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Introduction

Since the hypothesis of “cancer immunosurveillance” proposed by Burnet and
Thomas about 60 years ago,1 our knowledge about the interactions between cancer
cells and the host immune system has dramatically increased. These interactions,
referred to as “immunoediting”, are summarized in the three “Es” theory: Elimination,
Equilibrium and Escape.2 Because of: i) genetic instability and tumor heterogeneity;
and ii) immune selection pressure, tumor cells become progressively capable of avoid-
ing immune destruction during carcinogenesis. This property of cancer cells is now
recognized as a hallmark of cancer.3

The generation of an antitumor immune response requires several steps, elegantly
summarized in the “cancer immunity cycle”.4 It consists of the release of tumor anti-
gens (Ag), their capture by professional antigen-presenting cells (APC), and the priming
of T cells. Then, effector T cells traffic to the tumor site, and recognize and kill cancer
cells. To be effective, the priming of T cells needs two signals: i) the recognition of the
MHC-Ag complex by the T-cell receptor (TCR) (signal 1); and ii) the co-stimulation by
the CD80/CD86 molecules of CD28 (signal 2). Signal 1 without signal 2 leads to T-cell
anergy.5 Only professional APC express both class I (MHC-I) and class II (MHC-II)
major histocompatibility complex, and co-stimulatory molecules. All nucleated cells
present endogenous Ag to CD8 T cells through MHC-I. Professional APC present
exogenous Ag to CD4 T cells through MHC-II, but also exogenous Ag to CD8 T cells
through MHC-I, a process called cross-presentation.6 B-cell lymphomas are unique
among cancers because the tumor cells themselves are professional APC.7 With the
advent of new immunotherapies including checkpoint inhibitors, bispecific antibodies
and CAR T cells, understanding lymphoma immunity and immune evasion may be
crucial to determine the optimal treatment and/or combinations for a given patient.

Here, we review the different immune escape strategies of lymphoma and classify
them into two main mechanisms. First, lymphoma cells may “hide” to become invis-
ible to the immune system. Second, lymphoma cells may “defend” themselves to
become resistant to immune eradication. Finally, we discuss how the understanding of

Evading immune eradication is a prerequisite for neoplastic progres-
sion and one of the hallmarks of cancer. Here, we review the differ-
ent immune escape strategies of lymphoma and classify them into

two main mechanisms. First, lymphoma cells may “hide” to become
invisible to the immune system. This can be achieved by losing or down-
regulating MHC and/or molecules involved in antigen presentation
(including antigen processing machinery and adhesion molecules), there-
by preventing their recognition by the immune system. Second, lym-
phoma cells may “defend” themselves to become resistant to immune
eradication. This can be achieved in several ways: by becoming resistant
to apoptosis, by expressing inhibitory ligands that deactivate immune
cells and/or by inducing an immunosuppressive (humoral and cellular)
microenvironment. These immune escape mechanisms may have thera-
peutic implications. Their identification may be used to guide “personal-
ized immunotherapy” for lymphoma.
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these immune escape mechanisms may be used to deter-
mine the optimal immunotherapy for patients with lym-
phoma.

How lymphoma may hide from the immune 
system 

In order to evade immune eradication, tumor cells may
first become “invisible”. This can be achieved by the loss
or downregulation of molecules involved in antigen pres-
entation (MHC), co-stimulation (CD80, CD86), and/or
adhesion (CD54),8 thereby preventing their recognition by
the immune system. 

Two types of mechanisms may be responsible for the
loss of these molecules: i) “hard lesions” which consist of
irreversible genetic alterations of the gene of interest or
genes implicated in their transcriptional regulation; and ii)
“soft lesions” which are reversible epigenetic changes that
repress gene expression9 (Figure 1, "hide").

Prevention of antigen presentation

MHC-I loss/downregulation 
Loss of MHC-I at the surface of lymphoma cells (total

loss or miss-localization) occurs in 55-75% of diffuse large
B-cell lymphoma (DLBCL)10,11 and 63% of Hodgkin lym-
phomas (HL).11 Most frequently, this results from mutations
of the Beta2-microglobulin (β2M) gene which occurs in
29% of DLBCL,10 50% of primary mediastinal B-cell lym-
phoma (PMBCL),12 and at least 50% of classical HL (cHL).13

In immune-privileged lymphomas, MHC-I loss was found
in 18% of primary central nervous system lymphomas
(PCNSL) but not in primary testicular lymphomas (PTL).11

In HL, MHC loss is preferentially observed in EBV-negative
rather than in EBV-positive HL (83% vs. 27%).11 Patients
whose Reed Stenberg cells (RS) are negative for MHC-I or
β2M have a shorter progression-free survival (PFS).14

Interestingly, 9p24.1 amplification (leading to PD-L1 over-
expression, as discussed below) adversely impacts survival
only in HL patients in whom RS have lost MHC-I.15 Loss of
MHC-I is also observed in 30% of Burkitt lymphomas (BL)
and 20% of follicular lymphoma (FL)16 with rare β2M muta-
tions.17 In FL, the frequency of β2M mutations is higher
after histological transformation18 and is associated with a
lower infiltration of the tumor by CD8 T cells.19

Other irreversible mechanisms leading to MHC-I loss
include alterations in MHC-I gene.16,20 Unlike non-hemato-
logic cancers, epigenetic mechanisms do not seem to be
frequently responsible for MHC-I loss/downregulation in
lymphoma.7

Importantly, natural killer (NK) cells are activated in the
absence of MHC-I and in the presence of CD58 (which
stimulates NK cells through CD2). Interestingly, 67% of
DLBCL lack CD58 surface expression, and 61% lack both
CD58 and MHC-I expression, thereby preventing NK-cell
activation.10 Of note, genetic alterations of CD58 are also
found in transformed FL but not in FL.18 Genetic lesions
disrupting the CD58 gene have been found only in 10-
21% of DLBCLs, suggesting alternative mechanisms.10,21,22

MHC- II loss/downregulation
Transcriptional regulation
Expression of MHC-II is regulated, through epigenetic

mechanisms. CREBBP regulates CIITA by catalyzing

H3K27 acetylation at its promoter/enhancer in normal GC
B cells and lymphoma cell lines.23-25 CREBBP may undergo
loss-of-function mutation in the histone acetyl transferase
domain. Thus, in FL and DLBCL, mutations of CREBBP
prevent CIITA transcription, which in turn prevent MHC-
II transcription.

HLA-DR expression is lost in 20% of DLBCL26 and is
associated with a reduced T-cell infiltrate within the
tumor27 and a poor outcome.27,28 Moreover, 19% of DLBCL
have MHC-II intra-cytoplasmic aberrant localization
which is associated with a worse outcome. This mislocal-
ization is preferentially seen in BCL-2 and c-MYC double
expresser lymphomas. Of note, c-MYC down-regulates
enzymes implicated in the antigen presentation machinery
(cf 2.1.3).29 The mechanisms of MHC-II downregulation
remain incompletely understood but seem to occur at tran-
scriptional level independently of genetic lesions on MHC-
II gene.30 Indeed, genes implicated in epigenetic regulation,
including HMTs and HATs, are the most frequently altered
genes in DLBCL (approx. 50% of GC-DLBCL and 30% of
ABC-DLBCL).31 Moreover, DLBCL frequently harbor inac-
tivating mutations of CREBP (19% of all DLBCL, 31% of
GC-DLBCL and 6% of ABC-DLBCL)12 and CIITA (10% of
DLBCL).12 CIITA is a target of somatic hypermutation
(SHM) caused by AID.12 Finally, expression of CIITA and
CREBP may be repressed through epigenetic silencing (i.e.
independent of genetic alterations). Reduced expression of
CIITA and CREBP is frequently found in DLBCL, leading
to MHC-II downregulation and poor outcome.32-35 In some
cases, MHC-II may be restored by lifting the repression of
CIITA with HDAC inhibitors.33 MHC-II downregulation in
DLBCL may also result from an overexpression of the tran-
scription factor FOXP1 through a mechanism which,
although not clearly elucidated, seems to be independent
of CIITA.36 FOXP1 expression is associated with the non-
GC phenotype (48% of GC-DLBCL vs. 71% of non-GC-
DLBCL)37 and a poor prognosis.38 The underlying mecha-
nisms responsible for FOXP1 overexpression remain large-
ly unknown. Genetic alterations on chromosome 3p lead-
ing to FOXP1 overexpression are found in a small subset of
DLBCL.38 FOXP1 translocations are found in 5% of DLBCL
and are associated with extra-nodal localizations and high
proliferative index.39 Bea et al. also reported 15% of trisomy
3 and 31% of copy number gains of the chromosome 3p in
ABC-DLBCL (versus 1% in GC-DLBCL), associated with
MHC-II downregulation.40

In PMBCL, MHC-II downregulation also occurs at the
transcriptional level and CIITA alterations is the most
common mechanism:41 CIITA breaks are found in 38-56%
of PMBCL and correlate with poor outcome;12,42 CREBP
mutations are present in 11% of cases12 and abnormalities
on chromosome 3 can be found, although rarely.40

However, loss of expression of MHC-II is found only in
12% of PMBCL.43 This is associated with poor survival.43

In FL, there is no evidence for mutation in MHC-II
genes17 but CREBBP is mutated in 32-68% of cases17,34 and
CIITA in 35%44 suggesting a downregulation at the tran-
scriptional level. Furthermore, CREBBP mutation is an
early event and a driver mutation in FL development.45

In HL, lack of MHC-II on RS occurs in 41% of cases and
represents an independent prognosis factor.46 In 37.2% of
cases, RS show aberrant localization in their cytoplasm.46

The mechanisms responsible for MHC-II loss in HL is not
completely known but genomic CIITA break is found in
15% of HL42 and FOXP1 is not implicated.47

Immune escape mechanisms in lymphoma

haematologica | 2018; 103(8) 1257



Genetic alterations
Direct, genetic alterations leading to MHC-II loss are

mostly seen in DLBCL of immune-privileged sites. PTL
and PCNSL have lost HLA-DR in 61% and 46% of cases,
respectively.48 In contrast with other types of DLBCL,
genetic lesions of MHC-II genes represent the main mech-
anism of HLA-DR loss:48,49 MHC-II is mutated in 78% of
PTL and 50% of PCNSL.49 Transcription factors seem to be
rarely implicated in HLA-II loss in PTL: CIITA and FOXP1
rearrangements are present in only 10% and 7% of cases,
respectively.50

It is noteworthy that, when expressed, MHC-II may
drive inhibitory signals. Indeed, lymphocyte-activation
gene 3 (LAG-3), a member of immunoglobulin superfami-
ly expressed on tumor infiltrating lymphocytes (TILs),51

binds to MHC-II with greater affinity than CD4, leading

to the inhibition of TCR signaling, proliferation and
cytokine secretion by antigen-specific T cells. Exhausted
LAG-3 positive TILs are present in the immune infiltrate
of FL, DLBCL and HL (mostly in EBV positive cases,
mixed cellularity and rich lymphocyte subtypes).52,53

Furthermore, circulating CD4 T cells from HL patients
with active disease express LAG-3 at higher levels than
healthy donors or patients in long-term remission.53

Antigen processing machinery alterations 
GILT and HLA-DM are enzymes of the antigen process-

ing machinery (APM), located in the endocytic compart-
ment of APC and B cells. Both are down-regulated by
cMYC, leading to a defective antigen presentation that can
be restored in vitro by cMYC inhibitors.54

GILT generates epitopes to be loaded on MHC-II. In

M. de Charette et al.
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Figure 1. Lymphoma immune evasion mechanisms. (Top left panel) "Hide". Tumor cells may become “invisible” to the immune system by down-regulating MHC, co-
stimulatory (CD80 and CD86) and/or adhesion (CD54) molecules. Downregulation of CD58 allows tumor cells to escape killing by natural killer (NK) cells, which are
activated by self-missing signal (loss of MHC-I). (Right panel) "Defend". Tumor cells are seen by the immune system but avoid destruction through resistance to apop-
tosis signals and/or expression of inhibitory receptors. Tumor cells may resist apoptosis by different means: loss of FAS and/or TRAIL receptors (extrinsic pathway),
hyperexpression of anti-apoptotic molecules such as BCL-2 (intrinsic pathway) or PI9 (Granzyme pathway). T cells can be inhibited by inhibitory ligands which are
expressed by lymphoma cells or cells from their microenvironment such as PD-L1 or PD-L2/PD-1, LAG-3/MHC-II, CTLA-4/CD80 or CD86 and HLA-G/ILT. CD47 sends a
“don’t eat me” signal to macrophages and DCs by interacting with its ligand SIRPa.  Tumor cells may also express FAS-L to induce death of immune cells. Some mol-
ecules expressed by lymphoma cells may have dual roles: expression of MHC-II allows antigen presentation but also binds to the inhibitory receptor LAG-3; CD80 and
CD86 stimulate T cells through CD28 but may also inhibit T cells through CTLA-4. (Bottom left panel) Immunosuppressive microenvironment. The tumor cells interact
with their microenvironment to contribute to lymphoma immune evasion. IL-10 is a potent immunosuppressive cytokine that inhibits priming by dendritic cells (DC),
promotes Th2 and Treg differentiation and M2 macrophages; TGF-β induces exhausted phenotype of CTL and Treg differentiation; IDO suppresses cytotoxic T lympho-
cyte (CTL) and NK immune response through degradation of tryptophan and production of kynurenine. Trp: tryptophan; Kyn: kynurenine; Gal: galectin; Ag: antigen.



DLBCL patients treated with CHOP or rituximab-CHOP,
Phipps-Yonas et al. identified lower GILT expression as an
adverse prognostic factor for OS.55 Once formatted by
GILT, peptides are loaded on MHC-II instead of CLIP frag-
ment of invariant chain. This exchange is performed by
HLA-DM. In absence of HLA-DM, antigens cannot be
exposed and MHC-II present CLIP at the cell surface.11

HLA-DM is lost in 49% of cHL, 14% of DLBCL, and 2.9%
of PTL and PCNSL.11

Prevention of co-stimulation: B7 molecule 
downregulation

CD80 and CD86 are members of the B7 co-stimulatory
family and are expressed on professional APC, including B
cells. They have a dual specificity: they can bind to the
stimulatory receptor CD28 promoting T-cell activation
and to the inhibitory receptor CTLA-4 (with a much high-
er affinity than CD28) leading to T-cell inhibition.56

In B-cell lymphomas, CD80 and CD86 may be
expressed on tumor cells and/or on cells from their
microenvironment.57 CD80 is expressed in 97% of FL,
91% of marginal zone lymphomas (MZL), 90% of
DLBCL, and 75% of mantle cell lymphomas (MCL).58

Interestingly, T and non-T cells present in the microenvi-
ronment of these tumors also express CD80.58 Loss of
CD86 was found to be associated with decreased TIL
infiltration in DLBCL.59 However, the prognostic value of
CD80 and CD86 expression in lymphoma remains
unclear, maybe because of their dual activity.

Prevention of adhesion
Intercellular adhesion molecule 1 (ICAM-1 or CD54)

plays a crucial role in cell-to-cell interaction, especially in
the immune synapse and tumor cell adhesion and dissem-
ination.8 Lower expression of CD54 compromises the
interaction between tumor and immune cells. In DLBCL,
lymphocyte infiltration is decreased in tumors which have
lost CD54.59 However, in aggressive NHL, lower expres-
sion of CD54 correlates with more advanced stage of the
disease, higher bone marrow infiltration and worse prog-
nosis.60

Expression of CD54 is lost in 50%60 of non-Hodgkin
lymphomas (NHL), but only 7% in DLBCL.59

How lymphoma may defend itself against the
immune system 

Lymphoma cells may “defend” themselves to become
resistant to immune eradication. This can be achieved in
several ways: by becoming resistant to apoptosis and/or
by expressing inhibitory ligands that deactivate immune
cells (Figure 1, "defend").

Resistance to apoptosis 
Three apoptopic pathways may induce cell death: i) the

perforin/granzyme pathway which results from the
release of cytotoxic granules from NK cells or CTL activat-
ed through their TCR; ii) the extrinsic pathway, activated
by T and NK cells through FAS or TRAIL death receptors;
iii) the intrinsic pathway, involving BCL-2 family proteins
and activated by intrinsic stress signals.61

By apoptopic gene profiling, Muris et al. identified two
subsets of DLBCL with poor overall survival.62 The acti-
vated apoptosis cascade group (mostly ABC-DLBCL) was

characterized by high expression level of many pro- and
anti-apoptotic genes of the intrinsic pathway, suggesting
that these lymphoma cells are “primed for death” and
their survival depends on the high expression level of anti-
apoptotic genes. The cellular cytotoxic response group
was characterized by the expression of apoptosis-induc-
ing effector molecules from CTL and NK cells (granzyme,
TRAIL, FASL and other) and a high resistance to
chemotherapy.63 The large immune cell infiltration in this
subset suggests a selection of resistant lymphoma cells
under the pressure of a strong cellular immune response.

Inhibition of granzyme
The protease inhibitor 9 (PI9) was found to inhibit

granzyme B and therefore to protect against apoptosis.64

PI9 is expressed in DLBCL, BL and HL (in RS), but is seems
to be rarely found in low-grade lymphomas.57 Of note,
few studies have analyzed PI9 expression in B-cell lym-
phomas and there is no evidence of relationship between
PI9 expression and CTL infiltration or clinical outcome.65

To our knowledge, there is no mechanism of perforin
inhibition in lymphoma.

Inactivation of death receptor extrinsic pathway: FAS/TRAIL-R
FAS (CD95) belongs to the TNF receptor family and lig-

ation of FASL (CD95L) induces apoptosis through its intra-
cellular death domain and caspase activation. This mech-
anism plays a crucial role in affinity selection during the
GC reaction.66 Immune cells also use this mechanism to
kill cancer cells.67

In normal B cells, FAS is expressed on activated B cells
from the GC and is absent in mantle zone or circulating B
cells. CD95 is lost in 17% of FL68 and 27% of MALT lym-
phomas.69 In DLBCL, CD95 is lost in 51% of extra-nodal
cases69 but rarely in cutaneous cases.70 CD95 expression on
lymphoma cells is associated with improved survival and
response to R-CHOP therapy in DLBCL.69-72 In HL, CD95
is rarely lost.73

Mutations in the CD95 gene are more commonly found
in post-GC lymphomas, including 20% of DLBCL, and
44% of extra-nodal lymphomas (all types).74,75 Surprisingly,
although derived from GC, no mutation of CD95 were
found in BL.75 CD95 mutations are rare in FL (6%) and in
pre-GC lymphomas (<2%) such as MCL.74,75 Only 5% of
HL are associated with FAS mutation in RS.73 Müschen et
al. hypothesized that FAS mutations are mostly found in
post-GC lymphomas because CD95 mutations are target
errors in the SHM process during the GC reaction.74

However, FAS mutations do not share features of AID-
mediated activity and their underlying mechanism
remains unclear. In some cases, lymphoma cells express-
ing CD95 are resistant to apoptosis, suggesting the exis-
tence of other mechanisms. For instance, HL resist to FAS-
induced apoptosis by expressing c-FLIP which is located at
the cell membrane where it binds to the death domain of
CD95.73 High levels of soluble CD95 are associated with
poor outcome,76-78 supposedly because it binds to CD95L
and prevents apoptosis. As discussed below, Galectin 3
also protects tumor cells from FAS-induced death.

TRAIL is also a member of TNF receptor family, which
triggers the extrinsic apoptotic pathway after ligation to
death receptors (TRAIL receptors 1 and 2). The role of
TRAIL in B-cell lymphomagenesis has been suggested by
the association between TRAIL polymorphisms and high-
er risk of lymphoma79 and the rapid development of spon-

Immune escape mechanisms in lymphoma
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taneous lymphoid malignancies in mice with TRAIL defi-
ciency.80 Loss of TRAIL receptor was found in 6.8% of
NHL.81 It is mainly caused by mutations of TRAIL death
domain on chromosome 8p21.3 but may also occur at the
transcriptional level by mutation of p53.82 Mutations of
TRAIL receptor are found in 26% of MCL (55% of
leukemic MCL vs. 19% of nodal MCL) and have a more
aggressive phenotype.83

Inhibition of the stress-induced intrinsic pathway: BCL-2 overex-
pression

BCL-2 family molecules are crucial regulators of the
intrinsic pathway of mitochondrial apoptosis.84 BCL-2
itself is an anti-apoptotic protein but other members of the
BCL-2 family are pro-apoptotic. 

BCL-2 is one of most commonly mutated genes in NHL,
notably in DLBCL (37% of cases, particularly in GC sub-
type) and FL (54% of cases),85-87 whereas it is a rare event
in peripheral T-cell lymphomas, MCL and PMBL.86

The t(14;18), present in almost all FL45 and 34% of GC-
DLBCL88 (vs. 17% of non-GC DLBCL), juxtaposes the
BCL-2 gene and the enhancer of the heavy chain
immunoglobulin. Thus, it induces a constitutive overex-
pression of BCL-2 and exposes BCL-2 oncogene to somat-
ic hyper-mutations in the GC.84 Other mechanisms may
explain genetic variations of the BCL-2 gene in t(14;18)
negative DLBCL.84

In DLBCL, BCL-2 expression (but not mutation nor
translocation) were historically associated with a worse
prognosis but this negative impact seems to be overcome
by the addition of rituximab to CHOP chemotherapy.86,89,90

Nevertheless, BCL-2 protein expression remains the
strongest independent prognostic factor in primary cuta-
neous DLBCL.91 In FL, Correia et al. found that the pres-
ence of BCL-2 mutation at diagnosis was an independent
risk factor of transformation and death, but patients were
mostly treated without rituximab.92 This observation was
not confirmed in another study in which FL patients were
treated with a rituximab-containing regimen.87

Inhibition / killing of immune cells

PD-L1/L2 expression

PD-L1 and PD-L2 are members of the CD28 family and
inhibit T cells through ligation to PD-1 receptor.56 Most FL
contain a rich immune infiltrate of PD1+ cells, mostly in
the inter-follicular areas, but tumor cells do not express
PD-L1 (PD-L2 is weakly expressed in some rare tumor
cells).52 In contrast, DLBCL often express PD-L1 and PD-L2
on tumor cells and in their microenvironment.52 PD-L1 and
PD-L2 are more frequently expressed on tumor cells of
ABC-DLBCL (36% and 60%, respectively) than GC-
DLBCL (4% and 26%, respectively).93 PD-L1 is also fre-
quently expressed on tumor cells of PMBL (71% of cases)94

and HL (97% of cases).14 In immune-privileged lym-
phomas, level of PD-L1 protein expression is unknown in
PTL and reported in a small study of PCNS lymphomas.95

The mechanisms responsible for PD-L1 and/or PD-L2
overexpression include: i) genetic alteration in 9p24; and
ii) Epstein-Barr virus (EBV) infection. In the first case, the
9p24 amplicon contains the PD-L1 and PD-L2 genes that
are directly amplified and over-expressed. It also contains
the JAK2 gene that, indirectly, induces the transcription of

the PD-L1 and PD-L2 genes. 9p24 alterations are found in
all cases of HL,14 in most cases of PMBL (9p24 amplifica-
tion in 63% of cases and translocation in 20% of cases),96,97

in 54% of PTL, and 52% of PCNSL (mainly due to copy
number gain, whereas translocations are rare),98 and in
19% of DLBCL (mainly due to copy number gains) partic-
ularly in the non-GC subset.99 Structural variations dis-
rupting the 3’ region of the PD-L1 gene are also implicated
in 8% of DLBCL.100 Notably, immunoglobulin locus and
CIITA are common partners of PD-L1 translocation.42,98,99

Finally, EBV infection (which is present in approx. 40% of
HL tumors) also induces PD-L1 expression via the viral
protein LMP1.101

PD-L1 expression in the tumor is an adverse prognostic
factor for HL,14 PMBL,94 and DLBCL.93 Soluble PD-L1,
although not correlated with PD-L1 expression by the
tumor, is also associated with a poor prognosis in
DLBCL.102,103 In these studies, high level of PD-L1 was asso-
ciated with the clinical and histological aggressiveness of
the disease.14,52,93,102

HLA-G expression
HLA-G is a non-classical MHC-I molecule transcribed in

membrane-bound or soluble (sHLA-G) isoforms. HLA-G
binds to the inhibitory receptors ILT2 (on lymphoid cells,
including B cells, and myeloid cells) and ILT4 (on myeloid
cells). HLA-G also binds to CD8 co-receptor and induces
FAS-mediated apoptosis of T and NK cells.104

HLA-G is expressed in 24% of DLBCL105 and 67% of
cHL (on RS) at a higher level than healthy controls.73,106 In
HL, HLA-G expression is associated with the loss of
MHC-I on RS and the absence of EBV.107

sHLA-G is increased in lymphoproliferative disorders
and contributes to immune escape.108,109 Indeed, sHLA-G
purified from plasma of patients with lymphoproliferative
disorders inhibits T-cell proliferation in vitro.108 However,
there is no correlation between the level of sHLA-G and
clinical or pathological characteristics of the disease108 or
its prognosis.110 

Thus, HLA-G may have ambivalent effects in lym-
phoma: on one hand, sHLA-G may inhibit the prolifera-
tion of tumor B cells through ILT2 receptor whereas, on
the other hand, HLA-G expressed in the tumor may pro-
mote immune escape by inhibiting NK and CTL.104

CD47 expression
CD47, the expression of which is ubiquitous, interacts

with the inhibitory receptor SIRPα expressed by myeloid
cells and macrophages. CD47-SIRPα interaction delivers a
“don’t eat me” signal to the phagocytic cells which prevents
phagocytosis.111 Thus, CD47 may lead to immune evasion
in two ways: i) by inhibiting phagocytosis;112,113 and ii) by
inhibiting cross-presentation by dendritic cells (DC).114

In NHL, CD47 is expressed at a higher level on tumor B
cells compared to normal B cells.112 Additionally, CD47
expression is increased on lymphoma cells circulating in
the blood compared to lymphoma cells in lymph nodes
supporting the role of CD47 in lymphoma dissemina-
tion.113 Finally, high expression of CD47 is associated with
poor prognosis in DLBCL and MCL.112

FASL expression
Tumor cells may also “counter-attack” immune effector

cells by expressing FASL in order to kill them.115 FASL was
found to be strongly expressed in aggressive B-cell lym-
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HL: Hodgkin lymphoma; BL: Burkitt lymphoma; DLBCL: diffuse large B-cell lymphoma; PMBL: primary mediastinal B-cell lymphoma; PTL: primary testicular lymphoma; PCNS: primary central nerv-
ous system lymphoma; MCL: mantle cell lymphoma; FL: follicular lymphoma; MZL: marginal zone lymphoma; MALT: mucosal associated lymphoid tissue; PTCL-NOS: primary T-cell lymphoma not
otherwise specified; AITL: angio-immunoblastic T-cell lymphoma; ALCL: anaplastic large cell lymphoma; CTCL: cutaneous T-cell lymphoma; MF: mycosis fungoid; SS: Sezary syndrome; ATLL: acute
T-cell lymphoma/leukemia; ENKTL: extranodal NK/T lymphoma; MDSC:  myeloid-derived suppressor cell; TAM: tumor associated macrophage; APM: antigen processing machinery. °Refers to GILT.
°°Refers to HLA-DM. *Refers to mycosis fungoid. #Refers to Sezary syndrome.

Table 1. Overview of lymphoma immune escape mechanisms. The respective contribution of each immune escape mechanism according to lymphoma subtype.

phomas,116 secondary cutaneous DLBCL, primary cuta-
neous leg-type DLBCL,70 and HL,117 but seems to be weak
in non-aggressive lymphomas (such as small lymphocytic
lymphoma, lymphoplasmacytic lymphoma, and grade 1
FL) and MCL.116 In DLBCL, FASL expression is an adverse
prognostic marker.69-72

Immunosuppressive microenvironment 
Lymphoma cells may evade immune eradication by

inducing an immunosuppressive (humoral and cellular)
microenvironment. Interactions between the lymphoma
cells and their microenvironment have been reviewed in
detail by Scott and  Gascoyne.118 Here, we highlight the
main immunosuppressive components present in the lym-
phoma microenvironment (Figure 1, "immunosuppressive
microenvironment").

Cytokines

IL-10 secretion
IL-10 is an immunosuppressive cytokine which inhibits

myeloid effector cells and priming functions of DC, pro-
motes Th2 immune responses, induces Treg, and stimu-
lates growth and differentiation of B cells.119 Thus, IL-10
may promote lymphoma in two ways: i) by stimulating
the growth of tumor B cells; ii) by inducing an immuno-
suppressive environment. IL-10 serum level is higher in
lymphoma patients than in healthy subjects and is associ-
ated with poor prognosis.120,121 Moreover, high levels of IL-
10 before treatment is associated with treatment failure
and a worse outcome.120-122

TGF-β secretion
TGF-β inhibits CTL function and promotes an immuno-
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suppressive environment in several ways: i) it induces an
exhausted phenotype in CTL (mostly on memory T cells)
with a high PD-1 and TIM-3 expression;123 ii) it leads to
FOXP3 expression, mostly in naïve T CD4+ cells123 and
induces the differentiation of Treg; and iii) represses the
expression of CD95, perforin, granzyme and cytokines.124

Because TGF-β suppresses lymphoma growth by inhibit-
ing proliferation and apoptosis, lymphoma cells may first
acquire resistance or aberrant response to TGF-β.124 This
may be achieved by several mechanisms including down-
regulation of TGF-β receptor on lymphoma cells125

through epigenetic mechanisms,126 abnormal signal trans-
duction127 and expression of CD109, a negative regulator
of TGF-β signaling.128 Thus, there is no clear prognostic
impact of TGF-β in lymphoma.

IDO expression
IDO is an enzyme, expressed by lymphoma cells and

cells from the microenvironment, which suppresses CTL
and NK immune responses and induces Treg through

degradation of tryptophan. The most important metabo-
lite of tryptophan is kynurenine which inhibits antigen
specific proliferation and induces T-cell death.129

IDO protein is expressed in stromal cells of HL130 and
approximately 30% of NHL express IDO, and intra-
tumoral levels are significantly higher than in reactive
lymph nodes.131-133 In DLBCL131-133 and HL,130,134 IDO activity
is associated with a more aggressive disease and a worse
outcome. Upregulation of IDO is associated with Treg
infiltration in both DLBCL and HL.130,133

Galectins expression
Galectins (Gal) are key regulators of inflammation.

These molecules act in the extra-cellular milieu by inter-
acting with glycosylated receptors and, at the intra-cellular
level, by modulating signalization and splicing.135 Among
the 15 different galectins identified, types 1 and 3 have
been implicated in lymphoma immune escape. Gal-1 is
known to suppress Th1 responses and promote secretion
of Th2 cytokines and expansion of Treg. Gal-1 is over-
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expressed in EBV-associated lymphoma cells and is associ-
ated with an increased secretion of Th2 cytokines and
infiltration by Tregs.135

Gal-3 can positively or negatively regulate T-cell sur-
vival, cytokine profiles and DC function. Gal-3 protects
tumor cells from death induced by FAS,136 possibly
through interaction with CD45.137 Gal-3 is over-expressed
in 66% of DLBCL136 (but not in BL nor in FL).

Cells

Regulatory T cells 
Tregs, which are characterized by the expression of

CD4, FOXP3 and CTLA-4, are responsible for the preven-
tion of autoimmunity.138 Tregs suppress immune cells
through direct contact-dependent mechanisms, including
induction of effector cell death, and indirect mechanisms
by secreting inhibitory cytokines (IL-10, TGF-β) or inter-
fering with effector T-cell metabolism.138

Tregs are more numerous in lymphoma tumors than in
reactive lymph nodes139 and in the blood of lymphoma
patients compared to healthy controls or cured
patients.139,140 Tregs are recruited by CCR4 ligands (notably
in cutaneous DLBCL, HL and EBV-associated lym-
phomas141) or converted from a conventional into a regula-
tory phenotype within the tumor microenvironment by
modulation of tryptophan catabolism. Interestingly, Liu et
al. demonstrated that Tregs found within the tumor
microenvironment of FL are highly clonal.142 In this study,
the diversity of Treg TCR repertoire inversely correlated
with the TCR repertoire of CD8 T cells, suggesting an
antigen-specific suppression of CTL by Tregs. High level
of circulating Tregs at diagnosis is an adverse prognostic
factor in DLBCL and correlates with elevated LDH,
advanced stage of the disease,139 and poor survival.138,143

Myeloid-derived suppressor cells 
Myeloid-derived suppressor cells (MDSC) were recently

described and remain poorly characterized. While their
immunosuppressive properties are well established, only
few mechanisms have been explored in lymphoma.144

Immunosuppressive functions of MDSC include: i) secre-
tion of immunomodulatory factors and Treg expansion; ii)
modulation of amino-acid metabolism and decrease of T-
cell proliferation; iii) oxidative stress; iv) inhibition of T- or
NK-cell viability and homing into the lymph nodes; and v)
induction of T-cell apoptosis. In B-cell lymphoma, MDSC
are involved in T-cell defect through PDL-1 expression, IL-
10 secretion, Treg expansion, and modulation of amino-
acid metabolism.144 MDSC are increased in various B-cell
lymphomas (including HL, DLBCL, FL) and correlate with
poor prognosis.144,145

Macrophages
Macrophages are divided into M1 (pro-inflammatory,

CD163-) and M2 (anti-inflammatory, CD163+) subsets. M2
macrophages are recruited into the tumor or differenced in
situ (notably by IL-10) and promote tumor progression.146

In HL, a meta-analysis of 22 studies showed that a high
density of CD68+/CD163+ macrophages was associated
with poor survival.147 In DLBCL146 and MCL,148 CD163+

macrophages correlates with poor clinical outcome. In FL,
a high density of CD68+ macrophages was associated
with a poor prognosis in the pre-rituximab era while it
was associated with a good prognosis in the post-ritux-

imab era.146 This may be due to the antitumor activity of
macrophages through phagocytosis of rituximab-coated
tumor B cells.149 This observation was further supported
by the GELA-GOELAMS study showing that
macrophages were associated with adverse outcome only
in patients treated without rituximab while there was no
difference in survival in patients treated with rituximab.150

Finally, macrophages may also promote immune evasion
by expression of PDL-1.146 

Immune escape mechanisms in T-cell lymphomas

Mechanisms of immune evasion in T-cell lymphomas
are less well characterized. Best described mechanisms
result from resistance to apoptosis and from PD-L1
expression.

PI9 granzyme inhibitor is expressed in 21% of anaplas-
tic large cell lymphoma (ALCL), 27% of peripheral T-cell
lymphoma not otherwise specified (PTCL-NOS), 80% of
NK-/T-cell nasal type lymphoma (ENKTL), and 89% of
enteropathy-type NHL.63 A defect in the extrinsic apopto-
sis (i.e. FAS) pathway is observed in many T-cell lym-
phomas which may be caused by three distinct mecha-
nisms: i) FAS mutations, which are present in 50% of
ENKTL151 and in some cases of MF (<20% of cases);152 ii)
decreased expression of FAS through epigenetic mecha-
nisms such as promoter methylation (45% of Sezary
Syndrome) or splicing (43% of MF, 50% of CD30-
CTCL);152 iii) expression of c-FLIP inhibitory protein,
which is seen in 90% of ALCL153 (although the underlying
mechanism is not completely elucidated).

Both PD1 and PD-L1 may be expressed in T-cell lym-
phomas, both on tumor cells and in their microenviron-
ment. PD-L1 is expressed on tumor cells in less than 10%
of ALCL and adult T-cell lymphoma / leukemia (ATLL),
27% of cutaneous T-cell lymphoma (CTCL), approxi-
mately 60% of PTCL-NOS, 56-80% of ENKTL and 70-
93% of angio-immunoblastic T-cell lymphoma (AITL).154

In both ALK negative and positive ALCL, and in CTCL,
PD-L1 overexpression occurs through the STAT3 path-
way.154 Like in B-cell lymphomas, structural variations dis-
rupting the 3’ region of the PD-L1 gene (27% of ATLL) and
EBV infection (particularly in ENKTL) are also responsible
for PDL-1 expression.

FAS-L is expressed in 12% of ALCL,153 81% of mycosis
fungoid (MF),155 and a majority of CTCL156 which may lead
to the elimination of CTL (through FAS-induced death)
and to a worse outcome.155,156

Finally, IDO may also contribute to immune escape in
ATLL and is associated with a worse outcome.157

Implications for immunotherapy 

Restoring antigen recognition
When tumor cells hide from the immune system by pre-

venting Ag presentation, strategies to circumvent this
escape mechanism depend on the type of lesions (Table 1).

If antigen presentation deficiency results from genetic
irreversible lesions, then immunotherapies that are MHC-
independent may bypass the lack of antigen presentation.
This can be achieved with bi-specific T-cell engager anti-
bodies (BiTE) or CAR T cells which target surface antigens
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without the need for MHC.158,159

If antigen presentation deficiency results from epigenet-
ic reversible lesions, then one may use therapies which
can induce re-expression of MHC, co-stimulatory or adhe-
sion molecules, such as epigenetic drugs, chemotherapy,
radiotherapy or certain immunotherapies (e.g. CD40 ago-
nists, CpG, IFN).7,160 Notably, the addition of histone
deacetylase inhibitor (HDACI) to R-CHOP restored
MHC-II expression161 and erased the negative prognostic
value associated with MHC-II loss in DLBLC.162

Restoring cell death
BCL-2 inhibitors, such as venetoclax, may sensitize

tumor cells to death induced through the intrinsic path-
way. They have a strong efficacy in CLL and, to a lesser
extent, in some NHL (MCL, FL, DLBCL).163 Surprisingly,
despite the pathophysiological importance of BCL-2
translocation in FL, venetoclax demonstrated only poor
efficacy in this disease. 

In pre-clinical models, Gal-3 inhibitor can disturb
CD45/Gal-3 interaction and restore apoptosis.137

Blocking inhibitory signals
Immune checkpoint (ICP) blockade releases inhibition of

effector cells but requires an intact antigen presentation and
a pre-existing anti-tumor immune response. Blockade of
CTLA4, PD1 and PD-L1 have demonstrated efficacy in
solid tumors and hematologic malignancies.158 Surprisingly,
anti-PD1 mAbs were found to be particularly efficient in HL
despite the fact that MHC expression was lost in most
cases, suggesting an alternative mechanism of action.

Phagocytosis may be blocked by CD47 signaling.
Blocking antibodies against CD47 or SIRPα can disrupt
CD47-SIRPα interaction and restore phagocytosis.
Blocking CD47 signaling may also potentiate the efficacy
of anti-CD20 mAb by increasing antibody-dependent cel-
lular phagocytosis (ADCP).112-114

Modulating the tumor microenvironment
Immunosuppressive macrophages may be depleted by

chemotherapy164 or anti-CSF-1 receptor mAb.165 Treg

depletion may be achieved with anti-CTLA4 mAbs (such
as ipilimumab)166,167 or mAbs against CCR-4 (such as moga-
mulizumab) which is preferentially expressed by Th2 and
Tregs.141,168 Treg infiltration may also be decreased by low
doses of cyclophosphamide through downregulation of
FOXP3.160 IDO enzyme may be down-regulated using
IDO inhibitors or fludarabine.169,170

Conclusion

The recent success of ICP blocking antibodies in cancer
patients confirmed the hypothesis of “cancer immuno-
surveillance” and demonstrated the potency of
immunotherapy for the treatment of cancer. The goal of
immunotherapy is to re-educate the immune system and
to reverse the immune escape mechanisms to destroy the
tumor cells. 

B-cell lymphoma is unique because tumor cells are pro-
fessional APC and therefore can present their own anti-
gens to the immune system. Immune escape in lymphoma
may occur at the priming or at the effector phase. It may
result from defects in antigen presentation (which may
prevent the priming of T cells or the recognition of tumor
cells at the effector phase), from resistance to immune
killing, or from immunosuppressive mechanisms (either
directly by the tumor cells or indirectly by their microen-
vironment).

The advent of new classes of immunotherapies (includ-
ing checkpoint inhibitors, bispecific antibodies and CAR T
cells) offers novel opportunities to mobilize the immune
system against lymphoma.159 However, we need to deter-
mine which of these immunotherapies will be optimal for
a given patient. Furthermore, some immune escape mech-
anisms may dampen the efficacy of these immunothera-
pies and may require combination with other therapies to
sensitize tumor cells to immune eradication. The charac-
terization of immune escape mechanisms may be used to
guide “personalized immunotherapy”, i.e. determine the
optimal immunotherapy and/or combination in a given
lymphoma patient.
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