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Abstract: Chalcogenide glasses with a nominal composition of Ga5Ge20Sb10Se(65-x)Tex (x = 0, 
10, 20, 25, 30, 32.5, 35, 37.5) were synthesized. Their physico-chemical properties, glass 
network structure and optical properties are clearly modified via the substitution of selenium 
by tellurium. Based on a detailed study of the Ga5Ge20Sb10Se(65-x)Tex bulk glasses properties, 
the Ga5Ge20Sb10Se45Te20 seleno-telluride glass optimal composition has been selected for fiber 
drawing. The luminescence properties of Tb3+(500 ppm) doped Ga5Ge20Sb10Se65 and 
Ga5Ge20Sb10Se45Te20 bulk glasses and fibers were studied. Radiative transitions parameters 
calculated from the Judd-Ofelt theory are compared to the experimental values. Mid-
wavelength infrared emission in the range of 4.3-6.0 µm is attributed to the 7F5→7F6 
transition of Tb3+ions with a corresponding experimental lifetime of 8.9 and 7.8 ms for the 
selenide and seleno-telluride matrix, respectively. The 7F4 → 7F6 emission was recorded at 3.1 
µm with a good signal-to-noise ratio, evidencing a rather strong emission from the 7F4 
manifold. Finally, although it was expected that the phonon energy will be lower for telluride 
glasses, selenide glasses are still more suitable for mid-wavelength infrared and long 
wavelength infrared emissions with well-defined emissions from 3.1 to 8 μm. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (160.2750) Glass and other amorphous materials; (160.5690) Rare-earth-doped materials; (160.2290) 
Fiber materials. 
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1. Introduction 

Due to their wide infrared transparency and the possibility of incorporation of rare earth ions 
active in mid-wavelength infrared spectral range, chalcogenide glasses are good candidates to 
build all optical gas sensors. To detect and quantify gases, one way is to develop 
chalcogenide glasses presenting transparency compatible with the absorption band frequency 
of these molecules. Here, two domains of interest can be distinguished: mid-wavelength 
infrared (MWIR) and long wavelength infrared (LWIR) corresponding to the 3–5 and 8–12 
μm spectral ranges, respectively. The expanded wavelength range will enable a variety of 
commercial and military applications, such as allowing sensors to be tuned to detect 
atmospheric trace gases for air quality evaluation or hazard alerts. Selenide-and sulfide-based 
chalcogenide glasses are known for their excellent infrared transmission within the 1-15 µm 
region with satisfactory thermo-mechanical properties [1]. Doped with Dy3+, sulfide glass 
fibers have been used as MWIR source for gas sensor applied to CO2 detection [2]. To probe 
the infrared region beyond 12 μm, telluride glasses appear as an attractive material due to its 
low phonon energy and broad transparency window (up to 25 µm) [1,3,4]. Despite their 
interesting optical properties, especially for LWIR, there are only few studies focused on the 
incorporation of rare earths into telluride glasses. This can be explained by the difficulties to 
obtain a vitreous network because the Te-based glasses have strong tendency to crystallize 
which may penalize the incorporation of rare earths and their luminescence properties [5]. To 
overcome the tendency to crystallization of telluride glasses, one possible way is to add 
selenium. Indeed, for each glassy system, it is required to determine the best compromise 
between suitable transparency domain for optical excitation, low phonon energy and glass 
state stability by optimizing the ratio between selenium and tellurium content. For example, it 
has been previously shown that with appropriate ratio between Se and Te in As-Se-Te 
glasses, it is possible to draw fiber with optical attenuation below 1dB/m and a transparency 
domain between 1.5 and 18 µm [6]. The doping of telluride glass with Tb3+ ions [7] and Ga-
modified As30Se50Te20 glass with Pr3+ ions [8] has been reported; however, it only concerned 
the emissions in MWIR. Following the energy level diagram of Tb3+ ion, one can expect to 
have several radiative emissions from 3.1 up to 8 µm. Theoretical work demonstrated that 
Tb3+ doped chalcogenide glass is an excellent candidate for laser application at 7.5 µm [9]. 
For gas sensor applications, this is a wavelength range of interest due to the LWIR absorption 
band of some hazardous gases [10]. To the best of our knowledge, only two papers report the 
measurement of the photoluminescence originating from the 7F4 → 7F5 transition of Tb3+ions. 
The first observation of this radiative emission was confirmed at 7.5 µm for Ge-As-Ga-Se 
glass doped with 1000 ppm of Tb3+ [11]. More recently, Starecki et al. published a 
comprehensive study of the 8 µm fluorescence of Tb3+ions incorporated in Ga-Ge-Sb-Se fiber 
[12]. It is worthy to mention the work of Churbanov et al., who investigated Tb3+ 
luminescence (4-5 µm region) in chalcogenide glasses based on As-Se and As-S-Se [13]. 
They fabricated Tb3+ doped optical fibers with 1.5 dB/m optical loses at 6-9 µm which 
implies a low level of impurities. However the Tb3+ emissions from the 7F4 level at 3.1 µm 
(7F4 → 7F6) and at 7.5 µm (7F4 → 7F5) were not observed. The highest lifetime of 16.3 ms for 
the 7F5 level was reached with the glass presenting the minimum content of Se-H and S-H 
entities (43 ppm and 4 ppm respectively). Contrary, for the glass containing the highest 
impurities concentration (226 ppm for Se-H and 235 ppm for S-H) the lifetime falls to 1.5 ms. 
Lately, Sojka et al studied the MWIR emission behavior of Tb3+ doped As-Ga-Ge-Se bulk 
glasses and conventional fibers. A broad emission band corresponding to the 7F5 → 7F6 
transition was observed at 4.7 µm with a measured lifetime of 12.9 ms (τrad-JO = 13.1 ms) [14]. 

In this study we characterize the vitreous network of Ga5Ge20Sb10Se(65-x)Tex (x = 0, 10, 20, 
25, 30, 32.5, 35, 37.5) system and investigate the physico-chemical properties of these 
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glasses. First, the influence of substitution of tellurium instead of selenium on the glass 
properties is evaluated (IR transmission properties, phonon energy, refractive index, density, 
Tg and Tx). Second, we discuss the photoluminescence properties of Tb3+ (500 ppm) doped 
Ga5Ge20Sb10Se65 and Ga5Ge20Sb10Se45Te20 bulk glasses and optical fibers. The experimental 
luminescence data are compared to radiative parameters calculated via Judd-Ofelt (J-O) 
theory. 

2. Experimental procedure 

2.1 Glass synthesis and basic characterizations 

Tb3+ doped chalcogenide glasses studied in this paper belong to the Ga-Ge-Sb-Se-Te system. 
The fabricated compositions are Ga5Ge20Sb10Se65-xTex with x ranging from 0 to 37.5% 
undoped or doped with Tb3+ (500 ppm) for x = 0 and 20. These glasses were prepared by 
means of conventional melting and quenching method. High purity raw materials were used 
for glass preparation, e.g. Ge (5N, Umicore), Ga (7N, Alpha), Sb (5N, Alpha), Tb2Se3 (3N, 
non-commercial); Se (5N, Umicore) and Te (5N, JGI) were further purified by successive 
distillations (dynamic as well as static distillation) to remove carbon and hydrates impurities. 
Then, the required amounts of chemical reagents were introduced into silica ampoules inside 
the gloved box and pumped under vacuum for a few hours. After the pumping, the silica tubes 
were sealed and heated up to850°C during a total heating process time of 17 hours in a 
rocking furnace to ensure the homogenization of the melt. After water quenching, the glass 
rods were annealed near their glass transition temperatures for 3h. The preform of 7 mm in 
diameter and approximately 10 cm length was drawn in single refractive index fibers with 
350 µm diameter. 

For the physico-chemical characterizations of bulk glass samples, the remainders of the 
initial preform after fiber drawing were cut and polished to 5 mm thick disks. Characteristic 
temperatures (glass transition temperature Tg and crystallization temperature Tx) for each 
glass sample were determined with an accuracy of ± 2 °C using a differential scanning 
calorimeter DSC 2010 (TA Instruments), with a heating rate of 10 °C/min between room 
temperature and 380°C. The density of the glasses was measured using Archimedes’ 
principle. The composition of the different samples was checked by using scanning electron 
microscopy with an energy-dispersive X-ray analyzer (SEM-EDS, JSM 6400 – Oxford Link 
INCA). The Se-H content in the glasses was determined by IR-spectroscopy exploiting the 
measured absorption coefficient and known value of the extinction coefficient at 4.5 µm (ε = 
1000 dB/km/ppm) [15]. 

2.2 Optical measurements 

The ground state absorption measurements were performed with a double-beam Perkin–
Elmer spectrophotometer in the wavelength range of 800–3200 nm and a resolution of 1 nm. 
For bulk glasses, transmission spectra in the IR region were recorded with a Bruker Vector 22 
Fourier transformed infrared spectrometer (FTIR) from 1.5 to 22 µm. Fiber attenuation 
measurements were performed for unclad Tb3+doped Ga5Ge20Sb10Se65-xTex (x = 0, 20) fibers 
and undoped Ga5Ge20Sb10Se65-xTex (x = 0, 20) by using the cut-back technique [16] with a 
Bruker FTIR spectrometer modified with fiber coupling ports. 

For room-temperature photoluminescence measurements, the pump laser light was either 
focused into a bulk glass sample with a silica lens or coupled into the terbium doped 
Ga5Ge20Sb10Se(65-x)Tex (x = 0, 20) fiber. The pump source at 2.05 µm for bulk and fiber 
experiments was a homemade laser with a Tm3+:YAG crystal pumped by a commercial diode 
at 785 nm. The mid-IR light focused on the monochromator slit was detected by a nitrogen 
cooled HgCdTe detector. Fluorescence decays were measured using 30 ms pump pulses with 
a 9 Hz repetition rate. Emission spectra were measured with appropriate long-pass filters and 
corrected using an Arcoptix MWIR-2.0-9.0 blackbody source. 
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The structure of Ga5Ge20Sb10Se65-xTex (x ranging from 0 to 37.5%) glasses was 
investigated using a LabRamHR800 (Horiba-Jovin-Yvon) confocal micro-Raman 
spectrophotometer with 785 nm laser diode coupled to Olympus × 100 microscope. To avoid 
photoinduced phenomena, optical density filters have been selected to reduce the laser power 
focused on the glass samples. Infrared measurements were also performed with a FTIR 
vacuum spectrometer (Bruker Vertex 70V, equipped with Hg arc source) to cover the 
frequency range from 30 to 1000 cm−1. The infrared spectra of bulk glasses were recorded in 
the reflectance mode at quasi normal incidence (11°), and the complex refractive index of 
each sample was obtained through Kramers-Krönig analysis of its specular reflectance 
spectrum. The infrared spectra reported in this work are in the form of absorption coefficient 
spectra, α(ν), calculated from the relation α(ν) = 4πνk(ν) = 2πνε′′(ν)/n(ν), where n(ν) and k(ν) 
are the real and imaginary parts, respectively, of the complex refractive index, ε′′(ν) is the 
imaginary part of the dielectric function and ν is the infrared frequency (in cm−1). 

Linear refractive indices were obtained from the analysis of variable angle spectroscopic 
ellipsometry (VASE) data measured in NWIR-LWIR spectral range (1-12 µm) (J. A. 
Woollam Co., Inc., Lincoln, NE, USA). The VASE measurements parameters are as follows: 
angles of incidence of 65°, 70° and 75°. To derive refractive indices in NWIR–LWIR spectral 
range, Sellmeier dispersion relation was exploited, setting extinction coefficient in first 
approximation to zero. X-ray diffraction (XRD) patterns were recorded at room temperature 
in the 2θ range 15°-120° with a step size of 0.026° and a scan time per step of 400 s using a 
PANalytical X’Pert Pro diffractometer (PANalytical, Almelo, The Netherlands, Cu K-L2,3 
radiation, λ = 1.5418 Å, PIXcel 1D detector). Data Collector and HighScore Plus software 
packages were used, respectively, for recording and analyzing the patterns. 

3. Results and discussion 

3.1. Glass composition and optical properties 

Table 1. Chemical composition of Ga5Ge20Sb10Se(65-x)Tex (x = 0 - 37.5) undoped samples 
and Ga5Ge20Sb10Se(65-x)Tex (x = 0, 20) doped with Tb3+ (500 ppm), Se-H concentration 

(ppm) and glass stability criterion ∆T(°C). 

Sample 
Theoretical 

 composition 
EDS experimental composition 

(± 1%) 
[Se-H] (ppm) 

(± 1 ppm) 
∆T (°C) 
(± 2 °C ) 

x = 0 
 

x = 10 

Ga5Ge20Sb10Se65 
 

Ga5Ge20Sb10Se55Te10 

Ga5Ge20Sb10Se65 
 

Ga5Ge20Sb10Se55Te10 

33
 

23 

> 150 
 

> 150 

x = 20 Ga5Ge20Sb10Se45Te20 Ga5Ge20Sb10Se45Te19 20 > 150 

x = 25 Ga5Ge20Sb10Se40Te25 Ga5Ge20Sb10Se40Te24 33 134 

x = 30 Ga5Ge20Sb10Se35Te30 Ga6Ge19Sb11Se35Te30 16 120 

x = 32.5 Ga5Ge20Sb10Se32.5Te32.5 Ga5Ge20Sb11Se32Te32 13 100 

x = 35 Ga5Ge20Sb10Se30Te35 Ga5Ge20Sb11Se30Te34 8 84 

x = 37.5 Ga5Ge20Sb10Se27.5Te37.5 Ga6Ge19Sb10Se28Te37 4 73 
glass-ceramics 

x = 0: Tb3+ Ga5Ge20Sb10Se65 Ga5Ge20Sb10Se65 - > 150 

x = 20:Tb3+ Ga5Ge20Sb10Se45Te20 Ga5Ge20Sb10Se45Te19 - > 150 

 

Table 1 summarizes the samples synthesized in the Ga-Ge-Sb-Se-Te system with composition 
of Ga5Ge20Sb10Se65-xTex (x = 0, 10, 20, 25, 30, 32.5, 35, 37.5) undoped and doped with 500 
ppm of Tb3+ for Ga5Ge20Sb10Se65 and Ga5Ge20Sb10Se45Te20 glasses. Theoretical chemical 
composition, EDS experimental composition, [Se-H] concentration and ∆T(Tx-Tg) are 
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The structure of Ga5Ge20Sb10Se65glasscan be described by the chemically ordered network 
model: the Ge–Se, Ga–Se and Sb–Se bonds are the most prominent while Ge–Ge and Ge–Sb 
bonds were proposed to be formed especially in Se-poor compositions [17].Considering the 
[GeSe4/2] entities, the IR bands peaking at ~262 and 305 cm−1 are assigned to their 
antisymmetric stretching modes while the main Raman bands located at 200 and 215 cm−1 
have been attributed, respectively, to the localized modes of A1symmetric stretching vibration 
mode of corner-sharing [GeSe4/2] tetrahedra (Td-CS) and Ac1 often called “companion” mode, 
corresponding to the vibration in edge-sharing tetrahedral (Td-ES) [18–20]. This attribution 
was also confirmed by calculation of vibrational normal modes of cluster models by means of 
first-principles method based on the density-functional theory (DFT) [21–23]. Given the 
closeness of gallium and germanium in terms of atomic weights (Ga: 69.72, Ge: 72.59) and 
structural units ([Ge(Ga)Se4/2] tetrahedra) involved in selenide glass matrix, it is quite 
challenging to discern [GeSe4/2] and [GaSe4/2] specific vibrational modes since the 
concentration of gallium is limited to only 5 at.%. The presence of antimony in 
Ga5Ge20Sb10Se65 glass has also a widening effect on the main band compared to the Ge-Se 
binary glass system. At lower energy side, the [SbSe3/2] pyramids have a symmetric stretching 
vibration mode at 190 cm−1. This assignment was also proposed for an IR spectra contribution 
at 180 cm−1in Ge-Sb-Se system [24, 25]; similarly, the IR band at 200 cm−1 can be attributed 
to [SbSe3/2] entities vibrations. In Raman spectra, the 235-270 cm−1 spectral range includes 
the stretching vibration of Se-Se bonds with a wide distribution of vibration modes depending 
on the nature or length of Se–Se chains. The vibration modes were attributed to (i) Se-Se at 
the outrigger-raft cluster and/or long Sen-Se chain vibrations (~235 cm−1), (ii) A1 stretching 
mode of Se8 ring molecules (245-250 cm−1) and (iii) Sen-Se small short chains of 
[Ge(Ga)Se4/2] or [SbSe3/2] structural units where at least one of the selenium at the tetrahedron 
or pyramid corner is linked to another selenium(~265 cm−1) [20]. The specific stoichiometry 
of the Ga5Ge20Sb10Se65 glass results in a relatively low proportion of Se-Se bonds which are 
involved in short chains as evidenced by the moderate amplitude of the broad band at 265 
cm−1.Polymeric chains of Se can also be observed with a minor band at 135 cm−1 for IR and 
138 cm−1 for Raman active modes, according to Lucovsky [26]. The presence of homopolar 
bonds in this stoichiometric glass is related to atomic disorder and some “wrong” Ge-Ge and 
Se-Se bonds can still be found in low concentrations. At low-energy side (150-175cm−1), the 
vibration modes are usually connected with the stretching vibration modes of the M-M bonds 
(M = Ge, Ga, Sb) presumably present in such glass system specially for Se-deficit glasses but 
also in order to compensate the presence of Se in short chains between two units among 
[Ge(Ga)Se4/2] and [SbSe3/2] entities [20, 27] which is the case in studied selenide glass with 
the presence of Ge-Ge bonds leading to a contribution at 170 cm−1. Considering the Ge–Ge 
bonds vibration modes in [Ge–GemSe4−m] - including Se3Ge-GeSe3 ethane like - structural 
units, already observed in amorphous Ge-rich composition, a small wide band centered at 
∼270 cm−1 can be expected. Finally, the small Raman band spreading from 285 to 310 cm−1 
can be related to the asymmetric stretching modes of Td-CS (305 cm−1), more clearly 
observed in IR spectrum as previously mentioned, with a contribution due to the presence of 
[GaSe4/2] tetrahedra. In this spectral region, theoretical vibrational modes calculated by DFT 
are present at 300 cm−1 for asymmetric stretching mode of [GeSe4/2] Td-CS mostly active in 
IR [21–23], but also at 310 and 288 cm−1 for active Raman mode of Td-ES and Se3Ge-
GeSe3ethanelike entities, respectively proposed in [21] or at 311 cm−1 and 285 cm−1 for 
asymmetric stretching mode of Td-ES more active in IR spectrum [22]. 

The introduction of tellurium instead of selenium with a [Te/(Se + Te)] ratio of between 
15.4% and 57.7% progressively affects the IR spectra while a drastic change of the Raman 
spectra is visible. The latter are shifted very significantly towards lower wavenumbers with a 
sharp decrease in the intensity of dominant band peaking at 190-215 cm−1 and the 
disappearance of the band at 265 cm−1 in favor of a wide band that first appears at 170 cm−1 

                                                                               Vol. 8, No. 9 | 1 Sep 2018 | OPTICAL MATERIALS EXPRESS 2894 



and slips gradually to stabilize at 150 cm−1 for Ga5Ge20Sb10Se65-xTex bulk glass with x ranging 
from 10 to 37.5%. These changes can be interpreted as follows. The contribution of 
[Ge(Ga)Se4], [SbSe3] and Se-Se entities seem to disappear quickly in favor of a wide band 
which is first centered at 170 cm−1 and then moves towards 150 cm−1. We can reasonably 
assume that the incorporation of tellurium will lead to the formation of mixed entities such as 
[Ge(Ga)Se4-xTex], [SbSe3-xTex] and Se-Se(n-x)-Tex or Te-Te chains. The symmetrical stretching 
mode at 130 cm−1 associated with A1 symmetric stretching mode of [GeTe4/2] tetrahedra (Td) 
does not appear clearly in Raman spectra but the asymmetry of the band centered at 150 cm−1 
can suggest a possible contribution of these entities [28–30]. The presence of mixed chains 
Se(n-x)-Tex between Ge, Sb, Ga based entities is expected around 200-220 cm−1 [31]; 
nevertheless, it cannot be clearly confirmed because this region also corresponds to the 
vibrational modes of [Ge(Ga)Se4/2] entities which could still remain present within the 
structure of the glasses. Due to the stoichiometry of fabricated glasses, it seems very 
reasonable to associate the main Raman band with vibrational modes of the mixed entities 
[Ge(Ga)Se4-xTex] and [SbSe3-xTex]. This is in agreement with the DFT calculations of R. 
Mereau who proposes a symmetric stretching vibration mode for a mixed tetrahedron 
[GeSe2/2Te2/2] at 170 cm−1 [22]. By comparing the latter to the mode of the [GeTe4/2] Td at 
130 cm−1, we can expect a shift of this mode of vibration from 170 cm−1 to 130 cm−1 with 
increasing substitution of Se by Te in the mixed tetrahedra. It was also proposed that a Raman 
active band around 145 cm−1 originates from Sb-Te vibrations in [SbTe3/2] pyramidal units or 
defective octahedral [32–34]. 

Despite of the fact that substantial differences between IR spectra of studied glasses are 
not observed with increasing Te content, there are nevertheless variations of the distribution 
of the vibrational modes with several bands appearing and disappearing. The band at 155 
cm−1 appearing from x = 20% of Te is accompanied by the progressive decay of the band at 
200 cm−1. Furthermore, the very gradual displacement of the band at 262 cm−1 towards 250 
cm−1is complemented by the regular vanishing of the 305 cm −1 band moving to 283 cm−1. 
Finally, from x = 30% of Te, we can clearly see a shoulder at 220 cm−1. The formation of 
mixed Se-Te entities such as [Ge(Ga)Se4-xTex] is at the origin of the shift of the main 
asymmetric stretching modes of [Ge(Ga)Se4] Td, initially centered at 262 and 305 cm−1, to 
250 and 283 cm−1, respectively. We suppose that the appearance of the IR band at 150 cm−1 
could be associated with the vibrational modes of Sb-Te bonds in the [SbTe3/2] entities at the 
expense of the [SbSe3/2] ones causing the gradual intensity decrease of the IR band at 200 
cm−1. 

An important point of the vibrational data analysis concerns the non-radiative relaxations 
of excited Tb3+ ions via interactions with the phonons of the vitreous matrix. Although the 
main vibration modes active in Raman spectra become the ones around 150 cm−1 for a 
[Te/Se] ratio between 45 and 58%, it is also important to consider the modes active in IR 
spectroscopy. They are localized around 250-300 cm−1, which is a phonon energy range 
remaining relatively high to clearly favor mid-IR luminescence in the 8-9 µm region compare 
to pure selenium matrix. The Fig. 4 shows the refractive indices dispersion curves determined 
by the VASE data analysis with Sellmeier model. As the polarizability of the chalcogenide 
elements increases with the weight and electronic density, the substitution of Te instead of Se 
induces an increase of the refractive index for the chalcogenide glasses from 2.56 to 2.55 for 
x = 0 to 3.11-3.07 for x = 35 within λ = 2.1-4.8 µm range. 
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unique 7F6 → 7F5 absorption transition, as the (U2)
2 matrix element is one order of magnitude 

larger for this transition. Moreover, this (U2)
2 element is equal to zero for the 7F6 → 7F3 and 

7F2 related absorption bands. To conclude, major discrepancies in the J-O calculations may 
occur when the appropriate subtraction of the impurities contribution to the adjacent Tb3+ 
absorption band (7F6 → 7F5 transition) is not performed. 

Table 2. Calculated radiative properties of infrared transitions in 500 ppm Tb3+ doped 
Ga5Ge20Sb10Se65/Ga5Ge20Sb10Se45Te20 glasses for observed emissions centered at 

wavelength λ, with quantum efficiency η. AEDand AMD stand for spontaneous electronic 
and magnetic emission rates, respectively. βrad are corresponding branching ratios. τrad 

and τexp represent radiative and experimental lifetimes, respectively. 

Tb3+:Ga5Ge20Sb10Se65

Transition λ (µm) AED[s-1] AMD[s-1] β τrad[ms] τexp[ms] η
7F5 → 7F6 4.8 64.9 6.9 1 13.9 8.9 0.64 
7F4 → 7F5 7.9 10.3 2.7 0.07 

4.9 - - 7F4 → 7F6 3.1 187 0 0.93 
Tb3+:Ga5Ge20Sb10Se45Te20

Transition λ (µm) AED[s-1] AMD[s-1] β τrad[ms] τexp[ms] η
7F5 → 7F6 4.8 60.4 6.9 1 14.8 7.8 0.52 
7F4 → 7F5

 7.9 11.1 2.7 0.09 
6.5 - - 7F4 → 7F6 3.1 140  0 0.91 

 
Performed J-O calculations show that magnetic and electric dipole strengths of Tb3+ 

transitions are very close to those reported for a selenide material where antimony is 
substituted by arsenic [14]. The Ω2,4,6 parameters obtained in this work are also comparable, 
resulting in similar values of calculated radiative lifetimes. The calculated 7F5 decay lifetime 
(13.9 ms) obtained for the pure selenide glass sample is in good agreement with the value 
calculated for a Ga-Ge-As-Se glass sample (13.1 ms) [14]. In the present work, longer Tb3+ 
ions radiative lifetimes are found for seleno-telluride than for selenide glasses (7F5 level 
lifetime ~14.8 and ~13.9 ms for Ga5Ge20Sb10Se45Te20 and Ga5Ge20Sb10Se65 matrix, 
respectively). On the other hand, the measured fluorescence lifetimes of the 7F5 manifold are 
equal to 7.8 and 8.9 ms for Ga5Ge20Sb10Se45Te20 and Ga5Ge20Sb10Se65 glass, respectively. 
Both 7F5 manifold fluorescence lifetimes are in good agreement with the experimental 
fluorescence lifetimes reported in the literature [13]. Presented values enable an estimation of 
the manifold quantum efficiency η in these materials (η = τexp/τrad). The η is found to be lower 
for Te containing glasses (∼52%) compare to selenide glass (∼64%), which seems to be a 
drawback for efficient infrared luminescence when adding Te in the selenide matrix. 

Either on bulk or fiber samples, the emitted fluorescence in any studied spectral domain 
exhibits a higher magnitude for samples without Te. The quenching of the Tb3+ luminescence 
is somewhat stronger in Ga5Ge20Sb10Se45Te20 than in Ga5Ge20Sb10Se65 glass composition 
likely related to dipole-dipole due to clustering of Tb3+ ions or electron-dipole interactions 
with mainly impurities like [OH] or [SeH]. For the same incident power, the MWIR 
luminescence is brighter with a Tb3+:Ga5Ge20Sb10Se65 fiber, and exhibits a larger signal-to-
noise ratio (Fig. 7(a), 7(b)) indicating a greater radiation quenching in the Tb3+: 
Ga5Ge20Sb10Se45Te20 material. 
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Nevertheless, the radiative emissions observed especially at ~8.0 µm remain remarkable for 
seleno-telluride glasses. To obtain optimal luminescent properties for the highly sought 
luminescence at 8 μm, the next challenge is to decrease the impurity contain of such glasses 
by purification steps. Thus replacing Se by Te in the chalcogenide glass matrix remains a 
promising route to obtain better quantum efficiency of LWIR radiative transitions of rare 
earth ions incorporated in chalcogenide glasses. 

4. Conclusions 

Bulk Ga5Ge20Sb10Se65-xTex with x = 0, 10, 20, 25, 30, 32.5, 35, 37.5 chalcogenide glasses and 
500 ppm Tb3+ doped Ga5Ge20Sb10Se65 or Ga5Ge20Sb10Se45Te20 chalcogenide glasses/fibers 
were synthesized with a deep control of their purity. Tb3+ ions are efficiently introduced into 
Ga5Ge20Sb10Se65 or Ga5Ge20Sb10Se45Te20 glasses. We observe MWIR emission in the range of 
4.3-6.0 µm attributed to the 7F5 → 7F6 transition with a corresponding experimental lifetime 
of 8.9 and 7.8 ms for the selenide and seleno-telluride matrix, respectively. An emission from 
the 7F4 level is measured in the spectral range of 2.8-3.4 µm which is a first step towards the 
challenge to observe the 8.0 µm luminescence from studied Tb3+:Ga5Ge20Sb10Se65-xTex 
materials. This LWIR emission was also measured for the Tb3+:Ga5Ge20Sb10Se45Te20 fiber. 
Although a lower intensity than that of the selenide matrix has been observed, it still remains 
very appreciable. The unambiguous observation of the 8.0 μm emission band in Tb3+: 
Ga5Ge20Sb10Se65-xTex (x = 0 and 20) opens up new prospects for the mid-IR sensors, 
especially in the field of the gas remote sensors. 
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