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Abstract

Background: Exposure to traffic-derived particulate matter (PM), such as diesel exhaust particles (DEP), is a leading
environmental cause of cardiovascular disease (CVD), and may contribute to endothelial dysfunction and
development of atherosclerosis. It is still debated how DEP and other inhaled PM can contribute to CVD. However,
organic chemicals (OC) adhered to the particle surface, are considered central to many of the biological effects. In
the present study, we have explored the ability of OC from DEP to reach the endothelium and trigger pro-
inflammatory reactions, a central step on the path to atherosclerosis.

Results: Exposure-relevant concentrations of DEP (0.12 ug/cm?) applied on the epithelial side of an alveolar 3D tri-
culture, rapidly induced pro-inflammatory and aryl hydrocarbon receptor (AhR)-regulated genes in the basolateral
endothelial cells. These effects seem to be due to soluble lipophilic constituents rather than particle translocation.
Extractable organic material of DEP (DEP-EOM) was next fractionated with increasing polarity, chemically
characterized, and examined for direct effects on pro-inflammatory and AhR-regulated genes in human
microvascular endothelial (HMEC-1) cells and primary human endothelial cells (PHEC) from four healthy donors.
Exposure-relevant concentrations of lipophilic DEP-EOM (0.15 ug/cm?) induced low to moderate increases in IL-1q,
IL-13, COX2 and MMP-1 gene expression, and the MMP-1 secretion was increased. By contrast, the more polar EOM
had negligible effects, even at higher concentrations. Use of pharmacological inhibitors indicated that AhR and
protease-activated receptor-2 (PAR-2) were central in regulation of EOM-induced gene expression. Some effects also
seemed to be attributed to redox-responses, at least at the highest exposure concentrations tested. Although the
most lipophilic EOM, that contained the majority of PAHs and aliphatics, had the clearest low-concentration effects,
there was no straight-forward link between chemical composition and biological effects.

Conclusion: Lipophilic and semi-lipophilic chemicals seemed to detach from DEP, translocate through alveolar

epithelial cells and trigger pro-inflammatory reactions in endothelial cells at exposure-relevant concentrations. These
effects appeared to be triggered by AhR agonists, and involve PAR-2 signaling.
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cells, 3D tri-culture, Organic compounds, Aryl hydrocarbon receptor
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Background

More than 90% of the world’s population live in areas with
unhealthy air according to WHO [1]. Particulate matter
(PM), especially fine PM (PM, ), is a leading environmen-
tal cause of cardiovascular disease (CVD) [2—5], and has
been linked to development and exacerbation of endothe-
lial dysfunction and atherosclerosis in a number of experi-
mental and epidemiological studies [6—8]. Atherosclerosis
is initiated by endothelial dysfunction and can lead to
myocardial infarction, cerebrovascular and peripheral vas-
cular disease [9], making it the major cause of deaths due
to CVD [10]. It is an inflammatory disorder of the arteries,
a process that involves oxidative stress, increased endothe-
lial permeability, leukocyte adhesion and other inflamma-
tory reactions [11].

Diesel engines are major contributors to PM, 5 in urban
environments [12, 13]. Thus, diesel exhaust particles (DEP)
have frequently been used as a model to explore the mech-
anisms of PM-induced CVD [14, 15]. Much of the bio-
logical effects of DEP, including pro-inflammatory
responses, have been attributed to soluble organic chemi-
cals (OC) adherent to the carbon core of the particles [16—
19]. How DEP and other inhaled PM can cause adverse ef-
fects in the endothelium is still debated despite extensive
research. One common theory is that PM may cause pul-
monary macrophages and epithelial cells to release pro-
inflammatory mediators into the circulation, leading to sys-
temic effects [20]. However, a recent review concluded that
neither pulmonary nor systemic inflammation is a pre-
requisite for PM-induced atherosclerosis or endothelial dys-
function [14]. An alternative explanation is that PM, 5 and
its constituents could affect endothelial cells more directly.
Recently, inhaled gold nanoparticles (2-200 nm) were
shown to translocate from the lung into the circulation and
preferentially accumulated at sites of inflammatory vascular
lesions in mice and humans [21]. This suggests that nano-
sized combustion particles may also be transported to sites
of endothelial injury in a similar way. Thus, DEP translo-
cated into the circulation, may deliver its “organic cargo”
directly to endothelial cells. However, studies using model
particles rich in polycyclic aromatic hydrocarbons (PAH)
suggest that PAHs are released from the particles, passes
through the alveolar wall into the circulation, and are dis-
tributed systemically [22-24]. This suggests that transloca-
tion of DEP and other combustion particles across the
alveolar wall may not be necessary for soluble OC to be
transferred into the circulation and reach the endothelium,
also distant from the lung.

Although pulmonary and systemic inflaimmation may
not be the prime drivers of adverse PM-induced effects on
the endothelium [14], inflammatory responses have never-
theless a key role in endothelial dysfunction and athero-
sclerosis. Pro-inflammatory mediators such as cytokines,
chemokines and matrix metalloproteinases (MMPs) are
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crucial in the different developmental stages of the disease,
and endothelial cells appear to orchestrate these events
[11, 25]. In line with this, inflammation and oxidative
stress in the arterial wall seems consistently associated
with PM-induced vasomotor dysfunction and plaque pro-
gression [14]. Thus, local rather than systemic inflamma-
tion may be a prerequisite for development of endothelial
dysfunction by PM-exposure.

DEP appear to cause cellular effects through multiple
mechanisms, and the pro-inflammatory effects most
likely arise from the combined activation of several path-
ways [26, 27]. It is known that PAHs and other OC from
DEP can bind the aryl hydrocarbon receptor (AhR),
which in turn may lead to an increased expression of
genes linked to inflammation and xenobiotic metabolism
[28]. AhR may regulate inflammation through non-
genomic signaling, cross-talk with transcription factors
such as the nuclear factor-kB (NF-«kB), and some cyto-
kines also contain AhR-response elements in their pro-
motor region [29, 30]. Furthermore, metabolism of OC
from DEP by various cytochrome P450 (CYP) enzymes
may form reactive oxygen species (ROS) and reactive
electrophilic metabolites [31] with potential to trigger
inflammation. In addition, recent studies suggest that
the protease activated receptor-2 (PAR-2), a G-protein
coupled receptor, regulates matrix metalloproteinase-1
(MMP-1) and interleukin-6 (IL-6) in human bronchial
epithelial cells exposed to DEP and DEP-EOM [17, 32].
PARs are also constitutively expressed in the vascular
endothelium where they regulate tone, permeability and
coagulation as well as inflammation [33, 34]. Thus, AhR
and PAR-2 as well as redox-regulated responses could
likely be involved in the effects of DEP and OC from
DEP in endothelial cells.

In the present study we have explored potential mech-
anisms involved in PM-induced endothelial inflamma-
tion by various in vitro models, using DEP as a
surrogate for traffic-derived PM. We asked: i) does DEP
affect endothelial cells via OC, ii) which classes of che-
micals in DEP-OC are inducing inflammatory reactions,
and iii) which cellular mechanisms are involved. The use
of exposure-relevant concentrations/doses in vitro are
important to ensure that the mechanisms explored could
be relevant for adverse effects in real-life [35]. Based on
in vivo calculations for high-risk individuals exposed to
PM levels of 79 ug/ms, Li and coworkers estimated PM,_
5 deposition rates over 24 h to be 204 pg/cm” in the
nasopharyngeal, 2.3 pg/cm? in the tracheobronchial and
0.05 pg/cm? in the alveolar regions [36]. Acknowledging
that our in vitro systems were bolus-exposed, an add-
itional central focus was to explore effects at these con-
centrations. We found that DEP applied on the apical
surface of alveolar cells in a 3D tri-culture model of the
alveolar-capillary barrier, induced expression of pro-
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inflammatory genes and markers of AhR-signaling in the
basolateral endothelial cells at concentrations down to
exposure-relevant levels. These responses appeared not
to depend on particle translocation. By exposing endo-
thelial cell monocultures (HMEC-1 and primary human
endothelial cells; PHEC) to fractionated extractable or-
ganic material of DEP (DEP-EOM), we confirmed that
DEP-EOM induced inflammation-associated genes
through mechanisms partly depending on AhR, PAR-2
and redox responses. At the lowest, most exposure-
relevant concentrations, the most lipophilic DEP-EOM
seemed to have the strongest effects on the expression
of pro-inflammatory genes in HMEC-1 and PHEC. This
DEP-EOM fraction also had the highest content of semi-
volatile OC, especially PAHs and aliphatic hydrocarbons.

Results

DEP-induced gene expression in 3D tri-culture model

We hypothesized that OC from DEP could translocate
through alveolar epithelial cells and reach endothelial
cells. To test this we utilized an established 3D tri-
culture composed of alveolar type-II A549 cells and
macrophage-differentiated THP-1 cells on the apical
(epithelial) side of a microporous membrane and endo-
thelial cells (EA.hy926) on the basolateral side [37, 38].
We define the model as a 3D tri-culture model of the
alveolar-capillary barrier based on the 3D interaction be-
tween the various cells at both sides of the insert as de-
scribed by Klein et al. [38, 39]. This 3D tri-culture
model was exposed to different concentrations of DEP
at the epithelial side for 2 and 20 h. The DEP that previ-
ously have been characterized by Totlandsdal et al. [40],
rapidly induced pro-inflammatory and AhR-regulated
genes in cells on both the epithelial side and the
endothelial side of the 3D tri-culture (Fig. 1). More spe-
cifically, IL-1a (2-5 fold), PAI-2 (3-15 fold) and CYP1B1
(8-40 fold) mRNA expressions were up-regulated in cells
on the epithelial side. The up-regulations observed in
EAhy926 cells were in general similar to those on the
epithelial side. However, DEP induced COX-2 expression
in EA.hy926 (3-10 fold), in the absence of any apparent
response on the epithelial side. This increase was statisti-
cally significant already after 2 h exposure to the lowest
concentration tested (0.5 pg/mL or 0.12 pg/cm?®). At the
highest concentration, DEP also induced a 2-fold in-
crease in MMP-1 expression in the endothelial cells,
whereas cells on the epithelial side did not up-regulate
MMP-1 (Fig. 1). In contrast, SiO, nanoparticles (SiNP)
used as control particles without soluble OC only acti-
vated gene expression at the epithelial side and not in
the endothelial cells of the tri-culture (Additional file 1:
Figure S1A), despite being able to trigger a substantial
COX-2 increase when exposed directly to EA.hy926 cells
in monoculture (Additional file 1: Figure S1B).This
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suggests that nanoparticles did not reach the endothelial
cells through the layer of epithelial cells in the tri-
culture, at least not in sufficient quantities to trigger a
response. The most likely interpretation of these findings
is that particles were not translocated into the endothe-
lial layer of the 3D model, and that the endothelial re-
sponses to DEP-exposure were rather due to soluble
OCs passing through the epithelial layer.

Chemical characterization of various DEP-EOM

The above results support a major role of soluble OC in
the effects of DEP. We therefore extracted organic material
from DEP by sequential washing under pressure at 100 °C,
with solvents of increasing polarity: #n-hexane, dichloro-
methane (DCM), and methanol, followed by a final washing
with water at 25 °C. The chemical compositions of these
four fractions, from here on referred to as n-Hex-EOM,
DCM-EOM, Methanol-EOM and Water-EOM, were ana-
lyzed for total content of carbon, amount of PAHs (and
their derivatives) and aliphatic hydrocarbons (Fig. 2). In line
with previous analyses, the relative amount of organic ver-
sus elemental carbon in this DEP was approximately 60
and 10%, respectively [41]. As expected for DEP [41], we
found that most of the OC was extracted with #-hexane
and DCM, with remaining 19% recovered in the methanol
extract. OC was not detected in the water extract. The
most lipophilic #-hexane extract contained almost 90% of
the PAHs and aliphatic hydrocarbons, while the rest was
obtained with DCM (see Additional file 1: Table S1, for an
overview of detected species). The relative amount of differ-
ent PAH species corresponded to previous analyses [41]
with phenanthrene (and methylated phenanthrene or an-
thracene), fluoranthene, pyrene, chrysene, xanthone and 1-
nitropyrene being the most abundant species detected (data
not shown). Notably, the amount of volatile/semi-volatile
compounds extracted also decreased according to polarity
of the solvents (Additional file 1: Figure S2).

DEP-EOM-induced gene-expression in HMEC-1

The observed effects on endothelial cells in the 3D tri-
culture exposed to a DEP rich in OC, combined with the
previously reported marginal effects on endothelial cells in
a comparable 3D tetra-culture exposed to DEP (SRM2975)
with little OC, strongly suggests an important role of OC
from DEP. Although the extracts not necessarily reflects
the specific compounds reaching the endothelial cells of the
3D tri-culture, they contain a mixture of OC similar to
what has been reported in other studies on DEP [41, 42].
We next investigated if endothelial cells exposed directly to
DEP-EOM responded in a similar manner as the endothe-
lial cells exposed indirectly to DEP through the epithelial
cells in the 3D tri-culture. As the EA hy926 cell line used in
the 3D tri-culture is a endothelial/epithelial hybrid [43], we
chose another well described endothelial cell line for the
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Fig. 1 Effect of DEP exposure on gene expression in a 3D tri-culture model. Increasing concentrations of DEP were applied to the epithelial side of the
3D tri-culture. After 2 and 20 h of exposure, alveolar and endothelial cells were harvested and the expressions of IL-1a, COX-2, MMP-1, PAI-2 (SERPINB2)
and CYP1B1 mRNAs were measured by g-PCR. The mRNA levels are presented relative to gene expression in cells exposed to DMSO, represented by
the dotted line at 1. The results are expressed as mean + SEM (n = 3). *Statistically significant difference from unexposed controls
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next experiments: the HMEC-1 cells which are of micro-
vascular origin [44].

HMEC-1 were exposed to DEP-EOM concentrations of
5 and 50 pg/mL corresponding to 0.75 and 7.5 pg/cm? of
originally unwashed DEP. These concentrations did not
appear to be cytotoxic, as initially screened by the WST-1
proliferation assay and judged visually by microscopy
(Additional file 1: Figure S3). IL-1 o/, IL-6, CXCLS,
MMP-1 and COX-2 mRNA concentrations were

measured to explore pro-inflammatory effects. ROS-
related effects were addressed by assessing HO-1 expres-
sion and AhR activity by measuring the AhR response
genes CYP1A1, -1B1 and PAI-2. The lipophilic DEP-EOM
fractions, particularly at the highest concentration, in-
creased the expression of the pro-inflammatory genes
measured (Fig. 3). The effects on CXCL8 expression and
lack of effect on IL-6 expression was further confirmed by
ELISA, showing that CXCL8 protein (but not IL-6) was
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Fig. 2 Characterization of DEP-EOM. The soluble organic carbon/chemicals were extracted directly from the native particulates by sequential washing
with n-hexane, DCM and methanol at 100 °C (under pressure), followed by a final washing with water at 25 °C. Total content of organic carbon was
analyzed by thermal optical analysis, while content of PAHs and aliphatics were measured by GC-FID/MIS, as described under materials and methods.
The extraction was done in three parallels and the results are expressed as mean + SEM (n = 3)

secreted by HMEC-1 cells upon 24 h exposure to the n-
Hex- and DCM-EOM (50 pg/mL), but not by the metha-

of original DEP (Fig. 3). In addition, the low concentration
of the DCM extract also induced an increase in MMP-1

nol and water extracts (Additional file 1: Figure S4). Most
interestingly, expression of IL-la, COX-2, and MMP-1
was increased (2-3 fold) at the low concentration of the #-
hexane extract, corresponding to 5 pg/mL (0.75 pg/cm?)

(2-fold) after 24 h (Fig. 3). The expression of the AhR-
response genes CYP1Al and CYP1B1 was induced by
both concentrations of all the fractions, but z-hexane- and
DCM-EOM had more marked effects at the lowest
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Fig. 3 Effects of DEP-EOMs on expression of pro-inflammatory genes in HMEC-1 cells. Cells were exposed to DEP-EOMs at concentrations corresponding
to 5 and 50 pg/mL (0.75 and 7.5 pg/cmz) of native particles, or vehicle (DMSO) alone for 2 and 24 h. The expressions of IL-1q, IL-16, IL-6, CXCL8, COX-2 and
MMP-1 were measured by g-PCR. The mRNA levels are presented relative to gene expression in cells exposed to DMSO, represented by the dotted line at
1. The results are expressed as mean + SEM (n = 4). *Statistically significant difference from unexposed controls
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concentration (Fig. 4). Previous studies with this specific
DEP have shown that CYP1A1-responses in bronchial epi-
thelial BEAS-2B cells peaked at 4 pg/cm? and were
reduced at higher concentrations [40]. In line with this,
the CYP1A1 and -1B1 responses induced by the two most
potent DEP-EOM fractions (n-hexane and DCM) also ap-
peared to be reduced at the highest concentration (Fig. 4).
The AR response-gene PAI-2 [45] was induced by all
fractions, except the water extract. Similar to the CYP-
responses, PAI-2 was more strongly increased by the n-
Hex- and DCM-EOM, at least at low concentrations.
Furthermore, HO-1 was only upregulated at 50 pg/mL
and not at 5 pg/mL, indicating that responses observed at
the lowest concentration were triggered in the absence of
measured oxidative stress.

The above results suggest that pro-inflammatory gene
expression was predominately affected by the two most
lipophilic DEP-EOM fractions: n-Hex- and DCM-EOM.
At the lowest concentration, effects were the most pro-
nounced for the n-hexane extract.

DEP-EOM-induced gene-expression in PHEC

The responses of cell lines used in our systems are not
representative for real exposure. We thus further ex-
plored the relevance of our findings by using primary
human endothelial cells (PHEC) obtained from adipose
tissue of four healthy donors [46]. These PHEC were of
high purity, as indicated by 99% CD31 positive cells
(Additional file 1: Figure S5). The cells were exposed to
low concentrations of the different DEP-EOM fractions,
corresponding to 1 and 5 pg/mL (0.15 and 0.75 pg/cm?)
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of native particles, for 24 h. No visual cytotoxicity was
observed in cells exposed to either of the DEP-EOM
fractions at the highest concentration, as exemplified
with n-Hex-EOM (Additional file 1: Figure S3B).

As in HMEC-1, the lipophilic DEP-EOM fractions in-
duced inflammation-associated genes, as well as CYP1A1
and CYP1B1 in PHEC, while the hydrophilic extracts had
negligible effects (Fig. 5a). Most notably lipophilic DEP-
EOM caused statistically significant up-regulation (2-7 fold)
of IL-1a, IL-1B, COX-2 and MMP-1 expression, even at the
lowest concentration (1 pug/mL, corresponding to 0.15 ug/
cm? of native particles), while CXCL8 and HO-1 were un-
affected after 24 h exposure. Furthermore, CYP1Al,
CYP1B1 and PAI-2 were induced by all DEP-EOM frac-
tions, except the water extract (Fig. 5a), and CYP1A1 and
CYP1B1 mRNAs were more strongly induced in PHEC
(15-90 fold), than in HMEC-1. Of interest, the MMP-1
mRNA up-regulation was confirmed with ELISA; MMP-1
protein levels were increased by 45-90% in PHEC exposed
to n-Hex- or DCM-EOM (Fig. 5b).

Mechanisms of DEP-EOM-induced gene expression in
HMEC-1

To elucidate the mechanisms involved in the regulation
of the pro-inflammatory responses induced by n-Hex-
and DCM-EOM (50 pg/mL), we pretreated HMEC-1
cells with pharmacological inhibitors targeting AhR
(CH223191; 1.0 uM) or PAR-2 (ENMD-1068; 2.5 mM),
and to target ROS we used the anti-oxidant N-
acetylcysteine (NAC; 2.0 mM). To minimize potential
unspecific effects of the inhibitor/antioxidant treatment,

5 50 5 50
DEP-EOM (ug/mL)  DEP-EOM (ug/mL)

2h 24h
— 35 ~ 157
i} ]
£ 307 £
5 25] 5 10
[ -
g 20 g
S 15 s
X x |
© 104 o 9,
2 5 £ 4
1 w
) 15+ 5204
) 8
c c
2 K]
[7} [7}
172 172
o o
Q. Q.
x x
() (]
< i
o o
> >
(@) O

DEP-EOM (ug/mL)

Fig. 4 Effects of DEP-EOMs on expression of HO-1 and AhR-regulated genes in HMEC-1 cells. Cells were exposed to DEP-EOMs at concentrations
corresponding to 5 and 50 pug/mL (0.75 and 7.5 pg/cmz) of native particles, or vehicle (DMSO) alone for 2 and 24 h. The expressions of CYPTAT1,
CYP1BI1, PAI-2 and HO-1 were measured by g-PCR. The mRNA levels are presented relative to gene expression in cells exposed to DMSO, represented
by the dotted line at 1. The results are expressed as mean + SEM (n = 4). *Statistically significant difference from unexposed controls
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and PAI-2 was measured by g-PCR (a). MMP-1 up-regulation were confirmed with ELISA, showing 45-90% higher levels of MMP-1 in growth medium from
PHEC exposed to n-hexane or DCM (b). The mRNA levels are presented relative to gene expression in cells exposed to DMSO, represented by the dotted
line at 1. Data are based on results from experiments with PHEC from 4 healthy donors. The results are expressed as mean + SEM (A/B: n = 4). *Statistically
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these experiments were terminated after 5 h exposure.
Generally n-Hex-EOM appeared to induce slightly stron-
ger effects on IL-1q, IL-1, COX-2 and CXCL8 mRNAs,
while DCM-EOM had somewhat more effect on HO-1
at this time-point (Fig. 6a). CH223191-treatment attenu-
ated IL-1B expression in n-Hex-EOM-exposed cells.
CXCL8 and HO-1 responses induced by the two lipo-
philic DEP-EOM fractions were partly reduced by both
CH223191 and ENMD-1068. Of interest, ENMD-1068
caused stronger reduction in both n-Hex-EOM-induced
CXCL8 and HO-1 expression compared to NAC, while
the opposite was the case for DCM-EOM-induced ef-
fects on these genes. IL-1a, COX-2, MMP-1 and PAI-2
levels induced by n-Hex-EOM were not significantly af-
fected by any of the inhibitors (Fig. 6a). By comparison,

NAC suppressed COX-2 and MMP-1 expression in-
duced by DCM-EOM and CH223191 suppressed both
MMP-1 and PAI-2 (Fig. 6b). Furthermore, DCM-EOM-
induced PAI-2 was blocked by ENDM-1068. However,
as both MMP1 and PAI-2 were only weakly up-
regulated at this time-point, it was difficult to measure
any significant effects of inhibitors. Overall, the data sug-
gest that the AhR (CH223191) and PAR-2 (ENMD-
1068) are involved in the inflammation-linked responses
(IL-1p, CXCL-8 and HO-1) of both n-Hex- and DCM-
EOM. Moreover, IL-1a expression was not affected by
any of the tested inhibitor/antioxidant treatments, which
underscores that DEP-induced inflammation could
hardly be explained by the few mechanisms explored in
the present study.
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Mechanisms of DEP-EOM-induced gene expression in
PHEC

Finally, we also explored the mechanisms involved in the
regulation of the pro-inflammatory responses induced by #-
Hex- and DCM-EOM in batches of PHECs from one
donor. PHECs were pretreated with the AhR- and PAR-2
inhibitors CH223191 (1.0 pM) and ENMD-1068 (2.5 mM)
for 30 min prior to 5 or 12 h exposure with the two lipo-
philic DEP-EOM fractions at a concentration corresponding
to 5 pg/ml (0.75 pg/cm?) of original DEP. As no effect was
observed on HO-1 expression in PHECs (Fig. 5), effects of
NAC were not investigated. Like in HMEC-1 cells,

induction of IL-1B by both n-Hex- and DCM-EOM was
attenuated by CH223191-treatment to near basal levels (Fig.
7). ENMD-1068 also blocked DCM-EOM-induced IL-1B. A
similar effect of the PAR-2 inhibitor was also observed for
n-Hex-EOM-induced IL-1p, but this reduction was not sta-
tistically significant. Furthermore, CH223191, but not
ENMD-1068 attenuated both COX-2 and PAI-2 responses
in the DCM-EOM-exposed PHECs. Notably, COX-2
expression was not significantly reduced by CH223191 in n-
Hex-EOM-exposed cells, but the statistically significant
increase in COX-2 was lost in cells treated with the AhR-
inhibitor. As expected, the induction of CYP1A1l and -1B1
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expression was primarily suppressed by CH223191. How-
ever, some effects of ENMD-1068 were observed on 7-Hex-
EOM-induced CYP1Al at 5 h. These results suggest that
both AhR and PAR-2 signaling are involved in regulation of
pro-inflammatory responses for these relatively low-level
exposures of lipophilic and semi-lipophilic DEP-EOM
fractions.

Discussion

Recent findings from ApoE -/- mice suggest that ath-
erosclerotic effects of PM, 5 is due to semi-volatile OC
attached to the particles [47]. In line with this, the
present study shows that DEP trigger pro-inflammatory
responses in endothelial cells through release of lipo-
philic OC that could transfer across alveolar epithelial
cells. These responses were triggered at concentrations
down to exposure-relevant levels and appeared partly
dependent on AhR, PAR-2 and (at least at higher con-
centrations) redox-regulated responses.

In this study we found that DEP-exposure increased
expression of IL-1a, PAI-2 and CYPI1B1 in cells on the
epithelial side of a 3D tri-culture system, in response to
concentrations of DEP in the range 0.5 — 50 pg/mL cor-
responding to 0.12-12 pg/cm® The lowest exposure
concentration with marked biological effects in the 3D
tri-culture (0.12 pg/cm?®) and the DEP-equivalent expos-
ure concentration of EOM in PHEC (0.15 pg/cm?) are
within the range estimated for alveolar deposition [36].
Most importantly, we found a rapid and marked
induction of the same genes as well as COX-2 and
MMP-1 in endothelial cells located on the basolateral
side. The AhR marker genes PAI-2 and CYP1B1 [28, 45]
were also increased in the endothelial cells, indicating
that organic compounds of DEP containing AhR-
agonists reached the endothelial cells after exposure of
the epithelial cells at the apical side. PAI-2 is seemingly
regulated via AhR non-canonical signaling [45], and its
upregulation indicates that additional pathways to the
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AhR-ARNT pathway is activated. Of notice, results ob-
tained by the use of 10 nm silica-nanoparticles at fairly
high concentrations (SiNP, used as reactive control-
particles without soluble constituents), suggest that
DEP-induced effects in the basolateral endothelial cell
layer were not due to translocation of particles from the
apical compartment, nor to release of pro-inflammatory
mediators by the alveolar epithelial cells. Thus, organic
compounds most likely detach from DEP and translocate
trough the epithelial layer and into the endothelial cells,
triggering inflammatory reactions in the microvascula-
ture. A recent study exposing a comparable tetra-culture
system of the alveolar-capillary barrier to the standard
DEP NIST SRM2975 did not result in any effects on
pro-inflammatory genes, and only modest increases in
CYP1A1l and Nrf2 in the basolateral endothelial cells
[38]. This lack of effect is most likely due to the very low
OC-concentration (2%) in SRM 2975, which thus cor-
roborates our suggestion of a central role of soluble OC
in the inflammogenic effects from this DEP and other
more OC-rich DEPs. Earlier findings using PAH-rich bu-
tadiene soot, have shown that PAHs are transferred from
the particle surface to the cell membrane and enters the
cytosol of lung epithelial cells, without particle uptake
[22]. Based on these findings and our present results we
suggest that lipophilic chemicals from DEP deposited in
the alveoli, could reach the microvascular endothelium,
by transfer through the lipid-rich membranes of alveolar
epithelial cells. Moreover, in vivo studies with PAH-
coated carbon particles have shown that much of the
PAHs are rapidly transferred into the circulation in an
un-metabolized state [23], and likely transported by low
density lipoproteins from the lungs to cells of the artery
wall [48-50]. In fact, PAH-adducts have been detected
in atherosclerotic plaques, and PAH-exposure induce
endothelial inflammation and progression of atherogen-
esis [51, 52].

The majority of the observed effects of DEP appeared to
be due to lipophilic and semi-lipophilic compounds ex-
tractable by n-hexane and DCM. These two DEP-EOM
also contained most of the extractable OC. The highest
concentrations of the methanol fraction, containing more
water-soluble compounds, induced PAI-2, CYP1Al,
CYP1B1 and cytokines slightly. This could be caused by
small amounts of lipophilic OC left by the two preceding
extractions. On the other hand, hydrophilic OC from DEP
has been reported to affect CYP-expression [53]. Never-
theless, the two hydrophilic extracts had negligible effects
on expressions of inflammation-associated genes and
CYP-enzymes in HMEC-1 and PHEC, compared to the
two more lipophilic extracts. This is in line with previous
findings by us and others, showing that lipophilic extracts
from DEP induced CXCL8 and IL-6 responses in human
bronchial BEAS-2B cells [18, 32]. Interestingly, the
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majority of volatile/semi-volatile compounds were present
in n-Hex- and DMC-EOM, in accordance with the find-
ings of Keebaugh et al. [47].

Chronic or repeated low-grade inflammation in the
endothelium is considered to contribute to development
and exacerbation of endothelial dysfunction and athero-
sclerosis [11, 14, 25, 54]. In line with this, our results show
that soluble organic material from DEP may trigger low to
moderate increases in several pro-inflammatory genes in
the endothelial cells. The important role of IL-1 cytokines
in the development of CVD is highlighted by ongoing
medical trials investigating IL-1[ as therapeutic target in
treatment of CVD [55, 56]. In the 3D tri-culture, HMEC-1
and PHEC, IL-1 cytokines were induced by DEP or DEP-
EOM. Of special interest, in PHEC we observed marked
effects on IL-1a and IL-1p mRNA expression (3-6 fold)
even at the lowest concentration of exposure. COX-2 was
the most sensitive inflammation-associated gene in the 3D
tri-culture, HMEC-1 and PHEC. COX-2 is present in in-
flamed vessels and highly expressed in atherosclerotic le-
sions; where it can potentially produce large amounts of
prostanoids and PGE2. PGE2 can promote the expression
of MMPs leading to tissue destruction and destabilization
of atherosclerotic plaques [57, 58]. Notably, MMP-1 was
induced in HMEC-1 and PHEC as well as the 3D tri-
culture after exposure for 20 h or more. It is thus tempt-
ing to speculate that the induction and release of MMP-1
at 24 h, was caused at least partly through COX-2-
mediated PGE2 production. Taken together, DEP induced
increased endothelial expression of pro-inflammatory
genes considered relevant in development and progression
of atherosclerosis.

DEP most likely initiates cellular responses through a
number of different constituents and multiple triggering
mechanisms, and pro-inflammatory effects arise from
the combined activation of several pathways. Generally,
particles and soluble particle components can trigger in-
flammatory responses through four central events: (i)
formation of ROS, (ii) interaction with the lipid layer of
cellular membranes, (iii) activation of receptors, ion
channels and transporters on the cell surface, and (iv)
interaction with intracellular molecular targets including
receptors [26, 59]. In this study we have addressed three
of these triggering events: ROS formation, activation of
membrane receptors (PAR-2) and the intracellular re-
ceptor AhR. These mechanisms are of interest since they
have been implicated in the pathogenesis of CVD, most
notably through their effects on pro-inflammatory sig-
naling [34, 60-63]. Of notice, the relative impact of in-
hibitor- and antioxidant-treatment varied considerably
with both the type of exposure (n-Hex- or DCM-EOM)
and the genes investigated. This suggests that the two
lipophilic extracts induce effects at least partly by differ-
ent constituents and through different pathways, which
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is consistent with the notion that a number of mecha-
nisms are involved in the effects from complex expo-
sures such as DEP.

ARR is a ligand-activated transcription factor with af-
finity for planar aromatic compounds including several
PAHs and dioxins, and is among the most well studied
xenobiotic receptors [28]. The vasculature is suggested
to be a target of PAH exposure [64—66], and AhR-
ligands have been shown to disrupt endothelial function,
causing atherosclerosis, [60, 62]. In the present study
AhR seemed to be partly involved in the regulation of
DEP-EOM-induced IL-1f, CXCL8, MMP-1 and HO-1 in
HMEC-1. In PHEC the role of AhR in mediating effects
of n-hexane- and DCM-EOM was similar, CH223191 re-
duced IL-1p and COX-2. This effect did not seem to be
cell-line dependent. AhR could potentially regulate pro-
inflammatory genes such as IL-1p and CXCL-8 through
cross-talk with the nuclear factor-kB (NF-kB) family of
transcription factors or through binding to AhR-
response elements (XREs) in their promoter region [29,
30, 67]. However, the effect of AhR-inhibition on COX-2
expression, could also be related to non-genomic signal-
ing [68]. Furthermore, it has been found that AhR li-
gands induce MMP-1 in human bronchial cells [69], the
observed effects on MMP-1 could thus be related to
AhR activation. Most importantly, these results indicate
that AhR-ligands contribute to the pro-inflammatory ef-
fects from lipophilic DEP-EOM in endothelial cells.

G-coupled receptors including PAR are central in endo-
thelial inflammatory responses [33, 34], and PAR-2 has
been reported to regulate MMP-1 in bronchial epithelial
cells exposed to DEP [17]. Inhibiting PAR-2 with ENMD-
1068 caused marked reductions of CXCL8, HO-1 and
PAI-2 in HMEC-1. Interestingly, PAR-2 inhibition reduced
the effect of the n-hexane extract on CXCL8 and HO-1
more markedly than NAC. Thus CXCL8, HO-1 and PAI-2
expression in HMEC-1 seem to be linked to PAR-2-
regulated pathways. In PHEC it seemed that PAR-2 par-
tially regulated IL-1p and CYP1A1 (Fig. 6). We have previ-
ously found that DEP-induced IL-6 was reduced by PAR-2
silencing in BEAS-2B [32]. Taken together, it seems that
PAR-2 contributes to the signaling pathways mediating in-
flammatory effects of DEP in both bronchial and endothe-
lial cells. PAR-2 is activated by protease-mediated cleavage
of the n-terminal domain [33, 34]. Unless DEP and DEP-
EOM contains protease activity, it seems more likely that
PAR-2 is not directly targeted by the particles or particle
components, but rather trans-activated in response to
some upstream triggering mechanism. As both PAR-2 and
AhR could initiate calcium signaling [17, 68], and since
AhR is known to interact with a number of different cellu-
lar pathways [70], it is tempting to speculate that there
could be a link between signaling from these two recep-
tors in DEP-exposed cells.
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The oxidative stress paradigm has dominated the under-
standing of how DEP and other particulates trigger in-
flammatory responses in various cell types [36, 71]. In
HMEC-1 only the highest concentrations of n-Hex- and
DCM-EOM induced HO-1. The DCM extract induced
the strongest increase in HO-1 expression, at least at later
time-points, and the suppressive effects of NAC was most
pronounced in DCM-EOM-exposed cells. This correlates
well with previous findings that the mid-polar and non-
polar OC of wood smoke PM caused GSH depletion in
RAW 264.7 macrophages [72] and the notion that DCM
have higher levels of redox reactive OC than n-hexane
[41]. Of all the genes investigated, CXCL8 expression ap-
peared to be most closely associated with HO-1 expres-
sion, indicating a central role of redox-regulation.
However, while HO-1, CXCL8 and COX-2 gene expres-
sions were partially reduced by NAC, IL-1a, IL-1p and
PAI-2 appeared to be unaffected by the antioxidant treat-
ment. Moreover, at the lowest concentrations tested in
HMEC-1 and PHEC cells, as well as the tri-culture, pro-
inflammatory gene expression appeared to be induced in
the absence of effects on HO-1 expression. Thus, our re-
sults indicate that the role of oxidative stress in regulation
of DEP-induced pro-inflammatory responses could be a
high-dose phenomenon. By contrast, DEP- and DEP-
EOM-induced gene expression at the lowest concentra-
tions tested appeared to be triggered through receptor-
mediated effects in absence of oxidative stress. While our
present data clearly are insufficient to conclude on this
matter, they highlight the importance of exploring the role
of redox-responses and oxidative stress at exposure-
relevant DEP-concentrations [36].

Conclusion

This study shows that exposure-relevant concentrations
of DEP (from 0.12 pg/cm®) on the epithelial side of a 3D
tri-culture, mimicking the alveolar-capillary barrier, in-
duced increased expression of pro-inflammatory and
AhR-regulated genes in the basolateral endothelial cells.
These effects were most likely due to soluble organic
constituents detached from DEP. Furthermore, direct
exposure of HMEC-1 and PHEC to lipophilic organic
extracts of DEP induced a comparable up-regulation of
pro-inflammatory and AhR-regulated genes, most not-
ably at low concentrations in PHEC (0.15 ug/cm?).
These effects appeared to be linked to AhR and PAR-2
signaling, and at higher concentrations also involved
redox-regulated responses. Thus AhR agonists and other
lipophilic constituents appear to be the main drivers of
these effects. Although further studies will be necessary
to validate these findings, we suggest that lipophilic or-
ganic compounds from DEP may cross over the alveolar
epithelium triggering inflammatory reactions in remote
endothelial cells.
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Methods

Chemicals

Benzo[a]pyrene (B[a]P), dimethyl sulfoxide (DMSO) and
hydrocortisone were purchased from Sigma-Aldrich (St.
Louis, MO). All organic solvents were of >99% purity
(GC or LC-MS grade) and purchased from VWR (Rad-
nor, PA, USA). Analytical standards were obtained from
either Fisher Scientific (Hampton, NH, USA) or Sigma-
Aldrich (St. Louis, MO, USA). Phorbol-12-myristate-13-
acetate (PMA) was purchased from Merck KGaA
(Darmstadt, Germany); L-Glutamine (200 mM) from
Thermo Fischer Scientific (Scotland); endothelial growth
factor from Nerliens Meszansky (Oslo, Norway); penicil-
lin and streptomycin and EC growth medium (EGM-
2MV) from Lonza (Walkersville, MD, USA); and MCDB
131, RPMI-1640 and DMEM medium with Glutamax
was provided by Life TechnologiesTechnologies (NY,
USA); fetal calf serum (FCS) from Biochrom AG (Berlin,
Germany). The suspensions of silica nanoparticles with
nominal size of 10 nm (SiNP) was purchased from Kis-
ker Biotech (Steinfurt, Germany).

RNA isolation done with RNeasy from Qiagen (Qiagen,
Germantown, MD) or NucleoSpin RNA Plus (Macherey-
Nagel; Diiren, Germany). All real-time Real Time/quantita-
tive-PCR (q-PCR) reagents and TagMan probes/primers
were purchased from Applied Biosystems (Foster City, CA,
USA). Cytokine ELISA assays for IL-6 (Human IL-6 Cyto-
Set) and CXCL8 (Human IL-8 CytoSet) were purchased
from Biosource International (Camarillo, CA, USA). ELISA
assays for MMP-1 were purchased from R&D systems
(Minneapolis MN, USA). Cell culture flasks were obtained
from Nunc A/S (Roskilde, Denmark) and 12-well plates
from Corning, Lowell (MA, USA). The Falcon transwell in-
serts and additional 6-well TC-Treated Polystyren plate
Companion were purchased from Corning (surface area of
4.2 cm® 1 pum pore size; high pore density PET membranes;
BD Biosciences, Basel, Switzerland).

Diesel exhaust particles, chemical extraction and analysis
DEP currently used were collected from the tail-pipe of a
diesel engine (Deutz, 4 cylinder, 2.2 1, 500 rpm) running on
gas oil,characterized as described elsewhere [40, 41], and
kindly provided by Flemming R. Cassee (RIVM). These
particles contain approximately 60% OC, corresponding to
other OC-rich DEP [73, 74]. Although the current DEP is
not necessarily representative of DEP from modern cars,
the PAH-composition of these particles resembles what
has been reported from other DEPs, with high levels of
phenanthrene, fluoranthene, pyrene and chrysene [41, 42].
The detailed approach to characterization of extracts is
provided below.

Extraction: DEP extraction was performed with a series
of solvents ranging from non-polar to polar using a pres-
surized extraction system as previously described [75].
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The DEP-EOM (10 mg) was extracted separately by a
solvent sequence of increasing polarity, from n-hexane to
water. Organic solvents were employed using a dynamic
mode at constant flow of 0.5 mL/min for 30 min through
the extraction vessel. The final water fraction was obtained
using first a static mode, where solvent remained in con-
tact with the DEP sample for 5 min, followed by a dy-
namic extract collection at a flow rate of 0.6 mL/min for
5 min (ie., a flushing volume of 3.0 mL, more than three
internal extraction vessel volumes). Each DEP-EOM frac-
tion was analyzed as described below:

Chemical Analysis: The OC in extracts and the original
PM was determined using a thermal optical analyzer (Sun-
set Laboratories, Tigard, OR, USA). The temperature pro-
gram began with five steps under an inert helium starting
at 300 °C, followed by 500 °C, 600 °C, 700 °C each step for
75 s, and 870 °C for 120 s. Then, the instrument was cooled
down to 550 °C and helium with 5% oxygen was introduced
with the temperature program starting with 550 °C for 45 s,
625 °C for 45 s, 700 °C for 45 s, and 890 °C for 120 s. For
OC analysis 50-150 pg of PM was placed onto pre-baked
quartz filter (600 °C, overnight) using a glass rod. DEP-
EOM fractions were analyzed by introducing an aliquot
(10-80 pL) on the pre-baked quartz filter placed on a heat-
ing plate. The solvent was then evaporated at 45 °C for 4—
8 min, depending on the type of solvent [73]. To distinguish
pyrolyzed OC from EC, laser transmittance at 658 nm was
used. As expected no EC was found in the extracts.

The gas chromatography mass spectrometry (GC-MS)
revealed only alkanes, PAHs and PAHs derivatives in the
extracts. The corresponding aliquots in organic solvents
were spiked with deuterated recovery standards (naphtha-
lene-d8, pyrene-d10, and 1-hydroxypyrene-d9) and con-
centrated to 200 pL under a gentle stream of nitrogen.
Water aliquots were also spiked with recovery standards,
but concentrated to 200 pL using a vacuum rotary evapor-
ator (7-20 x 10-3 bar, 30 °C). Half of the concentrated
sample (100 pL) was then spiked with an internal standard
(fluoranthene-d10) and analyzed directly using a gas chro-
matograph coupled to mass spectrometer (GC-MS). To
determine hydroxy-PAHs, the other half of the concen-
trated sample (100 puL) was evaporated to dryness under
gentle stream of nitrogen and mixed with 50 pL of sialyla-
tion agent, BSTFA. The mixture was then heated for 10 h
at 70 °C, mixed with 50 pL of dichloromethane, and with
fluoranthene-d10.

The GC-MS used was a 6890 Series II Plus GC
coupled to a 5975C MS detector (Agilent, Santa Clara,
CA). Separations were carried out using a 22 m-long
DB-5MS column with 0.25 mm internal diameter and 0.
25 mm film thickness (J&W Scientific, Rancho Cordova,
CA, USA) at a constant helium flow rate of 1.0 mL/min.
Samples (1.0 puL) were injected in a splitless mode for 0.
5 min at 250 °C. The temperature program started at
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35 °C that was held for 2 min, followed by an increase to
140 °C with a 15 °C/min temperature gradient. The last
step was an increase to 320 °C with a 10 °C/min
temperature gradient, held for 10 min. The total run
time was 37 min. The transfer line temperature was set
to 280 °C. The MS data were acquired in the full scan
mass range of 43-500 m/z using an electron ionization
(70 eV). Quantifications were done using eight-point cal-
ibrations with the corresponding standard quantification
ions listed in Additional file 1: Table S1. For compounds
for which standard were not available the nearest iso-
meric standard was employed.

Particle size and distribution

The dynamic size measurements were performed at 37 °C
in the culture media used in the study, at a concentration
of 50 pug/ml. Each particle solution was measured 3 times
on a zeta-sizer NANO ZSP (Malvern Instruments Ltd.,
WR14 1XZ, UK). The results are presented as mean size
distribution by intensity. The DEP had a bimodal distribu-
tion, with a minor peak around 100 nm and the main peak
around 300 nm. As nucleation mode DEP typically is less
than 40-50 nm in diameter [15], it seems likely that both
peaks could represent agglomerated particles. Interest-
ingly, the 10 nm SiNPs displayed a comparable distribu-
tion, peaking around 200-300 nm, suggesting that also
these particles primarily occurred as agglomerates when
suspended in media (Additional file 1: Figure S6).

Cell cultures
A 3D tri-culture consisting of three different cell-types,
EA-hy926, A549 and PMA-differentiated THP-1 cells,
were prepared principally as described by Klein and co-
workers [38]. The cells were obtained from the Ameri-
can Type Culture Collection (Manassas, VA, USA). EA.
hy 926, A549 and THP-1 cells were maintained in either
DMEM with Glutamax, 10% FCS and 1% Hepes (Ea.hy
926 and A549) or in RPMI-1640 with 10% FCS (THP-1)
in T75 flasks in a humidified atmosphere at 37 °C with
5% CQO,, with refreshment of medium twice a week.
Building the 3D tri-cultures started by seeding EA.hy
926 EC on the inverted trans-well inserts at a density of
2.57 x 10° cells/cm®. Four h after seeding, the plate with
the trans-well inserts was turned back to its original
orientation and A549 cells were seeded inside the trans-
well (1.28 x10° cells/cm?). Epithelial and endothelial
cells were then grown for 3 days at 37 °C and 5% in a
humidified incubator with 2 mL of DMEM with
Glutamax, 10% FCS and 1% Hepes in the upper and
lower chamber; then for 1 day with co-culture media
(DMEM with Glutamax and 15% RPMI-1640, 10% FCS
and 1% Hepes).On day 3, THP-1 cells were differentiated
into macrophage-like cells with PMA (20 ng/mL; PMA-
differentiated THP-1 cells). On day 4, differentiated
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THP-1 cells (2.57 x 10° cells/cm?) were added to the
inserts and the complete tri-culture was kept in co-
culture media with 1% FCS. On day 5 the 3D tri-
cultures were ready for exposures.

Ea. Hy 926 monocultures were seeded on 6 well plates at
a cell density of 250.000 cells/well in 1.5 ml of DMEM with
Glutamax, 10% FCS and 1% Hepes 2 days before exposure.

Human micro-vascular endothelial cells (HMEC-1),
obtained from Laboratory of the Government Chemist
(LGC Standards, Germany), were routinely maintained
in MDCB131 medium containing epidermal growth fac-
tor (10 ng/mL), hydrocortisone (0.2 pg/mL), penicillin
(50 unit/mL), and streptomycin (50 pg/mL) and supple-
mented with 10% fetal calf serum (FCS), according to
the providers instructions.

Primary human endothelial cells (PHEC) were isolated
from adipose tissue obtained from liposuction material
from abdominal regions of four healthy female donors
(aged 22-35 years; BMI: 23-30) undergoing cosmetic sur-
gery [76]. The stromal vascular fraction was isolated as de-
scribed previously [76]. Briefly, lipo-aspirates were washed
and digested using 0.1% collagenase A type 1. After centri-
fugation, the cell pellet was filtered through 100 um and
then 40 pm cell sieves. Cells were obtained from the inter-
face after Lymphoprep gradient separation (Axis Shield;
Oslo, Norway). CD44+ cells were removed using Dyna-
beads (Dynabeads Pan Mouse IgG; Invitrogen Dynal AS,
Oslo, Norway) according to the manufacturer’s descrip-
tion. PHEC were plated at 2 x 10° cells per 75-cm? tissue
culture flask Nunc A/S (Roskilde, Denmark). Cells were
maintained at 37 °C in an atmosphere of 5% CO, in
humid air using endothelial cell growth medium (EGM-
2MV) with supplements according to the manufacturer’s
description; human AB-serum (serum from individuals
with blood-type AB) was used instead of FCS. Cells were
routinely passaged every 3—4 days.

In vitro exposures

3D tri-culture: prior to exposure, the media was changed
to co-culture media without FCS. DEP suspended in co-
culture media without FCS were added to the upper
chamber. After 2 or 20 h exposure, cells from the apical
compartment (A549 and PMA-differentiated THP-1
cells) and the basolateral compartment (EAhy.926 endo-
thelial cells) were harvested and mRNA was isolated
using the RNeasy mini kit according to the protocol
from the manufacturer (Qiagen, Germantown, MD). In
separate experiments the tri-culture and EAhy.926 endo-
thelial cells were exposed to Sil0 in absence of FCS for
3 and 6 h prior to harvesting of mRNA.

HMEC-1 and PHEC were grown to near-confluency
and serum-starved for a minimum of 12 h prior to ex-
posure. Cells were then exposed by removing the media
and adding growth medium without FCS containing
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various DEP-EOM suspended in DMSO or DMSO
alone. After 2, 5 or 24 h exposure, growth-medium was
obtained for ELISA, cells were harvested and mRNA ex-
tracted. In all experiments that included chemical inhibi-
tors, cells were pre-treated for 30 min with the inhibitor,
then exposed to the DEP-EOM.

Chemicals were commonly prepared as stock solution
in DMSO. The final concentration of solvent did not ex-
ceed 0.2% (v/v); control cultures received similar con-
centration of DMSO. Stock solution of Sil0 was
dispersed in sterile water (2.3 mg/ml) and sonicated for
approximately 2 min on ice (until specific ultrasound en-
ergy of 420 ] was given to the nanoparticles). Bovine
serum albumin (BSA, final concentration 0.15%) and
phosphate buffered saline (PBS, final dilution 1x) were
then added to the particle solution, according to the
method by Bihari and co-workers [77].

Gene expression analysis by real-time RT-PCR

RNA was isolated using NucleoSpin RNA Plus (Macherey-
Nagel; Diiren, Germany) or RNeasy from Qiagen (Qiagen,
Germantown, MD), and reverse transcribed to cDNA on a
PCR System 2400 (PerkinElmer, Waltham, MA, USA)
using a High Capacity cDNA Archive Kit (Applied Biosys-
tems, Foster City, CA, USA). Real-time PCR was performed
using pre-designed TagMan Gene Expression Assays and
TagMan Universal PCR Master Mix and run on Applied
Biosystems 7500 fast software. Gene expression of induced
[L-la (Hs00174092_m1), IL-1p (Hs01555410_m1), IL-6
(Hs00174131_m1), CXCL8 (Hs00174103_ml), COX-2
(Hs00153133_m1), MMP-1 (Hs00899658_ml), HO-
1(Hs01110250_m1), PAI-2/SERPINB2 (Hs01010736_ml),
CYP1A1l (Hs00153120_m1) and CyplB1 (Hs02382916_s1)
were normalized against GAPDH (Hs02758991_gl) and
expressed as fold change compared to untreated control as
calculated by the AACt method (ACt = Ct[Gene of Interest]
— Ct[18S]; AACt=ACt[Treated] — ACt[Control]; Fold
change = 2[-AACt]).

ELISA

The amount of MMP-1, IL-6 and CXCL8 in cell
medium was measured by ELISA according to the man-
ufacturers’ guideline. An increase in color intensity was
quantified by a plate reader (TECAN Sunrise, Phoenix
Research Products, Hayward, CA, USA) equipped with a
dedicated software (Magellan V 1.10; Tecan Austria
GmbH, Grodig-Salzburg, Austria).

Flow cytometry

Flow cytometry was performed for determination of cell
surface antigen expression of PHEC from one donor as
described previously [46]. Cells were analyzed using a
Gallios flow cytometer from Beckman Coulter with Gal-
lios software.
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Statistical analysis

Statistical analysis was performed by ANOVA with
Holm-Sidak post-test for multiple comparisons. As
ANOVA cannot be performed on normalized data, the
gene expression data were analyzed using the deltaCT-
values from the q-PCR measurements. All calculations
were performed using GraphPad Prism 7 software
(GraphPad Software, Inc., San Diego, CA).

Additional file

Additional file 1: Figure S1. In a 3D tri-culture, exposure to SiNP on
the epithelial side, induced COX-2 on the epithelial side, but not in the
endothelial cells. Furthermore EAhy.926 endothelial cells exposed directly
to SiNP up-regulated COX-2. Figure S2. The amount of volatile/semi-
volatile compounds extracted decreased according to polarity of the sol-
vents. Figure S3. Cytotoxicity of DEP-EOM in HMEC-1 and PHEC. Figure
S4. Lipophilic DEP-EOMs cause CXCL8 secretion in HMEC-1 cells. Figure
S5. PHEC were 99% CD31-positive. Figure S6 Size distribution, DEP and
SiNP. Table S1. GC-MS quantified compounds with corresponding MS
jons and calibration standards. (DOCX 2036 kb)
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