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Abstract 10 

The testis plays a central role in the male reproductive system - secreting several hormones including male 

steroids and producing male gametes. A complex and coordinated molecular program is required for the 

proper differentiation of testicular cell types and maintenance of their functions in adulthood. The 

testicular transcriptome displays the highest levels of complexity and specificity across all tissues in a 

wide range of species. Many studies have used high-throughput sequencing technologies to define the 15 

molecular dynamics and regulatory networks in the testis as well as to identify novel genes or gene 

isoforms expressed in this organ. This review intends to highlight the complementarity of these 

transcriptomic studies and to show how the use of different sequencing protocols contribute to improve 

our global understanding of testicular biology. 

 20 
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ChIP-seq: chromatin immunoprecipitation followed by sequencing 

circRNA: circular RNA 

Dpc: days post coitum 

Dpp: days post partum 

EST: Expressed Sequenced Tag 5 

GCs: germ cells 

lncRNA: Long noncoding RNA 

miRNA: micro RNA 

NOMe-seq: nucleosome occupancy and DNA methylation profiling followed by sequencing  

PGCs: primordial germ cells  10 

PGCLCs: PGC like cells 

piRNA: Piwi interacting RNA 

RNA-seq: RNA sequencing 

rRNA ribosomal RNA 

SAGE: serial analysis of gene expression 15 

scRNA-seq: Single-cell RNA sequencing 

siRNA: small interfering RNA 

sncRNA: small noncoding RNA 

Spc: spermatocytes 

Spg: spermatogonia 20 

Spt: spermatids 

Spz: spermatozoa 

SSCs: spermatogonial stem cells 

UHTS: ultra-high-throughput sequencing  
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1 Introduction 

The transcriptome can be defined as the entire set of transcripts present in a given biological sample. 

For a long time, the central dogma in molecular biology assumed that one gene is transcribed into one 

messenger RNA (mRNA) which in turn is translated into one protein that fulfills various structural, 

biological and/or regulatory functions within the cell. However, it is now clear that the transcriptome is a 5 

far more complex machinery, composed by several RNA classes performing a myriad of functions. About 

two thirds of human genes contain more than one alternatively spliced exon (Johnson et al., 2003) and are 

thus able to produce numerous RNA and protein isoforms. A large part of the transcriptome is also 

composed of RNAs that do not encode proteins - noncoding RNAs (ncRNAs). These are involved in a 

wide variety of biological processes (for review, see: Cech and Steitz, 2014), including testis 10 

differentiation/development (Rastetter et al., 2015; Taylor et al., 2015) and spermatogenesis (Luk et al., 

2014). Long noncoding RNAs (lncRNAs) constitute the first class of noncoding transcripts, longer than 

200bp, and are involved in many regulatory mechanisms, such as transcriptional, post-transcriptional and 

direct protein activity regulation (Wang and Chang, 2011). Small noncoding RNAs (sncRNAs) refer to 

transcripts shorter than 200bp that can be further divided into micro RNAs (miRNAs), small interfering 15 

RNAs (siRNAs) or Piwi interacting RNAs (piRNAs), most of which regulate gene expression at a 

transcriptional and/or post-transcriptional level (for review, see : Luo et al., 2016). Capturing all types of 

RNA species is necessary to fully understand the transcriptional network at play within a given cell. 

Owing to the intrinsic structural differences between mRNAs, lncRNAs and sncRNAs, transcriptomic 

studies typically focus on a single type of RNA. These intrinsic differences also warrant specific 20 

extraction methods, sequencing protocols and distinctive analytical strategies. 

The first transcriptomic technology, called Expressed Sequenced Tag (EST), was based on the 

Sanger method and consisted of partial sequencing of cDNAs cloned into bacterial plasmids. The serial 

analysis of gene expression (SAGE) (Velculescu et al., 1995) was an improved version of the EST 

technique that allowed increasing the sequencing throughput as well as quantifying the corresponding 25 

transcripts. Both EST and SAGE technics already introduced the notion of transcript assembly (tags 

concatenated into contigs) prior to association of corresponding genes in a reference genome. While these 

methodologies paved the way to decipher transcriptomes, they remained resource, time and money 

consuming. The technology that allowed transcriptomics to truly become a high-throughput discipline was 

DNA microarrays. These consist of solid surfaces on which DNA fragments, called probes, are spotted or 30 

synthetized in situ (Heller, 2002; Nelson, 2001; Pozhitkov et al., 2007; Schena et al., 1995). The 

complementary sequence between probes and transcripts (or corresponding cDNAs) allows their specific 

hybridization, while radioactivity or fluorescence intensity emitted following hybridization is used for 
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quantification purposes. The design of probes is critical and requires prior knowledge of genes and 

transcripts. Aside from the whole-genome tiling arrays designed to interrogate an entire genome (Mockler 

et al., 2005), this technology does not allow the characterization of new transcriptional events and, 

ultimately, the discovery of new genes. Nonspecific hybridization can also result in biased transcript 

quantification (Pozhitkov et al., 2007). Even though the number of PubMed records using the term 5 

"microarray" is declining since 2015, most probably because of the democratization of high-throughput 

RNA-sequencing (RNA-seq), the overall fast assessment of gene expression at a reasonable price explains 

why microarrays remain a widely-used technology. 

Over the last decade, ultra-high-throughput sequencing (UHTS) technologies have revolutionized 

transcriptomics (Morozova et al., 2009; Wang et al., 2009), and all fields under the umbrella of genomics. 10 

Briefly, total RNAs or a subset of these are reverse-transcribed, amplified by PCR and fragmented. 

Subsequently, millions of short DNA fragments are sequenced in parallel, leading to generation of many 

sequences called reads. The mapping of these reads onto a reference genome (genome-based assembly) or 

of reads to each other (de novo assembly) is then required to reconstruct the initial transcripts. Finally, the 

expression level is assessed by counting reads associated to each transcript or gene (Figure 1). Such 15 

quantification methods have been shown to be accurate and well-correlated to other technologies such as 

microarrays, and to eventually outperform these in terms of accuracy for low-abundance transcripts (Chen 

et al., 2017a; Izadi et al., 2016; Wang et al., 2014). Since the emergence of RNA-seq, the accuracy and 

sensitivity of related methodologies have greatly improved. In addition, these techniques have diversified 

to respond to scientists’ specific biological questions (Head et al., 2014). For example, the sequencing 20 

depth can be improved by selecting RNAs of specific interest, such as polyA-RNAs, or by depleting 

undesired ones (e.g. rRNAs). Depending on the study’s focus, the sequencing protocol can also be 

optimized. Single-end sequencing is usually sufficient for gene expression analysis, while paired-end 

sequencing is highly recommended for the purpose of transcript assembly - an absolute pre-requisite to the 

identification of new isoforms or novel genes (Conesa et al., 2016). Preserving strand information is also 25 

crucial to determine the direction in which a given locus is transcribed, allowing a better gene prediction 

in non-model organisms and the discovery of antisense lncRNAs. Over the past years, many bioinformatic 

tools have also been developed to improve all steps of UHTS analyses, including mapping of reads to a 

reference genome, transcript reconstruction and quantification, and differential expression analysis. Rather 

than describing the best practices in experimental design (Hardwick et al., 2017), RNA-seq protocol 30 

(Conesa et al., 2016; Han et al., 2015; Hrdlickova et al., 2017) or differential expression analysis (Fang et 

al., 2012; Huang et al., 2015; Kvam et al., 2012; Wu and Wu, 2016) , this review intends to illustrate the 

wide range of biological questions that can be answered, thanks to these sequencing methods, using the 

testis as a complex organ model. 
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The establishment and maintenance of testicular functions, i.e. the secretion of several hormones 

including androgens and the continuous production of male gametes, require a permanent communication 

network between several cell types. The testicular transcriptome therefore represents the sum of 

transcripts expressed in distinct cell populations, present in various proportions within the testis, including 

Leydig cells (that produce androgens), peritubular cells (that surround seminiferous tubules), Sertoli cells 5 

(that support germ cells) and germ cells (GCs) at various differentiation stages (mitotic spermatogonia, 

meiotic spermatocytes and haploid spermatids). Despite its extreme cellular complexity, a commonly-used 

strategy to study the testis consists of using the whole organ at different ages: fetal or postnatal. The 

expression changes highlighted with such approaches can be used to identify: i) expression dynamics 

within a given cell population, and/or ii) preferential expression in cell types whose proportions fluctuate 10 

during development. Additionally, many techniques allow the isolation of enriched populations of each 

testicular cell type (Figure 2). These two different strategies have recently been combined with the UHTS 

methods, notably RNA-seq, to gain insights into testis biology. 

2 Tissue profiling analyses and first evidences of a testicular specificity 

RNA-seq has been used in a wide range of species to perform tissue profiling analyses, i.e. studies in 15 

which the transcriptomes of various tissues or organs, including the testis, are analyzed and compared. A 

pioneer study using RNA-seq was performed on several tissues in humans and rodents (Ramsköld et al., 

2009). This study demonstrated that the most complex tissues in terms of number of expressed genes and 

RNA classes were the brain, kidney and testis. With the aim of describing the evolutionary dynamics of 

the mammalian transcriptomics, Brawand and colleagues investigated six organs from several species 20 

representing mammalian lineages and avians (Brawand et al., 2011). This analysis pointed towards the 

testis being the most rapidly evolving organ with regards to gene expression, thereby confirming previous 

phenotypic observations (Harcourt et al., 1981). UHTS has also been combined with proteomics analysis 

in order to define the specific proteome of several organs (Djureinovic et al., 2014). The authors used 

RNA-seq as a clue to determine the protein-coding genes specifically expressed in all the tissues analyzed 25 

and concluded that the testis was by far the organ with the highest number of tissue-specific genes. 

Additionally, a landmark RNA-seq study comparing transcriptomes of 24 tissues and cell types in Humans 

was performed to gain insight into the role of lncRNAs in testis specificity (Cabili et al., 2011). The 

authors found that lncRNAs are transcribed in a highly tissue-specific manner and that a third of these are 

predominantly expressed in the testis. These results were further confirmed by a tissue profiling analysis 30 

across 11 species, including mammals and tetrapods (Necsulea et al., 2014), which also showed that the 

high divergence rate of genes expressed within the testis does not exclusively apply to protein-coding 
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genes, but is also inclusive of lncRNAs. This testis-specific expression of lncRNAs was further 

investigated by Zhang and collaborators, who performed RNA-seq on the whole testis and mature sperm. 

They compared their results with six other mouse tissues by integrating available data from NONCODE 

database, and they found that almost 7000 sequenced lncRNAs were exclusively expressed in the testis or 

sperm. Unlike other tissues, the average level of lncRNAs expression appeared higher than that of mRNAs 5 

in mature sperm. 

These RNA-seq based studies have confirmed previous findings from microarray experiments (for 

reviews, see: Calvel et al., 2010; Chalmel and Rolland, 2015; Zhu et al., 2015) and have provided 

additional insight into testis-specificity of lncRNAs. The high tissue-specificity of the adult testis is mostly 

due to the germline expression program. During differentiation (i.e. meiosis and spermiogenesis), male 10 

GCs undergo unique biological processes that require molecular factors expressed exclusively in the testis. 

Additionally, strong evolutionary constraints appear to act on the male gonad, shaping its genes with 

exaggerated traits, at both transcripts’ sequences and expression levels. 

3 Gonad development and somatic cell differentiation 

Following sexual differentiation, the bipotent gonad differentiates to either a testis or an ovary. In the 15 

testis, this involves the differentiation of Sertoli and Leydig cells, the formation of testis cords as well as 

the early establishment of a relatively prominent vasculature. These developmental processes occur during 

the entire embryonic period and continue after birth. Many microarray studies have investigated these 

critical processes in various species and paved the way for a better understanding of the underlying 

molecular mechanisms (Beverdam and Koopman, 2005; Bouma et al., 2007; Combes et al., 2011; del 20 

Valle et al., 2017; Houmard et al., 2009; Jameson et al., 2012; Munger et al., 2013; Small et al., 2005). To 

date, only a few studies performed in non-mammalian species, have analyzed this process at the whole 

organ level with the use of RNA-seq. 

For instance, the transcriptomes of chicken ovaries and testes at two developmental time-points 

surrounding sex differentiation (4.5 and 6 dpc) were investigated using a poly(A)-enrichment protocol 25 

(Ayers et al., 2015). Additionally, the transcriptional dynamics throughout gonadal development were 

studied in Portunus trituberculatus by sequencing whole testis and ovaries at various stages of 

development (Meng et al., 2015). The authors undertook de novo transcript assembly using the Trinity 

tool (O’Neil and Emrich, 2013) and used protein databases (Nr, Pfam, Swiss-Prot) as well as Blast2go and 

WEGO softwares for annotation purposes. Owing to the non-reliance of RNA seq on genome annotation, 30 

it offered a great potential of discovery in non-model species studies. 
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Till date, only a single study has focused on somatic cell differentiation within the fetal mammalian 

testis using RNA-seq (McClelland et al., 2015). The authors used FACS to isolate sf1-eGFP cells from 

mouse testes at different stages. By comparing Sertoli cells (high-GFP cells), Leydig cells (low-GFP cells) 

and GFP-negative cells, they were able to identify 61 genes, previously unknown to be involved in fetal 

Leydig cells differentiation, prior to the onset of steroidogenic genes. In this context, it is also worth 5 

mentioning the RNA-seq analysis of Sertoli cells isolated from Sox9-EGFP mouse testes at different 

postnatal ages (Zimmermann et al., 2015). This study also integrated data from purified GCs (Soumillon 

et al., 2013) to filter out transcripts arising from potential residual GCs. By doing so, the authors 

successfully described the expression dynamics of known transcripts as well as of newly discovered 

isoforms and unannotated transcripts (29 novel unknown intronic or intergenic transcripts) in Sertoli cells 10 

as they differentiate from immature proliferating cells to mature quiescent cells (in charge of sustaining 

spermatogenesis). 

4 Primordial germ cells and gonocytes  

Studies on sex differentiation and testicular somatic cells using RNA-seq are less numerous than 

microarray-based studies (see above). However, there have been many studies investigating primordial 15 

germ cells (PGCs) and/or gonocytes by means of UHTS over the recent years. These cells indeed undergo 

a deep epigenetic reprograming involving removal of cytosine methylation from imprinted genes and 

restoration of totipotency (Hajkova et al., 2010; Popp et al., 2010; Seki et al., 2005) (reviewed in this 

issue). In this context, many studies have characterized the chromatin status of immature GCs from Oct4-

GFP mice (Hammoud et al., 2015; Kubo et al., 2015; Lesch et al., 2013; Seisenberger et al., 2012) by 20 

combining RNA-seq together with epigenomics technologies (for review, see : Mensaert et al., 2014), 

including bisulfite sequencing (BS-seq), (hydroxyl-)methylated DNA immunoprecipitation followed by 

sequencing ((h)MeDIP-seq) (Jacinto et al., 2008; Jin et al., 2011); chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) (Park, 2009), or nucleosome occupancy and DNA methylation 

profiling followed by sequencing (NOMe-seq) (Kelly et al., 2012). A first study compared gene 25 

expression and DNA methylation (using BS-seq) and showed that global erasure of methylation does not 

lead to promiscuous transcription, including retrotransposons, suggestive of other transcriptional 

repression mechanisms in these cells (Seisenberger et al., 2012). A second study correlated transcriptional 

activity with poised chromatin domains, i.e. which harbor both activation (H3K4me3) and repression 

(H3K27me3) histone marks, using ChIP-seq and highlighted a set of essential developmental regulators 30 

which poised chromatin state was conserved from fetal life (in PGCs) to adulthood (in meiotic and post-

meiotic germ cells) (Lesch et al., 2013). The authors further proposed that the flexible transcriptional state 
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of these genes from fertilization onwards is essential to regenerate totipotent cells from differentiated 

germ cells. Finally, one study combined BS-seq and RNA-seq to compare mouse gonocytes (16.5dpc), 

prospermatogonia (0.5 dpp), undifferentiated (KIT-) and differentiating (KIT+) spermatogonia (7.5 dpp), 

allowing to correlate methylation status together with were changes in expression of important genes 

(Kubo et al., 2015). 5 

In humans, the in vitro differentiation of the PGC like cells (hPGCLCs) from embryonic stem cells 

(hESCs) could represent a great mean for the study of PGCs but such models also require a better 

understanding of fetal GCs. For instance, a first transcriptional landscape of purified gonocytes (cKIT+) 

from human fetal testes and ovaries, between 8 and 20 gestational weeks (GW), was generated to evaluate 

and compare five protocols for in vitro generation of hPGCLCs, all of which proved unsatisfactory 10 

(Gkountela et al., 2013). In 2015, four independent studies investigated human PGCs and gonocytes 

between 4 and 19 GW using similar isolation procedures (Gkountela et al., 2015; Guo et al., 2015; Irie et 

al., 2015; Tang et al., 2015). Combination of RNA-seq and BS-seq produced comprehensive datasets 

involving transcriptional and single-base-resolution methylome dynamics during GC development. Except 

for SINE-variable number of tandem repeats-Alu elements (SVAs) (Tang et al., 2015), global DNA 15 

demethylation was not found to correlate with gene upregulation, notably for transposons, implicating the 

presence of another regulatory process (Gkountela et al., 2015; Tang et al., 2015). Another study 

combined RNA-seq and NOMe-seq with previously published ChIP-seq data (H. Guo et al., 2017), 

showing that that promoters’ accessibility is strongly correlated to the corresponding gene expression 

level. The SVAs elements also specifically displayed an open state in fetal GCs. In terms of transcriptional 20 

and epigenomic dynamics during GC development, two studies have successfully highlighted similarities 

as well as significant differences between human and mouse (H. Guo et al., 2017; Tang et al., 2015). 

Other labs also developed protocols for the in vitro differentiation of hPGCLCs from hESCs or human 

induced pluripotent stem cells (hISPCs). A first group evaluated such in vitro differentiation protocol by 

comparing hPGCLCs to hPGCs, cultured hESCs, pre-induced cells, the seminoma-derived Tcam-2 cell 25 

line as well as somatic cells using RNA-seq (Irie et al., 2015). They first showed a significant correlation 

between the transcriptomes of hPGCLCs, hPGCs and Tcam-2 cells. They also identified hPGCLCs as 

potential “differentiating” hPGCs as they do not express the typical late germ cell markers DAZL, VASA 

and MAEL, further demonstrating that hPGCLCs constitute an interesting model to investigate the 

mechanisms of human germ line establishment. Most importantly, they identified the requirement of 30 

SOX17 for specification of human PGCs (Irie et al., 2015). A second group compared the transcriptome of 

hPGCLCs with other previously published RNA-seq data and evidenced significant differences in terms of 

gene expression program and epigenetic reprogramming between human and mouse PGCLCs as well as 
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regarding the respective timing of specification and reprogramming between these species (von Meyenn et 

al., 2016). 

5 Spermatogonial stem cells 

Spermatogonia (Spg) constitute a heterogeneous population of male GCs that include spermatogonial 

stem cells (SSC), proliferative progenitor Spg and differentiating Spg committed to spermatogenesis. In 5 

mouse, undifferentiated Spg consist of type A single (As), paired (Apr) and aligned (Aal4-16) Spg while 

differentiating Spg consist of A1-4 Spg, intermediate Spg and type B Spg. Whether only As Spg 

encompass the pool of SSC is still a matter of debate (for review, see Lord and Oatley, 2017). In humans, 

there are only three types of Spg: undifferentiated Adark and Apale Spg, which are thought to be reserve 

and active SSC, respectively, and type B Spg which are differentiating progenitors (Boitani et al., 2016). 10 

An extensive characterization (RNA-seq, smallRNA-seq, ChIP-seq and BS-Seq) of mouse GCs at 

different stages, including self-renewing Spg (THY1+), differentiating Spg (KIT+), spermatocytes (Spc), 

spermatids (Spt) and mature sperm allowed for the unraveling of key pathways regulating the balance 

between self-renewal and differentiation of SSCs (Hammoud et al., 2014). This study also showed 

epigenetic specificities concerning these cells, which includes the poising of key transcription factors as 15 

well as the activity of DNA-methylated promoters during gametogenesis. By including additional markers 

(THY1, KIT, OCT4, ID4, and GFRa1), the same group further characterized the transcriptome and 

epigenome of adult mice SSCs (Hammoud et al., 2015) and proposed a classification of spermatogonial 

subpopulations, i.e. epithelial-like Spg (THY1+; highOCT4, ID4, and GFRa1), mesenchymal-like Spg 

(THY1+; moderate OCT4 and ID4; high mesenchymal markers), and Spg committed to gametogenesis 20 

(high KIT+), that differ in terms of methylation status and imprinting. The recent identification of ID4 as 

being preferentially-expressed in a subset of mouse As Spg and playing an important role in the 

maintenance of SSC pool (Oatley et al., 2011), allowed further characterization of the SSC transcriptome 

(Chan et al., 2014; Helsel et al., 2017; Hermann et al., 2015; Mutoji et al., 2016). Taking advantage of 

previously-published transcriptomic datasets (Hammoud et al., 2015; Mutoji et al., 2016), a list of 123 25 

genes representing the core expression program of SSC was identified (Helsel et al., 2017). 

A great work has been recently conducted, using SSEA4 as a marker of human SSCs, and KIT as a 

marker of Spg committed into gametogenesis (J. Guo et al., 2017). The authors performed whole-genome 

bisulfite sequencing (WGBS), Assay for Transposase-Accessible Chromatin with highthroughput 

sequencing (ATAC-seq) and RNA-seq on these two purified cell populations, aiming to describe the 30 

complete DNA methylation, chromatin and transcriptional states which may explain their stem-ness 

differences, and focused their analysis on pluripotency factors. Single-cell RNA-seq technologies were 
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also used to profile the transition between SSEA4+ and KIT+ cells. The authors described four distinct 

cellular states, which highlight more precisely the differentiation pathway of human SSCs. This work 

represents a great example of the complementarity and power of different high-throughput technologies (J. 

Guo et al., 2017). 

A number of studies have also been conducted in order to characterize the repertoire of ncRNAs, 5 

including sncRNAs, expressed in immature male GCs. The pioneer work in this field compared mouse 

SSC (THY1+) to somatic cells (THY1-) and identified a set of preferentially-expressed miRNAs in self-

renewing SSC (Niu et al., 2011). The use of unbiased sequencing also confirmed that piRNAs represent 

the preponderant class of smallRNA in differentiating mouse GCs, i.e. Spc and Spt, whereas, other cell 

types such as ESCs, SSCs, Sertoli cells, and mesenchymal stem cells preferentially express miRNAs (Tan 10 

et al., 2014). Recently, RNA-seq was also used to characterize not only classical mRNAs and lncRNAs 

but also circular RNAs (circRNAs) expressed in SSCs and ovarian germline stem cells (X. Li et al., 2017). 

circRNA is a novel class of ncRNA which specificity lies in its covalent bond linking the 3′ and 5′ ends 

generated by backsplicing (for review, see: Huang et al., 2017). Thanks to correlation analysis, a 

competing endogenous RNA (ceRNAs) network, comprising lncRNA-miRNA-circRNA-mRNA, 15 

identified competitive RNAs - capable of binding and inhibiting the regulatory activities of other RNAs. 

6 Gene expression program at play during spermatogenesis 

While at the first glance, working with a whole organ might seem irrelevant for studying GC 

differentiation, it has been successfully demonstrated that in several mammalian species (including 

rodents), the first wave of spermatogenesis is synchronous in all seminiferous tubules (Bellvé et al., 1977; 20 

Oakberg, 1957, 1956). Therefore, following the evolution of the testicular transcriptome at representative 

post-natal ages allows extrapolation of the gene expression program of each GC population (Figure 2). 

This hypothesis is based on the assumption that observed transcriptional variations are due to germline 

differentiation. This strategy has the critical advantage of conserving the testis’s integrity by preserving 

cell junctions and avoiding transcriptome modifications inherent to cell isolation procedures. In 2013, 25 

Gong and collaborators were among the first to profile the transcriptome of the developing mouse testis at 

three postnatal stages (infant, 6 dpp; juvenile, 4 weeks after birth; and, adult, 10 weeks after birth) using 

UHTS and a polyA-enrichment protocol (Gong et al., 2013). At the same time, Laiho and collaborators 

published about the transcriptome evolution during the first wave of spermatogenesis using postnatal 

mouse testes at 7, 14, 17, 21 and 28 dpp (Laiho et al., 2013). Instead of using a classical polyA-enriched 30 

approach, the authors used a rRNA depletion strategy to characterize the transcriptional dynamics of a 
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wide range of protein-coding and noncoding transcripts. They observed for the first time that lncRNAs 

accumulate during meiotic and postmeiotic stages. 

Kaessmann’s lab was among the first to determine the cellular source of the testicular transcriptome 

complexity during mouse spermatogenesis (Soumillon et al., 2013) using RNA-seq on five enriched 

populations of testicular cells including Sertoli cells, type A Spg, pachytene Spc, round Spt and 5 

spermatozoa (Spz). Their results confirmed that meiotic and postmeiotic GCs have the highest 

transcriptome complexity (considering protein-coding genes, lncRNAs, pseudogenes or transposable 

elements), in comparison to testicular somatic cells (Sertoli cells) or other organs. At the same time, Gan 

and colleagues also published a landmark paper describing global 5-hydroxymethylcytosine distribution in 

GCs and its impact on the mouse germline transcriptional landscape (Gan et al., 2013). The authors 10 

sequenced the transcriptome of seven isolated cell populations (primitive SpgA, SpgA, SpgB, preleptotene 

Spc, pachytene Spc, round Spt and elongated Spt) and found that the highest transcriptional transitions 

during spermatogenesis occurred between preleptotene Spc and pachytene Spc, and also between 

pachytene Spc to round Spt. The following year, Chalmel and collaborators used RNA-seq to study the rat 

testicular noncoding expression program and to discover novel genes (Chalmel et al., 2014). Four distinct 15 

testicular cell populations (Sertoli cells, Spg, Spc and Spt) were investigated using a rRNA depletion 

strategy. This allowed them to discover 1419 novel genes, called TUTs for testis-expressed unannotated 

transcripts, most of which exhibited characteristic genomic features of lncRNAs. This study confirmed 

that lncRNAs and TUTs accumulate in the meiotic and postmeiotic GCs (Laiho et al., 2013; Soumillon et 

al., 2013) and identified a distinct class of meiosis-related lncRNAs exhibiting exons twice as long as 20 

those of other transcripts. By using a ‘‘proteomics informed by transcriptomics’’ (PIT) strategy combining 

RNA sequencing data with shotgun proteomics analyses, the authors further identified 44 novel protein-

coding transcripts initially thought to be lncRNAs or TUTs (Chocu et al., 2014; Evans et al., 2012). 

Recently, Da Cruz and colleagues took advantage of improved FACS-based methods (da Cruz et al., 

2016) to isolate leptotene/zygotene Spc, pachytene Spc, secondary Spc, and round Spt and subsequently 25 

performed RNA-seq analysis. Their meiosis-centric study revealed a large number of genes showing a 

burst of expression at the leptotene/zygotene stage. The authors also confirmed that the transcription of 

some spermiogenesis-related genes is initiated as early as pachytene Spc. They also found that some X-

linked genes are overexpressed during meiosis, thus escaping the meiotic sex chromosome inactivation 

(MSCI) (Ichijima et al., 2012; van der Heijden et al., 2011). Another RNA-seq study on five enriched 30 

mouse GCs populations focused on lncRNAs and also identified candidate genes that escape MSCI 

(Wichman et al., 2017). Moreover, another study analyzed the differential expression of not only mRNAs, 

lncRNAs but also included circRNAs in mouse primitive SpgA, preleptotene Spc, pachytene Spc and rSpt 

(Lin et al., 2016). Interestingly, the authors minimized the limitations of their study by taking advantage of 
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several previous transcriptomic studies to define the set of testis-specific genes expressed in their samples 

(Brawand et al., 2011; Cabili et al., 2011), assess the conservation of the spermatogenic expressed 

lncRNAs (Necsulea et al., 2014), compare the circRNAs production across mouse tissues (Rybak-Wolf et 

al., 2015) and investigate the expression of potential precursors of piRNAs (Li et al., 2013). 

In humans, microarray experiments have been conducted to decipher the specific transcriptome of 5 

testicular cell populations and to identify key genes involved in spermatogenesis by using biopsies from 

patients with distinct infertility phenotypes (Chalmel et al., 2012; Ellis et al., 2007; Fox et al., 2003; Gatta 

et al., 2010; Nguyen et al., 2009; Okada et al., 2008; Spiess et al., 2007; von Kopylow et al., 2010). 

Similar approached were also used in rodents with GC-deficient models (Ellis et al., 2004), and chemical 

induced infertility (Orwig et al., 2008; Rockett et al., 2001). Recently, studies have relied on testicular 10 

samples from patients who underwent orchiectomy (Djureinovic et al., 2014). Zhu and colleagues used 

testicular biopsies of patients with obstructive azoospermia (i.e. with normal spermatogenesis) and 

combined FACS and MACS methods to obtain purified Spg, Spc and Spt (Zhu et al., 2016). The RNA-seq 

analysis allowed them to describe stage specific expression of known protein-coding and lncRNAs, as 

well as to focus their analysis on potential key transcriptional regulators of each GC stage such as HOXs, 15 

JUN, SP1, and TCF3. Recently, Jégou and collaborators published a RNA-seq analysis on five testicular 

cell populations including Leydig cells, Sertoli cells, peritubular cells, Spc and Spt (Jégou et al., 2017). By 

classifying differentially expressed genes into three broad co-expression clusters associated with somatic, 

meiotic or postmeiotic cells, the authors found that genes expressed during meiosis are significantly 

depleted in archaic hominin alleles (Sankararaman et al., 2016, 2014). Jan and collaborators used a 20 

microdissection approach to obtain enriched cell populations from adult human testis including Adark and 

Apale Spg, leptotene/zygotene Spc, early pachytene Spc, late pachytene Spc and round Spt (Jan et al., 

2017). The dynamic changes of transcriptome have been characterized during human germline 

differentiation and enlightened that the Spg express transcripts, at protein level, which are required in later 

stages of spermatogenesis. The authors also compared their sequencing results with previously published 25 

datasets, in order to assess the efficiency of their cell isolation protocol (Zhu et al., 2016), and to define 

the conserved expression program between human ad mouse spermatogenesis in GCs populations (da 

Cruz et al., 2016). 

7 Splicing factors and regulatory RNA at play during male germ cell differentiation 

RNA-binding proteins and splicing factors play a critical role during male gamete development (for 30 

reviews, see Bettegowda and Wilkinson, 2010; Elliott, 2004; Idler and Yan, 2012; Paronetto and Sette, 

2010; Venables, 2002; Walker et al., 1999). Several studies also took great advantage of RNA-sequencing 
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to study splicing events occurring during spermatogenesis and particularly in the meiosis phase. Schmid 

and collaborators compared the transcriptome between whole mouse testis before GCs enter meiosis 

(6dpp) and at the end of the process (21dpp) (Schmid et al., 2013). They used a dedicated pipeline, MISO 

(Katz et al., 2010), to identify differentially regulated isoforms or exons across samples, revealing 

switches in splicing patterns during the meiotic process. They pointed out several splicing factors that may 5 

play a key role in the evolution of meiotic protein isoforms, which can be possibly crucial for the germline 

mitotic-meiotic transition. Margolin and colleagues investigated whole testes at eight developmental 

stages of between 6 and 38 dpp (Margolin et al., 2014). They identified more than 13000 novel isoforms, 

including 159 predicted transcripts mapped in intergenic regions, further demonstrating that alternative 

spliced isoforms are abundant through spermatogenesis. They found transcripts mapping on unknown 10 

splice junctions for which an open reading frame was maintained. In 2016, the dynamics of the 

transcriptional landscape governing testis maturation (20 dpp, 75 dpp, 270 dpp) has also been 

characterized in two closely related species, Meishan and Duroc boars (Ding et al., 2016). Using Sus 

scrofa as the reference genome to map reads, the authors enlightened a set of potential critical genes for 

the onset of spermatogenesis. They used a dedicated strategy based on the SOAPsplice tool, allowing 15 

them to identify alternative splicing events (Huang et al., 2011). Importantly, transcriptomic differences in 

such closely related species illustrates the high divergence of transcription within the testis across 

mammalian species. Alternative splicing has also been explored in enriched mouse populations of Spc and 

Spt, to decipher more precisely the splicing changes occurring through transmeiotic differentiation of GC 

(Naro et al., 2017). Following a polyA-enrichment protocol, the authors used the FAST-DB splicing 20 

annotation tool and identified intron retention (IRT) as being the most represented pattern. They showed 

that IRTs are highly stable transcripts that accumulate in the meiotic nuclei and are enriched in genes 

involved in mature gamete functions (i.e. Spt development and sperm-egg recognition). The authors 

therefore suggested that IRT allows storage and stabilization of key transcripts after the transcriptional 

burst in meiotic cells until their translation in transcriptionally-silenced post-meiotic cells. 25 

Besides the widely described mRNAs and lncRNAs, sncRNAs are involved in many expression 

regulation pathways and can be divided in different classes according to their genomic features and 

sequence modifications. Specific RNA-seq protocols had to be developed to allow smallRNA purification, 

library preparation and sequencing, as well as mapping and annotation of corresponding reads. The role of 

sncRNAs in testis maturation and spermatogenesis have been recently reviewed (for reviews, see Luo et 30 

al., 2016; Meikar et al., 2011; Yadav and Kotaja, 2014), and will not be extensively described here. 

Briefly, sncRNA profiling and differential expression analyses were performed on testes at different 

developmental stages (Gebert et al., 2015; Li et al., 2016; Lian et al., 2012; Liu et al., 2012), by comparing 

the testis with other tissues (Luo et al., 2015), including the ovary (Kowalczykiewicz et al., 2014; Li et al., 
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2011). Several works used whole mouse testes at different ages to study the specific biogenesis of piRNAs 

during spermatogenesis (Beyret et al., 2012; Li et al., 2013). In humans, the small noncoding 

transcriptome has also been characterized in the adult testis (Ha et al., 2014; Yang et al., 2013) and several 

other studies have been performed on purified GCs to understand the implication of such sncRNAs during 

spermatogenesis (Gan et al., 2011; García-López et al., 2015; Goh et al., 2015; Vourekas et al., 2012; 5 

Zhang et al., 2015). 

The Noora Kotaya’s laboratory is particularly known in the field of reproductive biology for its work 

on the chromatoid body (CB). The CB is a GC-specific organelle composed of RNAs and RNA-binding 

proteins which appears in the cytoplasm of GCs during the transition between meiotic and post-meiotic 

phase of spermatogenesis (Kotaja and Sassone-Corsi, 2007; Meikar et al., 2011; Parvinen, 2005; 10 

Peruquetti, 2015). Meikar and collaborators isolated CBs from juvenile mouse testes at 22 and 26 dpp 

using several steps of cell lysis, filtration and immunoprecipitation (Meikar et al., 2014). They combined 

sncRNA-seq and RNA-seq to compare purified CB to round Spt and identified sncRNAs, lncRNAs and 

mRNAs that accumulate within this organelle. This analysis showed that lncRNAs identified as genomic 

clusters generating piRNAs, accumulate in the CB, suggesting their important role in piRNAs biogenesis. 15 

However, a proteomic analysis failed at identifying the core primary piRNA processing components 

within the CB, therefore challenging the role of this organelle in the biogenesis of piRNAs. 

8 Resources 

While microarrays remain useful and accurate tools for measuring expression levels, RNA-seq 

provides a more complete transcriptomic solution by allowing transcript isoform determination and 20 

eventually new gene discovery, on top of being more accurate when it comes to quantification (Chen et 

al., 2017b; Izadi et al., 2016; Malone and Oliver, 2011; Wang et al., 2014). With the continuous decrease 

of sequencing costs, the number of RNA-seq studies therefore drastically increased over recent years, and 

the corresponding datasets now present a great potential for reanalysis or integration within one’s own 

study. Similar to microarrays, the MIAME compliance (Brazma et al., 2001) applies to UHTS data and 25 

generalist databases such as the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) 

(Barrett et al., 2012), or the ArrayExpress (Kolesnikov et al., 2015, https://www.ebi.ac.uk/arrayexpress/) 

resources, also serve as repositories of high-throughput sequencing data. Most of the datasets arising from 

studies described in this review are therefore publicly available in these public repositories (see 

Supplemental Table). Despite that several groups have already taken advantage of these available 30 

resources, differences in sequencing protocols, such as transcript type and size selection, strand-
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specificity, length or pairing of reads, may somehow prevent full integration of, or direct comparison 

between different datasets. 

Despite the wide use of UHTS, the handling of such data requires specific skills and is both time and 

resource consuming. Dedicated databases have therefore started to emerge in order to extract, summarize 

and/or visualize the corresponding information, including the field of reproductive biology. For instance, 5 

the ReproGenomics Viewer (RGV) is a useful toolbox dedicated to genomic data for the reproductive 

science community (Darde et al., 2015). It consists of a genome browser that allows the visualization of 

selected datasets from the literature in the genomic context of their respective species. Moreover, cross-

species comparisons are now possible, allowing simultaneous visualization of several types of data (e.g. 

RNA-seq, ChIP-seq) performed in different species. Currently, studies implemented in RGV mainly focus 10 

on testis biology and spermatogenesis, but this tool is likely to be regularly updated in order to expand its 

focus to other areas of reproductive biology. As described earlier in this review, lncRNAs are expressed in 

a highly tissue-specific manner and especially in male GCs. GermlncRNA constitutes a dedicated 

catalogue of known and novel lncRNAs (Luk et al., 2015), by integrating several published transcriptomic 

studies covering three GC populations, i.e. type A Spg, pachytene Spc and round Spt (Gan et al., 2013; 15 

Lee et al., 2012, 2009; Soumillon et al., 2013; Sun et al., 2013). Last but not the least, Spermbase 

represents a great resource dedicated to sperm transcriptome in four mammalians species, i.e. human, rat, 

mouse and rabbit (Schuster et al., 2016). Using a standardized sperm RNA isolation and sequencing 

protocol, this work allows a comparative RNA-seq analysis, covering long as well as small RNAs, and 

identifying the conserved counterpart of the sperm transcriptome across mammalian species. 20 

9 New technologies and perspectives 

The application fields of UHTS technologies have expanded at an amazing pace since its emergence, 

enabling investigation of RNA as well as DNA, both quantitatively and qualitatively, at the sequence, 

structural, and conformation levels. In parallel, the accuracy and throughput of sequencing methods are 

also improving to overcome technical limitations. For instance, most current UHTS approaches involve 25 

amplification steps by PCR and rely on the sequencing of relatively short sequences in order to maintain 

reasonable sequencing error rates. The future of UHTS particularly relies on the use of PCR-free 

protocols, to prevent amplification biases, and on increasing the length of reads, to avoid or, at least, 

reduce and make easier assembly steps for both transcripts and chromosomes/genomes (Chu et al., 2017). 

In this context, it is worth mentioning the emergence of third generation sequencing technologies which 30 

allow the PCR-free or even the direct sequencing of single RNA molecules and generate long reads of up 

to several kilobases (Garalde et al., 2018; Laver et al., 2015; Lu et al., 2016; Rhoads and Au, 2015) 
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(Figure 1). Such technologies remain very expensive and the sequence error rates are still very high (up to 

10%), but they are likely to improve on both aspects in the near future. Very importantly, and also quite 

unexpectedly, both technologies are able to capture information on bases’ modifications such as 

methylation during the sequencing process. 

The outcome of transcriptomic studies also greatly depends on the biological material. While whole 5 

organs preserve cell-cell interactions and reduce gene expression alterations due to extensive sample 

handling, they prevent access to discrete cell populations as well as to low-copy transcripts, and they do 

not allow to ascertain their cellular origins. On the other hand, cell enrichment protocols provide cell-type 

information and improve sensitivity, but potential contaminations and/or changes in expression cannot be 

ruled out. Moreover, such a bulk approach, even with enriched cell populations, is likely to mask 10 

differences between distinct subpopulations. Over the past years, single cell approaches have been 

developed and adapted to RNA sequencing (Figures 1 and 2). Single-cell RNA-seq (scRNA-seq) includes 

cell isolation and library preparation with molecular barcodes. Thanks to microfluidic (Klein et al., 2015; 

Zilionis et al., 2016), droplet-based (Macosko et al., 2015) or FACS-based methods (Jaitin et al., 2014), 

scRNA-seq is able to capture the transcriptome of a very large number of cells. These high-throughput 15 

technologies (Ziegenhain et al., 2017) have proved very efficient for inferring and describing the temporal 

dynamic of cell differentiation, or the spatial description of different cell populations within an organ 

(Kalisky et al., 2017; Macaulay et al., 2017; Tanay and Regev, 2017; Wagner et al., 2016). In the field of 

reproductive biology, several single-cell transcriptomic studies have already been performed, on human 

PGCs/gonocytes and fetal somatic cells (Guo et al., 2015; L. Li et al., 2017) as well as on mouse fetal 20 

somatic cells (Stévant et al., 2018) (reviewed in this issue). scRNAseq is a promising technology that 

represents a great potential of discovery, but as with all other technologies, some experimental limitations 

are still in place. For instance, the dissociation of complex tissues into single-cell suspension can be the 

first limiting step. Single nucleus RNAseq (snuc-RNAseq) has initially been developed to overcome this 

issue in the brain (Habib et al., 2016; Lake et al., 2016), and then combined with microfluidic technology, 25 

leading to DroNc-seq (Habib et al., 2017). Furthermore, the different available technologies still show 

relatively low sensitivity, allowing to detect medium to highly expressed transcripts exclusively. 

Therefore, for now at least, these methods cannot replace classical RNA-seq approaches in terms of 

quantification accuracy and completeness. 

The future of these single cell high-throughput technologies is evolving (Yuan et al., 2017), and 30 

many perspectives remain to be explored, such as in situ transcriptomic analysis (Coskun and Cai, 2016; 

Satija et al., 2015), live imaging transcriptomic analysis (Skylaki et al., 2016), lineage tracing (McKenna 
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et al., 2016; Perli et al., 2016; Schmidt et al., 2017) or single-cell multi-omics (Cheow et al., 2016; 

Genshaft et al., 2016; Hou et al., 2016). 
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Figures and Legends 

 

Figure 1. High-throughput sequencing technologies supporting transcriptomic analyses (2-column 

fitting, colors should be used). 

(a) Until recently, most sequencing technologies have relied on the generation of relatively short reads 5 

(i.e. sequences of few tens to hundreds of nucleotides in length). When applied to the sequencing of RNA, 

following reverse transcription (RT) of either poly-A enriched or of ribosomal RNA (rRNA)-depleted 

transcripts, the bioinformatic analysis then consists in mapping reads to a reference sequence (typically the 

genome if available) prior to transcript assembly (based on reads spanning exonic junctions) and/or 

quantification (based on density of reads mapping each individual transcript/gene). (b) Alternatively, 10 

modified library construction protocols involve the barcoding of each cDNA by a Unique Molecular Index 

(UMI) during reverse transcription, followed by sequencing of the 3’ extremity of the resulting cDNA. 

The counting of UMIs, rather than measuring read density, then allows more precise quantification, by 

correcting for eventual PCR biases. Such protocols were designed for differential gene expression analysis 

and are particularly well-suited for single-cell RNA-seq analyses as well as low-input samples. (c) 15 

Currently, third-generation sequencing technologies are revolutionizing many fields of genomics, 

including transcriptomics. These emerging technologies indeed differ from previous one since they allow 

the direct sequencing of RNAs (i.e. with neither reverse transcription nor PCR amplification) and the 

generation of long-reads (i.e. sequences of several tens of kilobases in length). Consequently, they make it 
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possible to sequence full length transcripts, therefore avoiding the tedious and equivocal step of transcript 

assembly. The relatively low throughput (in terms of number of sequences delivered per run) at a still 

relatively high cost, however, do not make yet such technologies an appropriate solution for quantification 

purposes. 

 5 

Figure 2. Strategies to study gene expression during testis development and functions (2-column 

fitting, colors should be used). 

Several strategies are typically used to investigate the transcriptomic profiles of testicular cells, notably 

during germ cell development. (a) These include the use of whole testes at various developmental stages 10 

during the first wave of spermatogenesis in various species. In such approaches, the specific or 

preferential expression program of a given cell type is inferred from the changes in expression observed 

between two stages during which this cell type appears. (b) Based on the same rationale, the use of 

testicular biopsies from patients with spermatogenesis arrested at distinct developmental stages has been 

commonly used in humans. (c) Alternatively, many isolation procedures enable to obtain enriched cell 15 
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populations in order to investigate more directly the transcript content of various cell types present within 

the testis. (d) Finally, the relatively recent development of single-cell approaches combined with high-

throughput technologies holds great promises for capturing and studying any cell type within a sample, 

including rare cell populations or cell subtypes for which absence of appropriate markers prevents 

purification. Main advantages (Pros) and disadvantages (Cons) are indicated for each strategy. 5 
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