18, 35] showed that feed-
back on medical practice allows surgeons to improve their
performance and achieve even higher skill levels. Hence
the main drawback of the previous approaches is the diffi-
culty for the trainees to understand the output and to use
it as a feedback to improve their performance. To tackle
this problem, a web-based surgical skill training and eval-
uating tool was proposed in [18]. This method is based
on a computer vision algorithm that analyzes the video
of a surgeon’s hand and surgical tool movements in order
to extract features that could be passed to a multivariate
linear regression model to find the relationship between
the extracted features and the surgeon’s score. Although
this technique provides live skill evaluation and feedback
for the trainees, the main drawback is that it uses for each
task a pre-defined area of error that the surgeon should
not enter. In [36], the approach is perhaps the closest to
our work, where they viewed the surgical task as a se-
quence of sub-tasks. For each surgical task, they designed
an optimal trajectory that was compared to the surgeons’
trajectories using Dynamic Time Warping. The problem
is similar to [18] with the fact that for complex trajectories
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(e.g. suturing) finding one optimal trajectory is not simple
and maybe not fair. In contrast, our approach seeks not
only to identify that a surgical motion has been performed
by a novice surgeon, but also to explain why it has been
classified as such without the need to predefine any perfect
trajectory that should be followed by the trainees. This
step is critical in justifying the reasons why the trainee is
still considered as a novice and to help him or her focus
on the specific steps that require improvement.

2.2. Previous work on JIGSAWS
In this subsection, we review related work related to

the largest publicly available dataset for surgical gesture
analysis, JIGSAWS [9]. Recent work on this benchmark
dataset has focused mainly on four tasks: (1) surgical skill
evaluation, (2) surgical gesture classification, (3) surgical
gesture segmentation and (4) surgical task recognition. In
this paper we tackle the first and second problems, but for
completeness, the other complementary approaches vali-
dated on the JIGSAWS dataset are detailed in this sub-
section.

Several existing work have focused on analyzing the
movements’ spatiotemporal characteristics by extracting
features from the kinematic data using the two-thirds power
law [37] and the one-sixth power law [24]. Another ap-
proach based on reinforcement learning [38] showed how
intermediate surgeons had lower trajectory errors than novice
surgeons. Deep learning frameworks have been proposed
in [39, 40, 41] to estimate the position and velocities of the
surgical robot’s tool-tips using the recorded video data.

As for recognizing surgical tasks,the goal is to identify
the surgical task (Suturing, Needle passing, Knot tying)
by analyzing the kinematic data. Two approaches [42, 43]
applied a k-nearest neighbor classifier with Dynamic Time
Warping to identify the three surgical tasks.

A lot of approaches have been proposed for the au-
tomatic segmentation of surgical tasks into more detailed
gestures. Variants of Hidden Markov Models (HMM) and
Conditional Random Fields have been tested in [44]. In [45],
using the kinematic data, a soft unsupervised gesture seg-
mentation framework has been proposed to automatically
segment surgical gestures based on their gradual transi-
tions. Two temporal subspace clustering methods were
proposed in [46] for unsupervised action segmentation based
on the kinematic data. A recent approach [47] introduced
an end-to-end algorithm for jointly learning the weights
of a Conditional Random Field model to classify gestures
based on the kinematic captured data. In [48] they de-
signed a deep learning architecture to segment surgical
gestures using the surgical tasks’ recorded video data. An-
other deep learning framework was proposed in [49, 50]
that uses a an encoder-decoder convolutional neural net-
work on video data to segment the surgical tasks into fine-
grained gestures.

As for the gesture classification task, the gestures’ bound-
aries are supposed to be known and the goal is to deter-
mine which class the gestures belong to. In the bench-

mark conducted in [44], the authors tested the Bag of
Spatio-Temporal Features and the Linear Dynamical Sys-
tem (LDS) to classify surgical gestures using the already
segmented video data. LDS was also tested along a variant
of the HMM (Gaussian Mixture Models), to classify sur-
gical gestures using only the kinematic data. A k-nearest
neighbor classifier with Dynamic Time Warping applied
over the kinematic data was also used in [42] for surgi-
cal gesture classification. Another approach for surgical
gesture classification was proposed in [23]. They used an
auto-encoder over the kinematic followed by a variant of
Dynamic Time Warping to align the extracted features.

For the surgical skill evaluation task, we distinguish
between two types of approaches based on their output.
The first type of approaches [51, 52, 53] aims to predict
the modified Objective Structured Assessment of Techni-
cal Skills (OSATS) [54] scores. The second type of surgical
skill evaluation is to predict the self-proclaimed skill level
(Novice, Intermediate, Expert) of the subjects performing
the surgical tasks. In [31] Sparse Hidden Markov Models
(SHMM) were proposed to classify surgical skills using the
kinematic data and its corresponding gesture boundaries
and labels. Another recent approach uses Approximate
Entropy (ApEn) [53] to extract global features from the
kinematic data and feed it to a nearest neighbor classifier.
As already mentioned in the introduction, the main draw-
back of these approaches [53, 31] is that no interpretable
feedback is provided for the trainees. This type of feedback
could help them improve and achieve even higher surgical
skill levels.

3. Method

3.1. Symbolic Aggregate approXimation (SAX)
We propose to use Symbolic Aggregate approXimation

(SAX) [7] to discretize the input time series [55]. For time
series T of length n, SAX obtains a lower-dimensional rep-
resentation by first performing a z-normalization then di-
viding the time series into s equal-sized segments. Next,
for each segment, SAX computes a mean value and maps
it to a symbol according to a pre-defined set of breakpoints
dividing the data space into α equiprobable regions, where
α is the user specified alphabet size. While dimension-
ality reduction is a desirable feature for exploring global
patterns, the high compression ratio (n/s) significantly af-
fects performance in cases where localized phenomena are
of interest. Thus, for the local pattern discovery, SAX is
typically applied to a set of subsequences that represent
local features – a technique called subsequence discretiza-
tion [56] which is implemented via a sliding window. Note
that other time-series discretization approaches could have
been used at this step [57, 58, 59]. The choice of SAX is
motivated by its unsupervised nature which relies on pre-
defined cutoffs. These cutoffs (given an alphabet size) al-
lows us to have the exact same discretization configuration
for each step of the experiments. Thus, the identified pat-
terns are comparable throughout the experiments and can
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Figure 1: Example of converting three time series of raw
kinematic data corresponding to X, Y and Z coordinates
of the right hand of the surgeon into a five characters al-
phabet. The raw time series are in red and the SAX levels
are in blue.

be compared across population of trainees. An example
of SAX representation of time series is provided in Fig-
ure 1. In this example, raw kinematic data corresponding
to X, Y and Z coordinates of the surgeon’s right hand are
converted into a five characters alphabet [60].

3.2. Bag of words representation of kinematic data
Following the approach proposed in [6], a sliding win-

dow technique is used to convert a time series T of length
n into the set of m SAX words, where m = (n− ls)+1 and
ls the sliding window length. A sliding window of length
ls is applied across the time series T and the overlapping
extracted subsequences are converted into SAX words and
then put in a collection. This collection is a bag of words
representation of the original time series T .

In the case of kinematic data, this process is performed
independently for each dimension of the data (e.g., x coor-
dinate, y coordinate, etc.). All features are normalized on
a per-trial per-feature basis. Each word extracted in each
dimension of the data is postfixed with the name of the
dimension (e.g. x, y, etc.). We assume that depending on
the gesture or the skill level to classify, different kinematic
features can be relevant. Note, that this methodology can
be used regardless of the available kinematic data (e.g.
number of features, etc.). Figure 2 illustrates the conver-
sion of kinematic data for one trial into a bag of words
using SAX.

3.3. Vector Space Model (VSM)
We rely on the original definition of vector space model

as it is known in Information Retrieval (IR) [8, 6]. The
tf∗idf weight for a term t is defined as a product of two

factors: term frequency (tf ) and inverse document fre-
quency (idf ). The first factor corresponds to logarithmi-
cally scaled term frequency [61].

tft,d =
{

log(1 + ft,d), if ft,d > 0
0, otherwise (1)

where t is the term, d is a bag of words (a document in
IR terms), and ft,d is the frequency of t in d. The inverse
document frequency [61] is defined as

idft,D = log |D|
|d ∈ D : t ∈ d| = log Ndft

(2)

where N is the cardinality of a corpus D (the total number
of classes) and the denominator dft is the number of bags
where the term t appears. Then, tf∗idf weight value for a
term t in the bag d of a corpus D is defined as

tf∗idf(t, d,D) = tft,d × idft,D = log(1 + ft,d)× log Ndft
(3)

for all cases where ft,d > 0 and dft > 0, or zero otherwise.
Once all frequencies are computed, the term frequency

matrix becomes the term weight matrix, whose columns
are used as class term weight vectors to perform classifi-
cation using Cosine similarity. For two vectors a and b,
the Cosine similarity is based on their inner product and
defined as

similarity(a,b) = cos(θ) = a · b
||a|| · ||b||

(4)

To classify an unlabeled document, its word frequen-
cies vector frequnlabeled is compared to the tf∗idf weight
vectors of each of the i classes:

class label = arg max
i
{tf∗idf i ∗ frequnlabeled} (5)

3.4. Training and classifying kinematic data
The training step starts by transforming the kinematic

data into SAX representation using two parameters: the
size of the sliding window ls, and the size of the alpha-
bet α. Then, the algorithm builds a corpus of N bags
corresponding to the subsequences extracted from the N
classes of kinematic data, i.e. same skill level or same ges-
ture depending on the application. The tf∗idf weighting
is then applied to create N real-valued weight vectors of
equal length, representing the different class of kinematic
data.

In order to classify an unlabeled kinematic data, the
method transforms it into a terms frequency vector us-
ing exactly the same sliding window and SAX parameters
used for the training part. It computes the cosine simi-
larity measure (Eq. 4) between this term frequency vector
and the N tf∗idf weight vectors representing the train-
ing classes. The unlabeled kinematic data is assigned to
the class whose vector yields the maximal cosine similarity
value.
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Figure 2: Conversion of kinematic data for one trial into a bag of words using SAX [7] and a sliding window of size 4
(in red).

4. Experiments

The proposed method has been evaluated on three sur-
gical motion datasets. The first one is the JIGSAWS
dataset [9] which is the largest publicly accessible database
for surgical gesture analysis. This dataset was used for ges-
ture and skills classification. The second one is a dataset
used in a recent study [22] to compare two surgical mo-
tion interfaces (Sigma.7 and Leap Motion) to control a
RAVEN-II robot [62]. This dataset was used for motion
interface classification and skill classification. Finally, the
third one is a dataset of micro-surgical suturing tasks cap-
tured using a dedicated robot [63]. This dataset was used
for skill classification.

4.1. Datasets
4.1.1. JIGSAWS dataset

This dataset includes 8 subjects with 3 different skill
levels (Novice, Intermediate and Expert) performing 3–5
trials of three tasks (suturing, knot tying, and needle pass-
ing) [9]. Figure 3 illustrates the three tasks. Each trial
lasts about 2 minutes and is represented by the kinematic
data of both master and slave manipulators of the da Vinci
robotic surgical system recorded at a constant rate of 30
Hz. Kinematic data consists of 76 motion variables includ-
ing positions and velocities of both master and slave ma-
nipulators. All trials in the JIGSAWS dataset were manu-
ally segmented into 15 surgical gestures. Video of the tri-
als are also available and synchronized with the kinematic
data. A detailed description of the dataset is available in
[44].

4.1.2. RAVEN-II dataset
This dataset of trajectories has been acquired on a tele-

operation platform composed of a RAVEN-II robot [62]
and two separated human-machine interfaces which are the
Sigma.7 from Force Dimension and the Leap Motion de-
vice. The objective of this dataset was to compare surgical
motion performance from operators using both interfaces
in order to validate the use of contactless interface as a
relevant control input for teleoperation purpose [22].

For each interface, the same training task was executed
10 times by 3 different participants with different skill lev-
els: an urologist expert who regularly performs surgeries

with the da Vinci system (named ‘C’), a last year resident
who only used few times a robotic training system (named
‘B’) and a teleoperation system engineer (named ‘A’). All
participants were right-handed. At the end, we kept the
last five trials as relevant in order to remove the learning
phase in the different gesture executions. It allows us to
obtain 30 trials with an average duration of about 68 sec-
onds for the Leap Motion and about 37 seconds for the
Sigma.7. This surgical dataset contains 27 kinematic data
acquired at 100Hz into the robot reference, corresponding
to the surgical tools information (transformation matrix
of each tooltip and graspers angle) as well as console sta-
tus. Regarding the exercise, the surgical training task was
directly inspired by the FLS guidelines [64]. This task
involved peg transfers to several target locations using bi-
manual manipulation (see [22] for a precise description of
the task). Figure 5 shows the contactless control interface
(Leap Motion) and the RAVEN-II robot.

4.1.3. Microsurgery dataset
This dataset has been collected at the University of

Tokyo Hospital. It consists of micro-surgical suturing tasks
of 0.7mm artificial blood vessel performed using a master-
slave robotic platform [63]. The dataset includes 6 partici-
pants with different surgical expertise and different robotics
skills. Three of them, called experts, are surgical experts
and robotics novices, the three others, called engineering
students, are surgical novices and robotics experts. Each
participant performed 3-6 trials for a total of 11 trials for
experts and 16 for engineering students. The mean dura-
tion of suturing task is about 3 minutes. Figure 6 shows
snapshots of this task. For each trial, the video and the
kinematic data have been recorded at 30Hz. Kinematic
data consist of 16 motion variables including, for booth
surgical instrument, the positions (x, y, and z), the rota-
tions, the tool grip and the output voltage of the grip. The
videos have been manually annotated using the Surgery
Workflow Toolbox [65].

4.2. Parameters and evaluation
4.2.1. Parameters

The training step of our method first transforms the
kinematic data time series into SAX representation con-
figured by two parameters: the sliding window length (ls)
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Figure 3: Snapshots of the three surgical tasks in the JIGSAWS dataset (from left to right): suturing, knot-tying,
needle-passing [9].

and SAX alphabet size (α). The number of segments per
window was kept equal to the length of the window which
means that every point of the time series was transformed
into a letter. This choice was made to allow us to map
back the patterns on the original time series. Parame-
ters ls and α were optimized using cross-validation on the
training data. As they can differ for each specific classifi-
cation problem, their values are provided along with the
experimental results.

4.2.2. Gesture classification evaluation
Gesture classification has been performed only on the

JIGSAWS dataset because it is the only one with an-
notated gesture boundaries. We considered the gesture
boundaries to be known and we used the kinematic data
alone. We present results for two cross-validation con-
figurations provided with the JIGSAWS data [9]. In the
first configuration – leave one supertrial out (LOSO) – for
each iteration of cross-validation (five in total), one trial
of each subject was left out for the test and the remaining
trials were used for training. In the second configuration
– leave one user out (LOUO) – for each iteration of the
cross-validation (eight in total), all the trials belonging to
a particular subject were left out for the test. These are the
standard benchmark configurations provided in [9]. We re-
port micro (average of total correct predictions across all
classes) and macro (average of true positive rates for each
class) performance results as defined in [44]. For each of
the F cross-validation folds, a confusion matrix Cf of size
n×n is computed as : Cf [i, j] = number of class i samples
predicted as class j. The complete confusion matrix, C,
is the sum of all of the confusion matrices:

C = C1 + C2 + . . .+ CF (6)

Given the complete confusion matrix, the Micro average is
computed as the average of total correct predictions across
all classes:

Micro =
∑n
i=1 C[i, i]∑n
i,j=1 C[i, j]

(7)

and the Macro average is the mean of true positive rates
for each class:

Macro = 1
n

C[i, i]∑n
ij1 C[i, j]

(8)

4.2.3. Skills classification evaluation
For the JIGSAWS dataset, we performed experiments

to identify the skill level (Novice, Intermediate or Expert)
at the trial level. In this experiment, we used the leave
one supertrial out (LOSO) cross-validation configuration
provided in [9].

For the RAVEN-II dataset, we used a leave-one-out
cross-validation approach to first to predict the interface
used to control the robot (Leap Motion or Sigma.7) and
then to predict the skill level of the trainee (A, B and C).
Table 3 (left) presents the performance of our method on
this dataset.modif

For the Microsurgery dataset, we used a leave-one-out
cross-validation approach to predict the skill level of the
trainee (expert or novice). Table 3 (right) presents the
performance of our method on this dataset.

4.3. Results
4.3.1. Gesture classification

Table 1 presents the results for gesture classification as-
suming known boundaries and using kinematic data only
for the JIGSAWS dataset. For comparison purposes, we
also report state-of-the-art results for Linear Dynamical
Systems (LDS) and Hidden Markov Models (HMM). The
results have been taken from [44]. The proposed method
outperforms both LDS and HMM methods in terms of
micro and macro performances for the three tasks and
the two cross-validation configurations. These results show
that our method accurately identifies patterns that are
specific to a gesture motion. One of the interesting fea-
tures of the proposed method is the ability to use different
kinematic data depending on the gesture. As our method
computes the frequencies for each component of the kine-
matic data for each gesture independently, the most dis-
criminative attributes of a given gesture naturally stand
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Table 1: Gesture classification performance, assuming known boundaries and using kinematic data only of JIGSAWS
dataset.

JIGSAWS Leave-one-supertrial-out Leave-one-user-out

Method Metric Suturing Needle Knot Suturing Needle Knot
Passing Tying Passing Tying

(ls,α) (8,19) (13,18) (15,7) (8,19) (14,18) (10,12)

Proposed Micro 93.69 81.08 92.45 88.27 75.29 89.76
Macro 79.95 74.67 89.78 68.77 67.54 82.29

LDS [44] Micro 84.61 59.76 81.67 73.64 47.96 71.42
LDS [44] Macro 63.87 46.55 74.51 51.75 32.59 63.99
HMM [44] Micro 92.56 75.68 89.76 80.83 66.22 78.44
HMM [44] Macro 79.66 72.36 87.29 65.03 62.70 72.68

Class specificity :

negative neutral high

X Y

Z

movement
specific to

novice

(a) Trial 5 of Suturing task of subject B (novice)
using Novice class tf∗idf vector weights of 5th fold
(best viewed in color).

Class specificity :

negative neutral high

X Y

Z

movement
specific to

expert

(b) Trial 5 of Suturing task of subject E (expert)
using Expert class tf∗idf vector weights of 5th fold
(best viewed in color).

Figure 4: Example of interpretable feedback using a heat-map visualization of subsequence importance to a class iden-
tification. The value corresponds to the combination of the tf∗idf weights of all patterns which cover the point.

out. Furthermore, the tf∗idf regularization discards the
motion patterns that are common to every gesture (i.e.,
irrelevant for classification as not distinctive of any class).

The LOUO configuration is known to be particularly
challenging, because we attempt to classify gestures of a
subject without having any of his or her other attempts.
The good performance of our approach can be explained by
its ability to identify highly discriminative patterns that
are the most distinctive of each gesture. These results
also indicate that our method generalizes well, as shown
by the fact that it can accurately classify gestures from
unobserved trainees.

4.3.2. Skills classification
Table 2 presents the results for the JIGSAWS dataset

for the three tasks and reports micro and macro perfor-
mances. The results are better for Suturing and Needle
Passing tasks than for Knot Tying task. The poor per-
formance on the Knot Tying task can be explained by
the minor difference between the Expert and Intermedi-
ate subjects for this task (mean GRS is 17.7 and 17.1
for expert and intermediate respectively). We also report
the state-of-the-art results from [31] for the Suturing task.
The SHMM approach gives better results for the per trial
classification configuration as it uses global temporal in-
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Table 2: Skill classification performance per trial using
kinematic data only of JIGSAWS dataset.

JIGSAWS Leave-one-supertrial-out

Method Metric Suturing Needle Knot
Passing Tying

(ls,α) (10,9) (12,13) (5,14)

Proposed Micro 89.74 96.30 61.11
Macro 86.67 95.83 53.33

SHMM [31] Micro 97.40 96.20 94.40

formation, whereas our method is focusing on the local
patterns regardless of their location within larger time se-
ries. Furthermore, the SHMM approach [31] uses gestures
boundaries to learn the temporal model while our method
is not using this information.

Table 3 (left) presents the performance of our method
on the RAVEN-II dataset. For interface prediction, the
performance is very high as our method successfully pre-
dicts the used interface with a 100% accuracy. This means
that the method was able to identify inner patterns that
are specific to each human-machine interface (Leap Motion
and Sigma.7), validating results obtained by the authors.
This is particularly interesting as it could allow us to bet-
ter understand the specificities of each interface and how
they differ from each other. This might be used to com-
pare different interfaces and understand which one is more
suitable for a specific training task or for a specific train-
ing purpose. For skill classification, our method obtained
a precision of 83.33% on this dataset (25 out of 30 tasks
were correctly classified). Most of the errors were in the B
class (resident who only used few times a robotic training
system) which is consistent with previous results on this
data set (see [22]).

Table 3 (right) presents the performance of our method
on Microsurgery dataset. The precision of our method on
this dataset for skill level prediction is 85.19% (23 out of 27
are correctly classified). These results can be explained by
the difficulty of the studied task of microsurgery suturing.
Indeed, the kinematic data contains many artifacts in the
movements due to the use of the microscope. Furthermore,
as the amount of data is limited, it is very challenging to
learn a discriminative pattern in these data.

4.4. Interpretable patterns visualization
An interesting and unique feature of our approach is

to output a set of discriminative patterns weighted by the
class specificity for each of the input class. These lists of
ranked patterns can be studied to better understand what
makes each class distinctive. As the use of tf∗idf (Eq.
(3)) discards patterns that are common to all classes, only
patterns having discriminative power remain.

Table 3: Performance for interface and skills classification
for the RAVEN-II and Microsurgery datasets.

RAVEN-II Microsurgery
Leave-one-out Leave-one-out

Method Metric Interface Skills Skills

(ls,α) (6,20) (6,5) (6,5)

Proposed Micro 100 83.33 85.19

The list of weighted discriminative patterns can be used
to visualize, on a given trial, the location of the areas that
are specific to the current skill level of the trial. We pro-
pose to use a heat map-like visualization technique that
provides immediate insight into the layout of the “im-
portant” class-characteristic patterns (as described in [6]).
Figure 4 shows, for the Suturing task of the JIGSAWS
dataset, the two individual 5th trials of subjects B (Novice)
and E (Expert), using (x, y, z) coordinates for the right
hand. In this figure, we used respectively the tf∗idf weights
vectors of the 5th fold for the Novice on subject B and for
the Expert on subject E. The red areas correspond to spe-
cific motions that are correlated with a skill level. For
Subject B (Figure 4a), these areas correspond to motions
that were only observed among the novices. By contrast,
green areas correspond to motions that are common to all
subjects regardless of their skill. This visualization pro-
vides a rich information about what makes a specific skill
level distinctive and can also be used to provide individ-
ual and personalized feedback. As the videos of the trials
are also available, this result has to be displayed side-by-
side with the videos in order to show to the trainee the
movements that are specific. Note that a more detailed
analysis could be performed by observing which kinematic
data features are specific in these areas or by performing
the analysis on a per gesture basis. Visualization (like Fig-
ure 4) for all the subject trials for the Suturing task are
available on the companion webpage1.

Note that as the tf∗idf weight vectors are computed
prior to the classification step, it is possible to display this
heat-map visualization in real-time during the trial. We
provide a video in the supplementary material attached to
this paper that shows the real-time computation of this
visualization while a trainee performs a suturing task.

5. Discussion

The results presented in the previous section show that
the proposed method can be used to successfully classify
surgical gesture, surgical skill, and recording interface ob-
tained from different recording systems.

1http://germain-forestier.info/src/aiim2018/
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Figure 5: The contactless control interface (Leap Motion)
(top) and the RAVEN-II robot (bottow) for surgical train-
ing [22].

An interesting feature of our approach compared to
other existing approaches is the ability of the method to
explain the classification by providing discriminative and
interpretable patterns. The method not only classify, it
explains the reasons behind this classification. Thus, we
believe that the proposed approach is a valuable addition
to existing learning tools for surgery as it provides a way
to obtain a constructive feedback on which parts of an
exercise have been used to classify the attempt as correct
or incorrect. It is however difficult to evaluate its effect on
the teaching processes as it would require to conduct an
empirical study with two trainee populations – one with
an access to the tool and a control one. Yet another way to
evaluate the system would be to use a questionnaire that
a trainee would be asked to fill after using the system. In
our future work, we plan to conduct these type of studies
in order to evaluate how our method could influence the
acquisition of technical skills.

The method could also be integrated into a clinical
education platform in order to guide trainees in the acqui-
sition of skills. The heat-map visualization computed by
the method (Figure 4) could be provided to the trainee
along with a system allowing to watch videos of the most
discriminative gestures performed by experts.

The analysis of identified patterns should also be con-
ducted in order to evaluate their importance in the skill
level classification since it is currently rather difficult to
evaluate the influence of a single pattern because the co-
sine similarity averages out all the patterns. The final
affectation is thus an accumulation of small or important
"hints" that the trainee belongs to a given skill level. It
is not guaranteed that changing a single pattern will au-
tomatically change the class of a trainee. However, our

Figure 6: Snapshots of micro-surgical suturing tasks per-
formed using a master-slave robotic platform [63].

future work includes a closer analysis of single patterns in
order to better direct the trainee to the most important
pattern.

The way the method works also leads to a loss of the
temporal order of the patterns. The patterns frequency
are indeed computed throughout the surgery regardless of
their position in time-line. This part could be improved,
as the position of a pattern in the course of a surgery
could be informative. On this context, the analysis could
be performed for each phase of the surgery [66] instead of
on the whole surgery. Finally, while the method currently
relies on raw kinematic data to perform the analysis, ad-
ditional information like force and torque could be used
to further improve the results. The method also showed a
great potential to compare different surgical motion sys-
tems in order to extract useful insights on differences and
similarities of surgical motion interfaces.

Finally, we should note that the method is generic
enough so that it could be used to process kinematic data
generated in domains other than surgery. As sensors (e.g.,
accelerometers and gyroscopes) are getting broadly used,
our approach could benefit other domains to analyze pat-
terns of movements that discriminate between different
classes of gestures. For example in [67] a deep convolu-
tional neural network was proposed to classify the motor
state of Parkinson’s Disease using patients’ accelerometer
coordinates captured by wearable sensors. Our method
could be directly applied using patients’ data, thus replac-
ing the black-box model proposed in [67] with an inter-
pretable analysis that highlights which movements con-
tributed the most to a certain diagnosis. Another related
area is the Human Activity Recognition where data from
wearables [68] could constitute an input time series to our
SAX based method thus enabling the interpretation of hu-
man motion identification.

6. Conclusion

In this paper, we presented a new method for discov-
ery of discriminative and interpretable patterns in surgical
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activity motion. Our method uses SAX to discretize the
kinematic data into sequence of letters. A sliding win-
dow is then used to build bag of words. Finally, tf∗idf
framework is applied to identify motion class-characteristic
patterns. Experiments performed on the three surgical
motion datasets have shown that our method successfully
classifies gestures, skill levels and recording interfaces. The
strong advantage of the proposed technique is the ability
to provide a precise quantitative feedback for the classifi-
cation results. The proposed method is thus a good addi-
tion to existing automatic feedback methods. Of course,
the evaluation of our visualization approach needs to be
performed within curriculum.
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