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Introduction

Alterations of plant communities due to ongoing global change, including climate, landuse and resource availability changes, have already been observed and are presumed to continue [START_REF] Vitousek | Human Domination of Earth's Ecosystems[END_REF][START_REF] Walther | Ecological responses to recent climate change[END_REF][START_REF] Van Der Knaap | Projected vegetation changes are amplified by the combination of climate change, socio-economic changes and hydrological climate adaptation measures[END_REF]. Studies of the relationship between plant species diversity and ecosystem functioning have received growing attention in the last decade [START_REF] Diaz | Vive la difference: plant functional diversity matters to ecosystem processes[END_REF][START_REF] Loreau | Biodiversity and ecosystem functioning: Current knowledge and future challenges[END_REF]. The majority of such studies investigated how plant diversity affects litter decomposition efficiency [START_REF] Gartner | Decomposition dynamics in mixed-species leaf litter[END_REF][START_REF] Hättenschwiler | Biodiversity and litter decomposition in terrestrial ecosystems[END_REF], but only a few have examined how it affects the organisms running the process [START_REF] Bardgett | Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands[END_REF][START_REF] Leloup | Unravelling the effects of plant species diversity and aboveground litter input on soil bacterial communities[END_REF]. Soil microorganisms are indeed major drivers of litter decomposition and mineralization [START_REF] Bardgett | The biology of soil: a community and ecosystem approach[END_REF]de Graff et al., 2010) and their responses to changes of leaf litter diversity should interact with the decomposition process efficiency.

Litter microbial communities are strongly influenced by the quantity and the quality of litter input from the plant community [START_REF] Calderon | Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage[END_REF][START_REF] Lalor | Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem[END_REF]. Differences in litter quality among tree species have been reported to affect the abundance and composition of soil bacterial and fungal communities [START_REF] Grayston | Selective influence of plant species on microbial diversity in the rhizosphere[END_REF][START_REF] Aponte | Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence[END_REF][START_REF] Prescott | Tree species influence on microbial communities in litter and soil: Current knowledge and research needs[END_REF]. Both nitrogen (N) and phosphorus (P) availabilities actually shape microbial decomposer communities as they are often limiting elements in the soil and play a central role in resource competition [START_REF] Cleveland | C:N:P stoichiometry in soil: is there a ''Redfield ratio'' for the microbial biomass?[END_REF][START_REF] Mooshammer | Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[END_REF]. Other plant litter traits such as secondary metabolites are recognized to repress the biomass and activity of microbial communities [START_REF] Fierer | Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils[END_REF][START_REF] Ushio | Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest[END_REF][START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF][START_REF] Chomel | Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling[END_REF]. For instance, [START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF] observed a negative correlation between phenolic concentrations and fungal biomass during litter decomposition in a Mediterranean pine forest, calling attention to the inhibitory effect of phenolic compounds from pine leaf litter toward fungi [START_REF] Kainulainen | Decomposition of secondary compounds from needle litter of Scots pine grown under elevated CO2 and O3[END_REF][START_REF] Kraus | Tannins in nutrient dynamics of forest ecosystems-a review[END_REF][START_REF] Hättenschwiler | Biodiversity and litter decomposition in terrestrial ecosystems[END_REF]. Likewise, [START_REF] Amaral | Inhibition of methane consumption in forest soils by monoterpenes[END_REF] reported that monoterpenes inhibited the activity and growth of certain soil microbial groups while stimulating others.

However, in most natural ecosystems, litter material from various plant species decomposes together. As key actors of litter decomposition, microbial communities are likely responding to the variation in species composition of the litter input that determines litter functional diversity. According to the "mass-ratio hypothesis" [START_REF] Grime | Benefits of plant diversity to ecosystems: immediate, filter and founder effects[END_REF], ecosystem properties are strongly related to the relative input of each species, implying that functional traits of the dominant plant species mainly determine ecosystem function [START_REF] Garnier | Plant functional markers capture ecosystem properties during secondary succession[END_REF] and thus the litter trait control over microbial communities changes along community-weighted mean (CWM) trait values. Alternatively, the "niche complementarity hypothesis" argues that the functional diversity (FD) of trait-values promotes an ecosystem's functioning [START_REF] Petchey | Functional diversity: back to basics and looking forward[END_REF][START_REF] Diaz | Incorporating plant functional diversity effects in ecosystem service assessments[END_REF], for instance, by improving the availability of complementary resources for microbial communities [START_REF] Wardle | Biodiversity and plant litter: Experimental evidence which does not support the view that enhanced species richness improves ecosystem function[END_REF][START_REF] Barantal | C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition[END_REF][START_REF] Handa | Consequences of biodiversity loss for litter decomposition across biomes[END_REF]. These two mechanisms can operate simultaneously by affecting microbial communities as a result of plant (litter) composition change. However, our knowledge about the relative importance of these theories in controlling microbial decomposer communities is very limited.

The influence of tree species diversity on litter microbial communities has been studied in boreal, temperate and tropical ecosystems, while information from Mediterranean ecosystems is extremely scarce (e.g. [START_REF] Shihan | Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland[END_REF]Santonja et al., 2017aSantonja et al., , 2017b)).

Mediterranean forests have a different species composition than temperate forests due to the Mediterranean climate characteristics that have shaped species distribution [START_REF] Quézel | Ecologie et biogéographie des forêts du bassin Méditerranéen[END_REF]. Remarkable contrasts of temperature and humidity across seasons, and in particularly the summer drought period, correspond to particular leaf litter traits, including secondary metabolites [START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF][START_REF] Chomel | Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling[END_REF][START_REF] Hashoum | Biotic interactions in a Mediterranean oak forest: role of allelopathy along phenological development of woody species[END_REF], that have the potential to influence microbial decomposer communities (Schimel et al., 2007;[START_REF] Williams | Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community[END_REF][START_REF] Brockett | Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[END_REF].

In this study we assessed the potential consequences of a forest composition shift on microbial communities associated with decomposing leaves, including both loss and gain of tree species. We conducted a full-factorial in situ decomposition experiment over a gradient of litter species diversity in a Mediterranean downy oak forest. Downy oak (Quercus pubescens Willd.) is broadly distributed from northern Spain to the Caucasus [START_REF] Quézel | Ecologie et biogéographie des forêts du bassin Méditerranéen[END_REF], and is the dominant species structuring many forests of the northern parts of the Mediterranean basin. We used leaf litter from the three dominant woody plant species naturally present in the forest (Q. pubescens, Acer monspessulanum L. and Cotinus coggygria Scop.) and one pine species (Pinus halepensis Mill.), which may become more frequent in downy oak forest in the future in response to climate change (i.e. under warmer and drier environment; [START_REF] Gaucherel | Changes of the potential distribution area of French Mediterranean forests under global warming[END_REF][START_REF] Bede-Fazekas | Impact of climate change on the potential distribution of Mediterranean pines[END_REF]. We aimed to determine the effects of (i) litter species richness, (ii) litter species composition, (iii) litter species identity and (iv) litter functional trait values on the dynamics of microbial communities, during one-year leaf litter decomposition.

Using fingerprinting methods, we explored in parallel fungal and bacterial community dynamics at six time points, expecting to reveal differences across microbial decomposers groups that have distinct trophic niches [START_REF] Boer | Living in a fungal world: impact of fungi on soil bacterial niche development[END_REF][START_REF] Buée | The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors[END_REF][START_REF] Lopez-Mondejar | The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics[END_REF]. We hypothesized that H1: microbial diversity and community structure associated to decomposed leaves or needles change with decomposition time, as the litter quality changes over the course of decomposition [START_REF] Snajdr | Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition[END_REF][START_REF] Baldrian | Active and total microbial communities in forest soil are largely different and highly stratified during decomposition[END_REF]; H2: microbial diversity increases with the increase of litter species richness, by increasing resource diversity and microhabitat heterogeneity; H3: microbial community parameters (diversity and community structure) are also determined by the plant identity in the litter mixture, as differences of litter quality among plant species would lead to distinct effects on microbial community parameters; H4: microbial diversity responds to "niche complementarity hypothesis" rather than to "mass-ratio hypothesis", as litter mixtures with contrasting litter quality improve the availability of different resources and microhabitat for microorganisms. We also hypothesized that H5: the relationships between microbial decomposers and litter diversity decrease with decomposition time, as resource diversity changes during leaf litter decomposition, leading to homogenization of litter quality across litter mixtures.

Materials and methods

Study site

This study was conducted in the Oak Observatory at the OHP (O3HP) experimental site located in the research center "Observatoire de Haute Provence", 60 km north of Marseille, South of France (43°56'115" N, 05°42'642" E). The site is 680 m above sea level, and presents a mean annual temperature of 11.9 °C and a mean annual precipitation of 830 mm (1967( -2000( period, WMO standard temperature and precipitation: 1960( -2003 October, maximum temperature in July and August, and a dry summer season lasting less than two months, typical of a supramediterranean bioclimatic stage (Supplementary Fig. S1).

According to the French Référentiel Pédologique [START_REF] Baize | A sound reference base for soils: the « référentiel pédologique[END_REF], the soil is a pierric calcosol (with S horizon between limestone rocks) or a calcarisol when limestone appears less than 25 cm deep. The pH is between 6.5 and 7.5 for the A horizon and 7.5 the for S horizon.

According to the WRB classification (IUSS Working group WRB, 2006) the soil can be classified as a mollic leptosol.

The study site is a Mediterranean natural old-growth oak forest belonging to the site Natura 2000 "FR9302008 Vachères", in which 53 different plant species were identified. This forest already existed in the late 18th century [START_REF] Hilaire | Le domaine de l'Observatoire de Haute-Provence (OHP): hermas et chênaie pubescente, du XVIIIe siècle à nos jours[END_REF] and was managed for centuries by coppicing. Q. pubescens (Downy oak: 75% coverage) and A. monspessulanum (Montpellier maple: 25% coverage) are the two dominant tree species, with understory vegetation dominated by C. coggygria (smoke tree: 30% coverage). P. halepensis (Aleppo pine) is present very close to the downy oak forest but only in open environments.

Experimental set-up

This experiment used litter of four species: A. monspessulanum, C. coggygria, P. halepensis and Q. pubescens that will be named Acer, Cotinus, Pinus and Quercus hereafter.

Freshly abscised leaves of the four species were collected over the whole period of maximum litter fall from October to November using litter traps suspended under the relevant species.

Leaves were dried at ambient temperature and stored until the beginning of the experiment.

Leaf litter decomposition was studied for 320 days using the litterbag method [START_REF] Swift | Decomposition in terrestrial ecosystems[END_REF]. Litterbags measuring 20 cm × 20 cm with a mesh size of 4 mm were filled with 10 g of dry leaf litter and placed in the field in January. Fifteen species mixtures were made with an equal partitioning on a dry mass basis between species: a single-mixture litter for each species (four types), all possible two-species mixture combinations (six types), all possible three-species mixtures (four types) and a four-species mixture. There were thus 15 treatments, comprising four levels of species richness: 1, 2, 3 and 4 species. A total of 360 litterbags (15 types × 6 sampling dates × 4 replicates) were used for the experiment. We used a nested experimental design with four blocks of 100 m 2 (spaced of 10 m) where replicates were randomly scattered and spaced of 1 m in each block. We retrieved four replicates of each treatment (i.e. one per block) every 50 (all the sampling dates) or 70 days (the last sampling date, because violent rain events prevented sampling).

After removal, litterbags were immediately sealed in plastic bags to prevent loss of litter material, and transported to the laboratory. Leaves were separated according to species, which was possible even with small fragments of litter owing to marked morphological differences among species. To prevent contamination of litter by soil, we wiped each leaf thoroughly before analysis. Samples were freeze-dried (Lyovac GT2®), weighed and ground to powder.

Litter traits

Four litter samples of each species were taken to determine the initial characteristics of the litter (Supplementary Table S1). Carbon (C) and nitrogen (N) content of the litters were determined by thermal combustion on a Flash EA 1112 series C/N elemental analyzer (Thermo Scientific, USA). Phosphorus (P) was extracted with 20 ml of nitric acid from remaining dry ash after combustion of 0.5 g of subsamples at 500 °C for 5 h in a muffle furnace. The pH was adjusted to 8.5 with a 40% NaOH solution; 1 ml of each sample, 0.2 ml of mixed reagent (emetic tartar and ammonium molybdate solution), 0.04 ml of ascorbic acid and 0.76 ml of distilled water were placed directly in a spectrophotometer microcuvette. After 150 min, the reaction was completed, and phosphorus concentration was measured at 780 nm with a UV/Vis spectrophotometer (Thermo Scientific, USA).

Total phenolic concentrations were measured colorimetrically by the method of [START_REF] Peñuelas | Variety of responses of plant phenolic concentration to CO2 enrichment[END_REF] using gallic acid as a standard. A 0.25 g litter sample was dissolved in 20 ml of a 70% aqueous methanol solution, shaken for 1 h and then filtered (0.45 µm filter); 0.25 ml of filtered extract was mixed with 0.25 ml Folin-Ciocalteu reagent [START_REF] Folin | A colorimetric method for the determination of phenols (and phenol derivates) in urine[END_REF], 0.5 ml of saturated aqueous Na2CO3 (to stabilize the color reaction) and 4 ml of distilled water.

After 60 min, the reaction was completed, and concentration of phenolics was measured at 765 nm on a UV/Vis spectrophotometer (Thermo Scientific, U.S.A.).

Terpenes were extracted from 0.5 g of litter sample with 5 ml of dichloromethane, and 50 µl of an internal standard (dodecane) was added. The samples were filtered and then analyzed by gas-chromatography/mass-spectrometry (GC-MS) on an Agilent HP6890 system equipped with an MSD5973 Network mass detector, an ALS7673 automatic injector and an HP5-MS apolar column (30 m × 0.25 mm × 0.25 µm; J&W Agilent Technologies, Crawford Scientific, Lanarkshire, Scotland, UK). Retention indices were determined relative to injected Wisconsin Diesel Range Hydrocarbons (Interchim, Montluçon, France) and confirmed by comparison against expected literature values [START_REF] Adams | Identification of essential oil components by gas chromatography / mass spectrometry[END_REF]. Finally, the total terpene concentration was measured as the sum of each of the individual terpene compounds.

To assess the "mass-ratio hypothesis", we calculated the community-weighted mean traits (CWM) of the litter mixtures as the average trait values of the litter mixtures following [START_REF] Garnier | Plant functional markers capture ecosystem properties during secondary succession[END_REF] as

TraitCWM = ∑ 𝑝 𝑖 × 𝑡𝑟𝑎𝑖𝑡 𝑖 𝑛 𝑖=1
where pi is the relative abundance for species i and traiti is the trait value for species i. To assess the "niche complementarity hypothesis", we calculated functional dissimilarity (FD) of litter mixtures according to Rao's quadratic entropy (Botta Dukat, 2005) for each litter mixture as:

TraitFD = ∑ ∑ 𝑝𝑖𝑝𝑗 * 𝑑𝑖𝑗 n j=1 n i=1
where pi and pj are the relative abundance for shrub species i and j in the litter mixture, and dij the Euclidian distance between species i and j for the trait considered. Because the measured traits differ in their units, we used normalized values (using a z-scored standardization so as to get a mean of zero and a standard deviation of one) to calculate functional dissimilarity.

According to the "mass-ratio hypothesis", the highest scores of CWM are reached for species within the mixture that exhibit the highest trait values. On the other hand, according to the "niche complementarity hypothesis", the highest scores of FD are reached for very dissimilar litter species within the mixture. Since we predicted that microbial diversity responds to the "niche complementarity hypothesis" rather than to the "mass-ratio hypothesis" (i.e. research hypothesis H4), we expect that the increase in microbial diversity to be better correlated to the increase in FD values than to the increase in CWM values.

Bacterial and fungal communities

Extraction of microbial cells from litter was achieved by washing 100 mg of freezedried ground litter material with 1.5 ml of sterile saline solution (0.9 % NaCl; w/v). The suspension was mixed by vortexing for 5 s and then centrifuged for a few seconds in order to pellet the leaf residues. Microorganisms were recovered from the supernatant following transfer to a new microtube and being centrifuged (16000 g, 30 min) to form a microbial pellet that was frozen at -20°C until DNA extraction. Total DNA was extracted from each microbial sample by using the PowerSoil-htp 96 wells DNA isolation kit (MoBio, Laboratories, Inc.), adjusting the protocol to the use of a vacuum manifold. DNA samples were stored at -20°C until analysis.

We used Automated Ribosomal Intergenic Spacer Analysis (ARISA) to characterize bacterial communities [START_REF] Ranjard | Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability[END_REF], and terminal Restriction Fragment Length Polymorphism (tRFLP) to characterize fungal communities [START_REF] Liu | Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[END_REF]. The bacterial 16S-23S rDNA Intergenic Spacer (ITS) was amplified using the primers [6fam]-s-d-Bact-1522b-S-20

(5'-TGCGGCTGGATCCCCTCCTT-3') and L-D-Bact-132-a-A-18 (5'-CCGGGTTTCCCCATTCGG-3'). The fungal 18S-5,8S ITS1 region was amplified using the primers [HEX]-ITS1-F (5'-CTTGGTCATTTAGAGGAAGTAA-3'; [START_REF] Gardes | ITS primers with enhanced specificity for basidiomycetesapplication to the identification of mycorrhizae and rusts[END_REF] and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'; [START_REF] White | Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[END_REF]. Both PCR reactions were performed in 20 µl mixtures containing 200 µM dNTPs, 5 % (v:v) DMSO, 0.5 µM of each primer and 0.25 units GoTaq DNA-polymerase with the corresponding 5X PCR buffer (Promega). After initial denaturation at 94°C for 5 minutes, we ran 35 cycles of: denaturation at 94°C for 1 minute, followed by annealing at 55°C for 1 minute, elongation at 72°C for 1 minute and a final elongation at 72°C for 10 minutes. PCR products of the fungal ITS were digested by adding 5 U of HinfI restriction enzyme and 2 µl of the corresponding restriction buffer (Fermentas). Following verification of the ARISA and tRFLP products by using 2%

NuSieve-agarose gel electrophoresis, these products were diluted with sterile distilled water

(1/20), and analyzed with a capillary sequencer ABI 3730 (Applied Biosystem). One microliter of the diluted sample was mixed with 0.8 µl of GeneScan-2500 ROX-labelled size standard and 8 µl of deionized formamide; denaturation was completed at 95°C for 5 min before capillary electrophoresis in the POP-7 polymer, during 3 h with 7.5 kV run-voltage. The output series of peak-sizes corresponding to bacterial or fungal operating taxonomic units (OTUs) were analyzed by using the GeneMapper® v4.1 program (Applied Biosystem). Size standard peaks were defined individually, parameters of the internal AFLP-method were set up in order to detect peak-sizes in the 300-1200 bp range, with bin-windows set up to one bp and lower detection limits of peak-heights fixed individually at values ranging from 1 to 100 Raw Fluorescent Units (RFUs).

Statistical analyses

Statistical analyses were performed with the PRIMER-E software (version 6.1, Primer-E Ltd, Plymouth, United Kingdom) for multivariate analyses, and with the R software (version 3.3.1, The R Foundation for Statistical Computing, Vienna, Austria) for univariate analyses.

Bacterial and fungal OTU (Operational Taxonomic Unit) -abundance matrices based on ARISA and tRFLP fingerprints were analyzed with PRIMER-E. The "DIVERSE" routine was ran to obtain the Shannon's indices of diversity (H' = -Ʃ pi × log10pi), where pi is the proportion of the total abundance arising from the i th species. The abundance value of each OTU was standardized by total abundance of the sample and then log-transformed (Log X+1) before generating Bray-Curtis similarity matrices with minimum transformed-value as a dummy variable. To visualize distance between samples, we used Principal Coordinate Ordination (PCO) plots. We assessed whether microbial community structure differed according to the time of decomposition, the litter diversity and the presence of plant species in the litter mixtures by using analysis of similarity (ANOSIM) routine and multivariate analysis of variance (PERMANOVA) that was set up with 9999 permutations and unrestricted permutation of raw data method. The dispersion of the microbial communities shown by the PCO was studied using the PERMDISP routine. We determined bacterial and fungal communities' turnover rates during litter decomposition (Supplementary Table S2; Supplementary Fig. S2) for each litter mixture treatment, as the linear regression estimate of Bray-Curtis dissimilarity changes, between samples collected after 50 days decomposition and all successive collection dates (i.e. following 100, 150, 200, 250 and 320 days decomposition).

We used a general linear model approach to test for the effects of litter diversity (separated in i) litter species composition, ii) litter species richness, iii) litter species identity and iv) litter functional traits) on bacterial and fungal diversity. Due to the large number of potentially important predictors, we carried out three distinct statistical models. The first model tested the impact of litter diversity (decomposed in litter species richness and litter species composition), time of decomposition (expressed as harvest date) and block on bacterial and fungal diversity (expressed as the Shannon-Wiener index). The second model tested the impact of litter species identity (i.e. the presence/ absence of a particular species), time of decomposition and block on bacterial and fungal diversity.

For a more detailed understanding of how the diversity of leaf litter affected microbial diversity, we evaluated the effects of mean traits (TraitCWM) and functional trait dissimilarities (TraitFD) of the 8 measured litter traits (Supplementary Table S1). A principal component analyses (PCA), based on these 8 litter traits across litter mixtures, allowed to define the two first components of each PCA (i.e. CWM1 and CWM2, and FD1 and FD2) as characteristic vectors of CWM and FD, respectively. We then performed a third model in order to decipher the relative contributions of CWM1, CWM2, FD1, FD2, time of decomposition and block on bacterial and fungal diversity.

Finally, we performed regressions analyses to test for the relationships between litter functional traits (TraitCWM and TraitFD) and bacterial and fungal community turnover rates (Supplementary Table S2).

Results

Microbial community dynamics during decomposition

Overall, 746 bacterial and 448 fungal OTUs were detected in the litter during this experiment. Time of litter decomposition explained the largest proportion of the variation in microbial diversity (Tables 123). Bacterial diversity increased at the beginning of litter decomposition and remained constant from 150 days to the end of the experiment (Fig. 1a).

Fungal diversity increased during decomposition and reached its maximum value after 320 days of litter decomposition (Fig. 1d). Microbial community dissimilarities varied importantly during time of litter decomposition (PERMANOVA, bacterial community: Pseudo-F = 15.5, P < 0.001; fungal community: Pseudo-F = 19.1, P < 0.001). Both bacterial and fungal communities changed during the decomposition experiment (Supplementary Fig. S3). While the dissimilarity among fungal communities remained steady during decomposition (Supplementary Fig. S3b), the dissimilarity among bacterial communities decreased leading to the homogenization of bacterial community across mixtures over time (Supplementary Fig. S3a).

Litter diversity effects on microbial communities

Litter species composition accounted for a higher portion of the overall variance of microbial diversity than litter species richness (Table 1; Supplementary Table S3). Bacterial diversity was higher in the three-and four-species litter mixtures compared to the single and two-species litter mixtures (Fig. 1b). Fungal diversity was the lowest in single-species litter mixtures; it increased with increasing species richness and reached its maximum value in the three-and four-species litter mixtures (Fig. 1e). Microbial diversity differed among the 15 litter species combinations (Figs. 1c and1f). However, the litter mixture effects on microbial diversity, including both litter species composition and litter species richness, varied during the course of the decomposition (Litter species richness × Time and Litter species composition × Time interactions, Table 1). Specifically, bacterial diversity was partially affected by litter species richness (i.e. after 100, 200 and 320 days of decomposition; Supplementary Table S3;

Figs. 2b, 2d and 2f), while fungal diversity was affected by litter species richness during all the decomposition process, but not after 320 days of decomposition (Supplementary Table S3; Fig. 2l). Litter species composition affected microbial diversity throughout the decomposition periods, except for bacterial diversity after 150 days (Supplementary Table S3).

Litter species richness influenced the fungal community dissimilarity by increasing the resemblance of community in multi-species litter mixtures compared to single-species litter (PERMANOVA, Pseudo-F = 2.67, P < 0.01). On the contrary, litter species richness had no effect on the bacterial community dissimilarity (PERMANOVA, Pseudo-F = 1.08, P = 0.2403).

Litter species composition strongly influenced fungal communities, but had reduced effects on bacterial communities (Supplementary Fig. S4b).

Litter identity effects on microbial communities

Measuring the response of microbial diversity to the presence of each plant species in the mixtures revealed the major effects of Quercus, that increased both bacterial and fungal diversities all along the decomposition process and the effect of Pinus that increased specifically fungal diversity at most sampling time. Except for Quercus, the effects of the three other plant species on microbial diversity strongly depended on decomposition time (Table 2). The presence of Acer enhanced bacterial diversity after 100 and 320 days of decomposition (Time × Acer presence interaction, Table 2; Fig. 3a). Cotinus decreased both bacterial and fungal diversities after 50 days of decomposition and, on the opposite, positively affected both bacterial and fungal diversities at later decomposition stages (Time × Cotinus presence interaction, Table 2; Figs. 3b and3f). The presence of Pinus enhanced fungal diversity until 250 days of decomposition, whereas Pinus decreased both bacterial and fungal diversities after 320 days of decomposition (Time × Pinus presence interaction, Table 2; Figs. 3c and3g).

Presence of Quercus enhanced both bacterial and fungal diversities throughout the decomposition process (Table 2; Figs. 3d and3h).

Microbial community dissimilarities also differed according to the identity of the plant species in the litter mixture (Supplementary Fig. S5). The bacterial community dissimilarity was affected by the presence of Acer (ANOSIM, R = 0.16, P < 0.001; Supplementary Fig. S5a)

and Pinus (ANOSIM, R = 0.13, P < 0.001; Supplementary Fig. S5e), but not by the presence of Cotinus or Quercus. The fungal community dissimilarity was mainly affected by the presence of Pinus (ANOSIM, R = 0.32, P < 0.001; Supplementary Fig. S5f) and to a lower extent by Acer (ANOSIM, R = 0.18, P < 0.001; Supplementary Fig. S5b). Interestingly, the influence of Quercus on fungal community dissimilarity was covered by the influence of Pinus (ANOSIM, R = 0.16, P < 0.001; Supplementary Fig. S5h). In other words, the presence of Quercus had a different effect on litter mixtures either containing or excluding Pinus.

Control of microbial communities by mass ratio or niche complementarity hypothesis

Principal component analysis of CWM traits showed that the first PCA axis (CWM1), explaining 66.3% of traits variation, was determined mainly by high C and terpen concentrations and low phenolic concentration (Fig. 4a). The second PCA axis (CWM2), explaining 26.4% variation, was related mainly to high values of C:N and C:P ratios, and low values of N and P concentrations (Fig. 4a). Principal component analysis of FD traits showed that the first PCA axis (FD1), explaining 45% of trait dissimilarity variation, was related mainly to increasing dissimilarities of phenolic concentration, and of C:P and N:P ratios (Fig. 4b). The second axis (FD2), explaining 30.5% variation, was related mainly to increasing dissimilarity of terpen and C concentrations, and of C:N ratio (Fig. 4b).

When evaluating jointly the effects of CWM and FD traits, we found that bacterial diversity was mostly controlled by time of decomposition, FD2 and the interaction FD2 × time of decomposition (Table 3). Increasing FD2 scores (i.e. decreasing functional dissimilarity of terpen, C and C:N ratios) were related to higher bacterial diversity index after 200, 250, and 320 days of decomposition, as indicated by the FD2 × time of decomposition interaction (Table 3; Fig. 5) and by the negative relationship between the bacterial communities turnover rate and FD2 (Table 4).

In contrast to bacterial diversity, both CWM and FD traits strongly controlled fungal diversity (Table 3). Fungal diversity was significantly affected by time of decomposition, CWM1, FD2 as well as the interactions CWM1 × time of decomposition, CWM2 × time of decomposition and FD2 × time of decomposition (Table 3). Increasing CWM1 scores (correlated mainly to decreasing phenolic concentration) were related to higher fungal diversity, except after 320 days of decomposition (CWM1 × time of decomposition interaction, Table 3).

Increasing CWM2 scores (mainly correlated to increasing values of C:N and C:P ratios) were related to higher fungal diversity after 50 and 100 days of decomposition (CWM2 × time of decomposition interaction, Table 3). The relationship between FD2 and fungal diversity opposed to that observed with bacterial diversity: increasing FD2 scores (i.e. correlated mainly to decreasing C, terpen and C:N dissimilarities) were related to lower fungal diversity, except after 320 days of decomposition (FD2 × time of decomposition interaction, Table 3; Fig. 5).

The relationships between the dynamic of fungal diversity during litter decomposition and both CWM1 and FD2 values were confirmed by similar relationships with fungal communities' turnover rate (i.e. negative correlation of fCTR with CWM1 and positive correlation of fCTR with FD2; Table 4).

Discussion

In line with our first hypothesis, microbial community's changes were important across decomposition time. While the fingerprinting methods used are likely to detect DNA of living microorganisms and relic DNA that is not fully degraded during the experiment [START_REF] Carini | Relic DNA is abundant in soil and obscures estimates of soil microbial diversity[END_REF], our result is consistent with previous studies on the seasonal variation of microbial communities, reporting that variations in soil moisture, temperature or leaf litter chemistry during decomposition were most likely causes of changes in microbial communities [START_REF] Snajdr | Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition[END_REF][START_REF] Voriskova | Seasonal dynamics of fungal communities in a temperate oak forest soil[END_REF][START_REF] Lopez-Mondejar | The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics[END_REF][START_REF] Purahong | Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation[END_REF]. The bacterial community showed a faster dynamic and reached a higher diversity than the fungal community, which confirms previous studies [START_REF] Baldrian | Active and total microbial communities in forest soil are largely different and highly stratified during decomposition[END_REF][START_REF] Urbanova | Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[END_REF]Santonja et al., 2017a). Interestingly, we observed that the community heterogeneity among litter mixtures remained constant along the decomposition process for fungi, while it gradually disappeared for bacteria (Supplementary Fig. S3). This finding supports the idea that the rapid establishment of bacterial diversity is driven by the availability of simple compounds at early decomposition stages [START_REF] Moorhead | A theoretical model of litter decay and microbial interaction[END_REF]; then, simple compounds decrease in quantity to the advantage of recalcitrant compounds, which triggers selective changes in the bacterial decomposer community. Comparatively, the fungal decomposer community showed an apparently lower diversity that gradually established to its maximum value at later decomposition stages. These results suggest that diversification of the fungal decomposer community at advanced litter decomposition stages relies on competition for recalcitrant compounds utilization and to late colonization of the remaining leaf tissue [START_REF] Moorhead | A theoretical model of litter decay and microbial interaction[END_REF].

In agreement with our second hypothesis, microbial diversity increased with litter species richness. Previous studies have provided evidence that microbial biomass and diversity respond positively to litter mixing [START_REF] Blair | Decay-rates, nitrogen fluxes, and decomposer communities of single-species and mixed-species foliar litter[END_REF][START_REF] Bardgett | Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands[END_REF][START_REF] Chapman | Biodiversity at the plant-soil interface microbial abundance and community structure respond to litter mixing[END_REF]Santonja et al., 2017a), with differences in litter properties causing resource diversification and habitat heterogeneity for microbial decomposers [START_REF] Tilman | Plant diversity and ecosystem productivity: Theoretical considerations[END_REF][START_REF] Hooper | Effects of plant composition and diversity on nutrient cycling[END_REF][START_REF] Hättenschwiler | Functional diversity of terrestrial microbial decomposers and their substrates[END_REF]. Unlike Santonja et al. (2017a) who reported that only fungal diversity increased after one year of litter decomposition in a Mediterranean oak shrubland, here we observed that both bacterial and fungal diversities increased during the process in the studied Mediterranean oak forest. We also clearly demonstrated that the litter diversity effects are mediated by litter species composition rather than litter species richness, highlighting the importance of litter species identity in litter mixtures as a driver of microbial community diversity. We partially confirmed our hypothesis that microbial responses to litter species diversity (both composition and richness) decrease with decomposition time. Because it is generally assumed that initial differences in litter quality among different plant species converge to similar quality during litter decomposition (e.g. [START_REF] Moore | Litter decomposition and C, N and P dynamics in upland forest and peatland sites, central Canada[END_REF][START_REF] Preston | Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions[END_REF], we expected to observe greater litter diversity control of microbial communities during the early stages of decomposition. Interestingly, litter diversity effects varied during the experiment but were not restricted to the early decomposition stages.

In line with our third hypothesis, microbial community proxies were sensitive to the litter species identity, as the presence of the four plant species affected -positively or negatively -microbial diversities. Previous studies also highlighted the importance of tree species identity as drivers of microbial communities, rather than changes in tree species richness [START_REF] Scheibe | Effects of tree identity dominate over tree diversity on the soil microbial community structure[END_REF][START_REF] Urbanova | Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[END_REF]. As for the litter diversity effect, the litter identity effect on microbial communities was irregular across decomposition times. Interestingly, the positive effects of Q. pubescens on both bacterial and fungal diversities remained constant during all the decomposition process. Since Q. pubescens is the dominant tree in the studied Mediterranean oak forest, microorganisms could be well adapted to colonize and degrade this litter type. A.

monspessulanum enhanced sporadic bacterial diversity, but showed a noticeable effect on microbial community dissimilarities, suggesting an important contribution on bacterial community composition. This effect is probably related to high contents of N and P (Supplementary Table S1) that are generally limiting nutrients in the soil and would be mostly favorable to heterotrophic bacterial decomposers [START_REF] Cleveland | C:N:P stoichiometry in soil: is there a ''Redfield ratio'' for the microbial biomass?[END_REF][START_REF] Mooshammer | Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[END_REF]. C. coggygria expressed negative effects on both bacterial and fungal diversities only at the earliest decomposition stage, which then reverted to a positive effect at later decomposition stages. This could be attributed to its strong initial phenolic content (Supplementary Table S1) that was shown to affect microbial colonization of leaf litter [START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF] and is later on rapidly lixiviated (73% phenolic content loss after 100 days of decomposition; [START_REF] Santonja | Potential shift in plant communities with climate change in a Mediterranean Oak forest: consequence on nutrients and secondary metabolites release during litter decomposition[END_REF]. As the alien species of the study, P. halepensis is the only coniferous species among the four studied woody-plant and is characterized by the highest terpene content. Its presence in the litter mixtures noticeably enhanced fungal diversity until later decomposition stages (although this effect decreased during the experiment; Fig. 3g) and also showed striking effects on fungal community dissimilarities. These results suggest that terpenes favor fungal decomposer diversity. Interestingly the effect of Q. pubescens superimposed to the effects of P. halepensis leading to four distinct fungal communities (Supplementary Fig. S5h). Overall, the fungal community composition showed essentially more susceptibility to the identity of plant species present in the leaf litter mixtures than the bacterial community composition (Supplementary Fig. S4), stressing the tight and specialist relationship between plant species and fungal decomposer community, compared to the more relaxed and generalist relationship with bacterial decomposer community [START_REF] Moorhead | A theoretical model of litter decay and microbial interaction[END_REF].

In line with our fourth hypothesis, both mass-ratio (measured through community weighted mean (CWM) of litter traits) and niche complementarity (measured through functional dissimilarity (FD) of litter traits) hypotheses contributed to the litter diversity effects on microbial decomposer communities, with a greater relative importance of the niche complementary compared to the mass ratio hypothesis. According to the niche complementarity hypothesis, litter mixtures with contrasting litter quality improve the availability of different resources for decomposers [START_REF] Tilman | Plant diversity and ecosystem productivity: Theoretical considerations[END_REF][START_REF] Hooper | Effects of plant composition and diversity on nutrient cycling[END_REF][START_REF] Schimel | Nitrogen transfer between decomposing leaves of different N status[END_REF]. But, surprisingly, increasing functional dissimilarity of litter traitshence resource availability, was unfavorable to the bacterial community turnover rate and diversity while conversely, it was beneficial to the fungal community turnover rate and diversity in the studied Mediterranean oak forest. In contrast to bacterial diversity, the first and second components of the CWM PCA were both associated to fungal diversity, highlighting the contribution of the traits mass ratio as additional drivers of fungal diversity. Decreasing mean phenolic concentration of litter mixtures (i.e. CWM1) was related to higher turnover rate of the fungal community, affecting fungal diversity until 250 days of decomposition. This suggests that fungal communities are more sensitive to phenolics than bacterial communities.

Interestingly, increasing mean C:N ratio value of litter mixtures (i.e. CWM2) was related to higher fungal diversity after 50 and 100 days of decomposition. The C:N ratio of bacterial biomass is expected to vary between 3 and 6 while the C:N ratio of fungal biomass is expected to vary between 5 and 15 [START_REF] Mcgill | Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils[END_REF]. Subsequently, fungal communities are expected to have lower N requirement than bacteria [START_REF] Güsewell | N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[END_REF], and thus, being less N limited, they would be able to colonize and develop on poor-quality litter at early decomposition stages.

Conclusion

Our results from a field experiment clearly demonstrated that potential shifts in plant species diversity and associated litter traits may have strong cascading impacts on microbial decomposer communities in a Mediterranean oak forest. Both bacterial and fungal communities were influenced by litter species diversity, litter identity and litter functional traits. However, the intensity and the direction of these effects varied strongly during decomposition. Litter diversity effects were mediated by litter species composition rather than litter species richness, highlighting the importance of litter species identity (and associated litter traits) as driver of microbial communities. We also underscored the importance of Quercus pubescens (i.e. the dominant tree species of the studied oak forest) and Pinus halepensis (i.e. an alien tree species that may become more frequent in the studied oak forest in response to climate change) in structuring microbial communities. Both community weighted mean (CWM) litter traits (massratio hypothesis) and functional dissimilarity (FD) of litter traits (niche complementarity hypothesis) contributed to litter diversity effects, with a greater relative importance of FD compared to CWM, and with an overall stronger impact on fungal compared to bacterial communities. Collectively, these findings also suggest that different aspects of litter diversity control microbial communities during litter decomposition. 
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 1245 Fig. 1 Bacterial (a, b, c) and fungal (d, e, f) diversity (expressed as Shannon diversity index H')

Table 2

 2 Effects of the presence of each litter species, time of litter decomposition and block on Shannon diversity index for bacterial and fungal decomposer communities. d.f. = degrees of freedom, %SS = percentage of sums of squares. F-values and associated P-values (with the

	respective symbols * for P < 0.05, ** for P < 0.01, and *** for P < 0.001) are indicated
			Bacterial diversity		Fungal diversity
		d.f. %SS	F-value	d.f. %SS	F-value
	Acer	1	0.6	3.4	1	0.0	0.0
	Cotinus	1	0.3	1.8	1	0.0	0.1
	Pinus	1	1.2	7.4**	1	11.9 119.6***
	Quercus	1	3.2	19.1***	1	1.5	15.0***
	Time	5	32.8	38.7***	5	44.5	89.6***
	Block	3	0.5	1.0	3	0.1	0.2
	Acer × Time	5	2.5	2.9*	5	0.9	1.8
	Cotinus × Time	5	2.4	2.8*	5	2.5	5.0***
	Pinus × Time	5	2.7	3.2**	5	8.2	16.4***
	Quercus × Time	5	1.7	2.0	5	0.8	1.6
	Residuals	307 52.0		299 29.7	

Table 3

 3 Effects of community weighted mean traits (CWM), functional trait dissimilarities (FD), time of litter decomposition and block on Shannon diversity index for bacterial and fungal decomposer communities. CWM1 and CWM2, and FD1 and FD2 represent the two first components of the PCAs conducted using the CWM or the FD values in Fig. 4. d.f. = degrees of freedom, %SS = percentage of sums of squares. F-values and associated P-values (with the respective symbols * for P < 0.05, ** for P < 0.01, and *** for P < 0.001) are indicated

			Bacterial diversity		Fungal diversity
		d.f. %SS	F-value	d.f. %SS	F-value
	CWM1	1	0.3	1.4	1	5.1	47.5 ***
	CWM2	1	0.0	0.2	1	0.0	0.4
	FD1	1	0.3	1.5	1	0.0	0.3
	FD2	1	2.2	9.8 **	1	11.3 105.5 ***
	Time	5	43.6	39.6 ***	5	50.6	94.3 ***
	Block	3	0.1	0.6	3	0.0	0.2
	CWM1 × Time	5	2.1	1.9	5	2.7	5.1 ***
	CWM2 × Time	5	1.1	1.0	5	1.5	2.8 *
	FD1 × Time	5	0.2	0.2	5	0.2	0.4
	FD2 × Time	5	3.1	2.8 *	5	6.4	11.9 ***
	Residuals	213 46.9		206 22.1	

Table 4

 4 Effects of community weighted mean traits (CWM) and functional trait dissimilarities (FD) on bacterial and fungi community turnover rates during leaf litter decomposition. Adjusted R 2 values in simple linear regressions and associated P-values (with the respective symbols *

	for P < 0.05 and ** for P < 0.01) are indicated. The sign of the regression coefficient is indicated
	in brackets. bCTR= bacterial community turnover rate; fCTR= fungal community turnover rate;
	ns= non-significant relationship				
			bCTR			fCTR	
	CWM1	0.01	(+)	ns	0.38	(+)	*
	CWM2	0.02	(-)	ns	0	(+)	ns
	FD1	0.25	(+)	ns	0.01	(+)	ns
	FD2	0.53	(+)	**	0.42	(-)	*

days 150 days 200 days 250 days
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