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Abstract 
Motivation: At the same time that toxicologists express increasing concern about reproducibility in 

this field, the development of dedicated databases has already smoothed the path toward improving 

the storage and exchange of raw toxicogenomic data. Nevertheless, none provides access to ana-

lyzed and interpreted data as originally reported in scientific publications. Given the increasing de-

mand for access to this information, we developed TOXsIgN, a repository for TOXicogenomic sIgNa-

tures. 

Results: The TOXsIgN repository provides a flexible environment that facilitates online submission, 

storage, and retrieval of toxicogenomic signatures by the scientific community. It currently hosts 754 

projects that describe more than 450 distinct chemicals and their 8491 associated signatures. It also 

provides users with a working environment containing a powerful search engine as well as bioinfor-

matics/biostatistics modules that enable signature comparisons or enrichment analyses. 

Availability and Implementation: The TOXsIgN repository is freely accessible at 

http://toxsign.genouest.org. Website implemented in Python, JavaScript, and MongoDB, with all ma-

jor browsers supported. 

Contact: frederic.chalmel@inserm.fr 

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 

Humans today are exposed to numerous man-made environmental 

contaminants. By July 2017, over 130 million chemicals were listed in 

the Chemical Abstract Service (CAS), 120,000 of which are marketed in 

the European Union according to the European Chemicals Agency 

(ECHA) (https://echa.europa.eu/fr/information-on-chemicals). The 

potential toxicity of the overwhelming majority of these compounds 

remains almost uninvestigated (Tweedale, 2017). 

Growing concerns about their potential adverse effects on human health 

and the environment led the European Commission to promulgate the 

regulation on Registration, Evaluation, Authorisation and Restriction of 

Chemicals (REACH) in 2007 (European Commission). This regulation 

has prompted innovative scientific programs to: i) screen for novel 

potential toxicants to which humans are exposed, especially, novel 

possibly carcinogenic, mutagenic, or reprotoxic (CPR) substances; ii) 

investigate the molecular mechanisms underlying their actions; and, 

finally, iii) develop predictive methods for assessing chemical hazards, 

ultimately intended to reduce the number of experimental tests on model 

organisms (RUSSELL and BURCH, 1959). Several landmark projects, 

such as Open TG-GATEs (Igarashi et al., 2015), DrugMatrix (Ganter et 

al., 2006), CMap (Lamb et al., 2006), and a myriad of other high 

throughput studies, have been undertaken on the hypothesis that toxi-
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cogenomic data, i.e., gene expression profiles in response to chemical 

exposure, will improve the prediction of their toxicity and the under-

standing of their mechanisms of action (Prathipati and Mizuguchi, 2016). 

This concept supplements the traditional ligand- and structure-based 

predictive approaches to assessing the safety of compounds by postulat-

ing that transcript profiling can effectively discriminate classes of com-

pounds with similar adverse effects (Steiner et al., 2004; Kavlock et al., 

2007). 

Recently, the lack of reproducibility of biomedical research (Must try 

harder, 2012), including in the field of toxicology (Miller, 2014; George 

et al., 2015; Poland et al., 2014), has sparked apprehensions. Funding 

agencies, such as the National Institutes of Health (NIH), and other 

institutions share this concern and are participating in discussions of 

ways to enhance reproducibility in the environmental sciences (Collins 

and Tabak, 2014). Among the practical points to be considered when 

funding, planning and reporting toxicology studies, a crucial one is 

improving data transparency, including negative findings or contradicto-

ry results (Poland et al., 2014). One effort in this context comes from the 

European Commission, which through the European Research Infrastruc-

ture Consortium (ERIC) is attempting to establish a model service for 

systems biology data management. Its objectives are to make biological 

data FAIR: Findable, Accessible, Interoperable, and Reusable 

(Wilkinson et al., 2016). These goals are especially important in the field 

of toxicology. Resources such as CTD (Davis et al., 2015) 

(http://ctdbase.org), diXa (Hendrickx et al., 2015) (http://www.dixa-

fp7.eu), ToxDB (Hardt et al., 2016) (http://toxdb.molgen.mpg.de), CEBS 

(Lea et al., 2017) 

(https://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm)

, NIH LINCS (Duan et al., 2016) and Drug2Gene (Roider et al., 2014) 

(http://www.drug2gene.com) have paved the way for improved storage, 

exchange, and analysis of toxicological data (Miller, 2015). The Toxicity 

Forecaster (ToxCast) developed by the US Environmental Protection 

Agency is another good example of an innovative tool designed to 

generate and share standardized data and predictive models for thou-

sands of toxicants, including endocrine disruptors (Richard et al., 2016).  

Toxicogenomics is a scientific field that covers the acquisition, interpre-

tation and storage of information about gene expression and associated 

protein activity to study the adverse effects of environmental and phar-

maceutical chemicals on human health and the environment. Such stud-

ies use “–omics” technologies (for example, transcriptomics, proteomics, 

epigenomics, and related approaches) to discriminate molecular signa-

tures, also called toxicogenomic signatures, that strongly correlate with 

genetic toxicity (Beedanagari et al., 2014). It is now well established that 

investigators are supposed to submit their raw data to public databases 

such as the Gene Expression Omnibus (Barrett et al., 2013) and Ar-

rayExpress (Kolesnikov et al., 2015). To the best of our knowledge, 

none of the existing toxicogenomics resources, including CTD and NIH 

LINCS, allows scientists to submit toxicogenomic signatures, i.e., the 

sets of genes showing altered status (in terms of gene expression, protein 

activity or epigenetic status) in individuals or their descendants after 

exposure to single or combined environmental factors. Although these 

signatures constitute the heart of studies in toxicogenomics, they usually 

only appear as supplementary tables and are accordingly complicated to 

reuse directly or compare with other data. 

To meet the demands of scientists for easy access to such information 

(i.e., without the time-consuming downloading and re-processing of raw 

data), we developed TOXsIgN (for TOXicogenomic sIgNatures), a user-

friendly resource that supports online submission, storage, and retrieval 

of toxicogenomic signatures. This repository is not intended either to 

archive raw data, as GEO and ArrayExpress (Kolesnikov et al., 2015; 

Barrett et al., 2013) do, or to replace existing toxicological databases 

(Davis et al., 2015; Lea et al., 2017; Hendrickx et al., 2015; Duan et al., 

2016), but rather to complement these resources by acting as a distribu-

tion hub. One of the unique features of TOXsIgN is its ability to archive 

heterogeneous data and thus allows users to upload lists of overex-

pressed/underexpressed genes from different kinds of omics experiments 

(e.g., transcriptomic, proteomic, or epigenomic) and make them usable 

for cross-species and cross-technology comparisons. TOXsIgN is also 

intended to serve as a warehouse for toxicogenomics and predictive 

toxicology tools simultaneously based on and able to analyze the overall 

set of signatures deposited by the community. The TOXsIgN repository 

is freely accessible at https://toxsign.genouest.org. 

2 Methods 

2.1 Data storage, management, and retrieval 

The database underlying TOXsIgN is based on MongoDB 

(https://www.mongodb.com), a free, open-source cross-platform docu-

ment-oriented database program. This NoSQL database technology 

provides relevant features for TOXsIgN, such as flexible storage of 

massive and rapidly changing types of data, data replication, and JavaS-

cript compatibility. 

The TOXsIgN search engine is based on the implementation of an 

ElasticSearch server (https://www.elastic.co). Briefly, ElasticSearch is a 

NoSQL database manager with a powerful search engine primarily used 

to index textual data, which allows TOXsIgN to index all four layers of a 

TOXsIgN project information (the project, the studies, the assays, and 

the signatures) and simultaneously enables investigators to query the 

database according to several data categories, such as chemicals, genes, 

doses, species, cell lines, and tissues. 

2.2 Web interface 

The web interface of TOXsIgN was built with two open web frame-

works, Pyramid (https://trypyramid.com/) and AngularJS 

(https://angularjs.org/). Pyramid embeds many features, such as a REST 

API, a JSON renderer, an SQLAlchemy Object-relational mapper 

(ORM), a Deform library to generate forms, and compatibility with 

SMTP servers. AngularJS, on the other hand, is an open JavaScript 

framework that extends traditional HTML vocabulary; it allows imple-

mentation of readable and quickly developable web environments. 

To handle website traffic and provide data security, scalability, and 

deployment, all components of TOXsIgN (i.e., website server, Mon-

goDB database, and Elasticsearch server) are hosted on separate individ-

ual virtual machines, with Docker (https://www.docker.com) as a con-

tainer system. Briefly, Docker is an open-source virtualization system 

allowing easy deployment of container images, which in turn are light-

weight, stand-alone, executable packages embedding everything needed 

to run a piece of software, such as code, runtime, system tools, libraries, 

and settings. 

2.3 Workspace 

The workspace supports the database and includes a job submission 

system to execute local scripts written in Python, R, or Tcl, and stand-

alone programs. The corresponding web interface is based on the Pyra-

mid framework as well as Python scripts and allows users to run modules 

and access their results. Execution of a module creates a new job from a 
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Python wrapper. The status of each job is available in the table accessi-

ble through the “running jobs” web page, which lists queued, running, 

and complete jobs coded respectively in gray, orange, and green. 

Uploaded toxicogenomic signatures correspond to tab-delimited text 

files composed of Entrez Gene identifiers (IDs) (Maglott et al., 2011). 

Before available modules are run from the workspace, these IDs are 

supplemented with related information, such as gene symbols, gene 

descriptions, taxonomy IDs, and HomoloGene IDs (NCBI Resource 

Coordinators, 2016) using “gene_info” and “homologene.data” files 

from the NCBI website (https://www.ncbi.nlm.nih.gov). 

Fig. 1.  Organization of the TOXsIgN database. The TOXsIgN database is organized 

in a four-layer architecture (Project > Study > Assay > Signature) associated with a 

unique identifier. The project layer covers one or several studies addressing specific 

questions. Each study in turn is associated with at least one assay that assesses the 

exposure of a given study model (e.g., cell culture, living animal, human population) to at 

least one chemical (e.g., pesticide, plasticizer, drug, or endocrine disruptor), physical 

(e.g., type of radiation or temperature) or biological (e.g., pathogen or parasite) agent at a 

given dose and for a given time of exposure. This organization makes TOXsIgN compati-

ble with mixtures and transgenerational studies. At the time of writing, the database 

contains 8491 toxicogenomic signatures described by 12 different ontologies. 

3 Results 

3.1 TOXsIgN overview and current content 

TOXsIgN information is organized in a four-layer architecture (Project > 

Study > Assay > Signature). Each layer is associated with a unique 

trackable identifier that can be reported in submitted manuscripts, like 

the raw data identifiers from GEO or ArrayExpress (Barrett et al., 2013; 

Kolesnikov et al., 2015) (Fig. 1). Scientists should thus submit projects 

(each of which receives an identifier with the “TSP” prefix), which are 

subsequently subdivided into studies (or subprojects, “TSE” prefix) 

addressing specific questions, and describing experimental assays 

(“TST” prefix) from which specific outcomes are extracted in the form 

of toxicogenomic signatures (“TSS” prefix), i.e., the set of genes posi-

tively or negatively affected in the corresponding assays. These assays 

can be performed directly in exposed individuals or in their descendants 

after exposure to a single substance or a combination of several. This 

definition underlines several unique features of TOXsIgN, specifically, 

its compatibility with: i) transgenerational studies; ii) chemical mixture 

studies – by default each assay is a mixture of at least one environmental 

factor; iii) a variety of environmental factors, including chemicals (e.g., 

pesticides, plasticizers, drugs, and endocrine disruptors), and eventually 

physical (e.g., radiations and temperature) and biological (e.g., pathogens 

and parasites) factors; and, iv) gene sets resulting from several kinds of 

(transcript-/prote-/epigen-)omics experiments. Importantly, TOXsIgN 

also allows scientists to submit and describe outcomes besides toxicoge-

nomic signatures, such as physiological (e.g., association with a specific 

phenotype) and molecular (e.g., change in specific hormone concentra-

tions) signatures for both interventional (participants undergo some kind 

of treatment so its impact can be evaluated) and/or observational studies 

(individuals for which different outcomes are measured) (Thiese, 2014). 

TOXsIgN thus collects a large number of heterogeneous signatures and 

simultaneously help to break down barriers between different fields in 

environmental sciences that remain boxed off from each other. 

Currently, the TOXsIgN repository includes 754 projects for 911 tran-

scriptomic studies of more than 450 compounds performed in humans, 

rats, mice, or drosophila (Supplementary Table 1 and Supplementary 

Information). Together these experimental assays correspond to 8491 

toxicogenomic signatures, extracted from 32,688 microarray experiments 

that used 10 different technologies, including two major toxicogenomics 

resources, DrugMatrix and the Toxicogenomics Project-Genomics 

Assisted Toxicity Evaluation System (Open TG-GATES) (Ganter et al., 

2006; Igarashi et al., 2015). DrugMatrix, set up by the National Institute 

of Environmental Sciences (NIES, USA) aimed at studying transcrip-

tional responses in rats after exposure to 376 compounds in five different 

tissues (at multiple doses and multiple exposure times). On the other 

hand, Open TG-GATES is a collaborative project between the National 

Institute of Biomedical Innovation (NIB), the NIES and about 15 phar-

maceutical companies that sought to study 150 chemicals and their 

transcriptional responses (at multiple doses and for multiple exposure 

times) in two rat tissues (liver and kidney). Our repository also hosts 326 

physiological and molecular signatures from four interventional studies 

and four observational studies (Supplementary Table 1). In the near 

future, toxicogenomic signatures from other research programs will be 

included in TOXsIgN, such as CMAP, CEBS, diXa, and NIH LINCS 

(Lamb et al., 2006; Lea et al., 2017; Hendrickx et al., 2015; Duan et al., 

2016). 

3.2 Signature submission and access 

In this quick and easy submission procedure, investigators will record all 

required information in a dedicated Excel template that embeds one tab 

for each layer (Project, Study, Assay, and Signature). This document 

integrates a dozen landmark controlled vocabularies allowing scientists, 

using ontologies as recommended (Hardy et al., 2012; Smith et al., 

2007), to describe their toxicogenomic studies and their outcomes with 

precision (Supplementary Table 2). Once uploaded, the TOXsIgN web-

server performs an initial evaluation of the Excel template to identify: i) 

“critical errors” about essential information that may not have been 

properly completed (such as the project title) and could therefore prevent 

the project upload; ii) “warnings” for important but not essential missing 

information (such as a PubMed identifier); and, iii) “information” for 

any other data not appropriately completed (such as additional infor-

mation). If the system detects no “critical error”, it next invites the user 

to upload the associated toxicogenomic signatures. Each signature 

comprises three one-column text files specifying: i) all interrogated 

genes; genes ii) positively (overexpressed for transcriptomic assays), and 

iii) negatively affected (underexpressed) in the corresponding assays.

Because reliable and consistent identifier conversion is a complex prob-

lem, toxicogenomic signatures should be converted to Entrez Gene IDs 

from up-to-date resources (Huang et al., 2008; Mudunuri et al., 2009). 

For studies using Affymetrix GeneChip technologies, it is highly rec-

ommended that users normalize their raw data (CEL files) with the 
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Brainarray custom Chip Description Files (CDF) so that intensity values 

are not summarized for each probe set but directly for each Entrez Gene 

ID (Dai et al., 2005) (see Supplementary Information). 

By default, each submitted project and its related signatures are tagged 

with a “private” status, meaning that only authorized users (the owner 

but also coauthors) can access the uploaded data. At this stage, infor-

mation can still be modified simply by uploading an updated version of 

the Excel template. A button is available on the web interface for each 

project to request the TOXsIgN administrators to switch it from private 

to public status. If “warnings” are still detected, this demand is rejected. 

The administrators will then help the investigators make the necessary 

modifications to activate the public status. Full instructions and examples 

of the submission procedure are provided in the website’s tutorial sec-

tion. The latest release of the Excel template document for uploading 

signatures in the repository and all ontologies (OBO files) used in TOX-

sIgN are available in a dedicated web page accessible through the 

“Download” tab on the main interface. 

Fig. 2.  The TOXsIgN advance search engine. Results for toxicogenomic signatures in 

which the expression of Cyp3a18 (Gene id: 252931) is downregulated in the rat liver after 

exposure to hydroxyl steroid compounds. From top to bottom, “search parameters”, “full 

query”, and “results table” are displayed. The “search parameters” box allows users to 

specify the details of their request from among projects, studies, assays, or signatures. For 

each request, the ElasticSearch query used to retrieve information is displayed on the top 

of the “results table”. The “results table” is a three-tab panel displaying result sorted 

according to projects, studies, or signatures and providing a link to the corresponding 

page. 

A powerful search engine is implemented to access all public infor-

mation within TOXsIgN. Users can thus interrogate the database accord-

ing to many distinct fields, such as environmental factors, organisms, 

tissues, and technologies. They can also easily make more advanced 

queries by using ontologies to describe toxicogenomic signatures. For 

instance, an investigator can retrieve 33 toxicogenomic signatures in 

which the expression of Cyp3a18 (Entrez Gene ID 252931, a gene 

encoding a member of the cytochrome P450 superfamily highly ex-

pressed in the liver (Nagata et al., 1996)) is negatively affected in the 

liver after exposure to hydroxyl steroid compounds (Fig. 2). All scripts 

and data used are freely accessible in the TOXsIgN “Download” section. 

3.3 Predicting adverse effects from toxicogenomic signa-

tures 

Predictive toxicology approaches based on toxicogenomic data seek to 

evaluate the toxicity of different compounds by using altered gene 

expression as an endpoint. In 2004, Steiner and colleagues established 

the proof-of-concept that similar toxicogenomic signatures imply similar 

adverse effects, using support vector machines (SVMs) to classify hepa-

totoxic and non-hepatotoxic chemicals based on transcriptomic data 

(Steiner et al., 2004). Although the parameters may have been overfitted 

due to the small number of compounds, this approach correctly predicted 

hepatotoxic effects for 90% of known hepatotoxicants. 

To illustrate the usefulness of archiving massive toxicogenomic signa-

tures in a public repository we sought to demonstrate, but on a larger 

scale, the hypothesis formulated by Steiner and colleagues: that chemi-

cals with similar toxicogenomic signatures share similar toxicity profiles 

(Supplementary Information). We used a subset of the current TOXsIgN 

repository that includes 3022 toxicogenomic signatures from tran-

scriptomic assays from five rat tissues after exposure to 410 toxicants to 

evaluate the toxicological distance (concordance, i.e., the number of 

shared adverse effects between two toxicants) as well as the linear 

correlation between their toxicogenomic signatures (Pearson’s correla-

tion and Euclidean distance). 

Fig. 3.  Correlation between toxicogenomic and toxicological distances. The linear 

correlation between toxicogenomic distances (Pearson’s correlation and Euclidean 

distance calculated between two toxicogenomic signatures) and toxicological distances 

(concordance, i.e., the number of adverse effects shared between two toxicants) was 

evaluated. Panels A and B show the association between toxicogenomic and toxicological 

distances, assessed by Pearson’s correlation for the toxicogenomic distance on the log-

fold-change matrix. Panels C and D show the degree of association with the use of a 
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discretized expression matrix, i.e., expression data for which fold-change information was 

discretized into only three distinct statuses (1, overexpressed after exposure; -1, underex-

pressed; and, 0, no differential expression). 

We first showed a significant association between the toxicogenomic and 

toxicological distances (r2 = 0.051, P < 2.2 10-16) (Fig. 3, panels A-B). 

This result is in line with the hypothesis that a strong correlation between 

gene expression profiles implies similar toxicity characteristics. Interest-

ingly, we also observed a linear correlation (r2 = 0.056, P < 2.2 10-16; 

panels C-D) when we discretized the expression data thanks to an ex-

pression matrix in which fold-change values information were simplified 

to only three distinct statuses: 1, genes overexpressed after exposure; -1, 

underexpressed; and, 0, no differential expression (see Supplementary 

Information). This finding supports the idea that toxicogenomic signa-

tures can be archived as simplified text files, which substantially facili-

tates their submission, without excessively penalizing their predictive 

potential. 

3.4 The signature enrichment analysis module for com-

paring toxicogenomic signatures 

The core feature of the TOXsIgN workspace consists in the bioinformat-

ics and biostatistics modules that allow retrieval, analysis, and compari-

son of the toxicogenomic signatures uploaded to the repository. The 

cross-species and cross-technology compatibility of this workspace relies 

on the conversion of toxicogenomic signatures into HomoloGene IDs 

before analysis by the different tools. The web page for each toxicoge-

nomic signature includes a “Save in workspace” button that allows 

investigators to transfer it into the workspace from which all of the 

available modules can be accessed for further analysis. 

In addition to the search engine and conversion tools, three other mod-

ules are currently available via the interface: 

(1) Signature comparison. This module embeds an interactive Venn 

diagram viewer, called jvenn, for easy comparison of up to six 

selected toxicogenomic signatures (Bardou et al., 2014). 

(2) Functional enrichment analysis. This tool allows users to 

explore the mechanisms of toxicity of a given environ-

mental factor by identifying the biological processes, 

molecular functions, cellular components (Ashburner et 

al., 2000), and phenotypes (Human Phenotype Ontology 

web resource) (Köhler et al., 2017) associated with its toxi-

cogenomic signature. Briefly, it determines the signifi-

cance of the resulting overlaps, according to the hyper-

geometric distribution. 

(3) Signature enrichment analysis. This module seeks to identify 

toxicogenomic signatures in the repository closely related to the 

user’s selected signature. Like the Functional enrichment analy-

sis module, it uses the hypergeometric distribution to determine 

the significance of overlaps. It also includes a distance matrix 

calculation that uses either the Euclidean distance or Pearson’s 

correlation to discriminate among the closely-related toxicoge-

nomic signatures. 

To illustrate the relevance of these modules, we uploaded into the work-

space a toxicogenomic signature comprising 381 overexpressed and 494 

underexpressed genes in rat livers after exposure to diethylstilbestrol 

(i.e., DES, a well-known estrogenic endocrine-disrupting chemical) 

(Korach and McLachlan, 1985; Li et al., 2013) for 5 days, at a dose of 

2.8 mg/kg (TOXsIgN signature identifier: TSS230). We then ran the 

Signature enrichment analysis module with its default parameters. It 

took about one minute to complete the job: consistently, three of the top-

10 toxicogenomic signatures included experiments performed in rat 

livers after exposure to DES, but at different doses (three experimental 

conditions) (Fig. 4). The seven other signatures corresponded to other 

well-known estrogenic compounds sharing mechanisms of action similar 

to that of DES (such as ethinylestradiol, estriol, mestranol, and ß-

estradiol) (MUECHLER and KOHLER, 1980; Simpson and Santen, 

2015). This finding again confirms the hypothesis set forth by Steiner 

and colleagues (Steiner et al., 2004). 

Fig. 4.  Signature enrichment analysis for diethylstilbestrol. The toxicogenomic 

signature of diethylstilbestrol (DES) (2.8 mg/kg, 5 days, rat liver) was compared to all the 

toxicogenomic signatures indexed in TOXsIgN with the Signature enrichment analysis 

tool. N is the total number of HomoleGene IDs measured, R the total number of Homo-

leGene IDs meeting the criterion, n the total number of HomoleGene IDs in the selected 

signature, r the number of HomoleGene IDs meeting the criterion in this signature, and 

the Ratio corresponds to r/[union(n, R)]. The P-value and the adjusted P-value (Benja-

mini-Hochberg correction method) are obtained with the hypergeometric probability 

distribution. Euclidean distance and Pearson’s correlation are also calculated to estimate 

the distance between each pair of toxicogenomic signatures. 

4 Conclusion and perspectives 

Our goal when designing TOXsIgN was to develop a new cross-species 

repository to allow scientists to submit the toxicogenomic signatures that 

they have published. Having been evaluated by experts during the peer-

review process, these should be very high quality data. As pointed out in 

the Nature editorial “Must try harder” (Must try harder, 2012), it is 

essential to publish the results of well-conducted experiments, whether 

they are positive, negative, or uninterpretable (absent). We believe 

TOXsIgN constitutes a new alternative for toxicological data storage, 

accessibility, and especially reusability and should thus contribute to the 

transparency of toxicological experiments. 

The success of this repository obviously depends on scientists‘ willing-

ness to produce data that fit the FAIR criteria. Inversely, the success of 

the FAIR consortium also depends on the availability of repositories 

such as TOXsIgN. We think that making raw data available to the com-

munity may be considered an insufficient response, in view of the com-

munity’s demand for direct and easy access to analyzed and interpreted 

data. We propose that the same effort should be made to encourage 

scientists to upload toxicogenomic and toxicological signatures in TOX-

sIgN before submission of manuscripts for publication. A win-win 

situation could thus be reached for all parts, since submitted studies 

would benefit from enhanced visibility, while the community would take 
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advantage of a continually updated user-friendly resource allowing 

TOXsIgN repository to expand. 

On our side, we are currently integrating additional toxicogenomic 

signatures from other major toxicogenomics projects, such as CMAP, 

CEBS, diXa, and NIH LINCS (Lamb et al., 2006; Lea et al., 2017; 

Hendrickx et al., 2015; Duan et al., 2016). Likewise, we plan to make 

TOXsIgN compatible with other kinds of environmental agents, such as 

physical and biological factors. Altogether, we expect that this new 

resource can contribute significantly to risk assessment. 

In addition to serving as a public repository, TOXsIgN is also intended 

to be a warehouse for toxicogenomic and predictive toxicology tools. Its 

modular design facilitates the implementation of additional bioinformat-

ics modules relying on the deposited toxicogenomic signatures that will 

help investigators analyze and predict adverse effects of environmental 

factors relevant to their specific interests. 

The TOXsIgN database will remain under constant development to offer 

more tools and enhance user experience. We are currently developing 

prediction and prioritization systems for chemical toxicity but also a 

module to extract toxicogenomic signatures automatically from raw data, 

in our own workflow. Another potential aspect is the addition of social 

features in TOXsIgN to enable several investigators to work on the same 

data. Finally, we plan to incorporate the ISA framework (http://isa-

tools.org/), which provides rich descriptions of experimental metadata, to 

manage the TOXsIgN database and improve the FAIRness of available 

data. Together these efforts will improve TOXsIgN’s utility, making it a 

front-line resource relevant to a large audience, including toxicologists, 

biologists, epidemiologists, and environmental scientists in general. 
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