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Abstract 

Introduction: Drug transporters are now recognized as major actors of pharmacokinetics. 

They are also likely implicated in toxicokinetics and toxicology of environmental pollutants, 

notably pesticides, to which humans are widely exposed and which are known to exert 

various deleterious effects towards health. Interactions of pesticides with drug transporters are 

therefore important to consider. 

Areas covered: This review provides an overview of the interactions of pesticides with 

membrane drug transporters, i.e., inhibition of their activity, regulation of their expression and 

handling of pesticides. Consequences for toxicokinetics and toxicity of pesticides are 

additionally summarized and discussed.  

Expert opinion: Some pesticides belonging to several chemical classes, such as 

organochlorine, pyrethroid and organophosphorus pesticides, have been demonstrated to 

interact with various uptake and efflux drug transporters, including the efflux pump P-

glycoprotein and the uptake organic cation transporters (OCTs). This provides the proof of the 

concept that pesticide-transporter relationships merit attention. More extensive and systematic 

characterization of pesticide-transporter relationships, possibly through the use of in silico 

methods, is however likely required. In addition, consideration of transporter polymorphisms, 

pesticide mixture effects and realistic pesticide concentrations reached in humans, may help to 

better define the in vivo relevance of pesticide-transporter interactions in terms of 

toxicokinetics and toxicity.  
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Article highlights 

- Interactions of organic pesticides with drug transporters are important to consider owing to 

the major contribution of transporters to toxicokinetics and the well-established toxic effects 

of pesticides, to which humans are widely exposed. 

- Various pesticides belonging to diverse chemical classes, including organochlorines, 

pyrethroid and organophosphorus pesticides, can inhibit the activity of ATP-binding cassette 

or solute carrier drug transporters. Activities of the drug efflux pump P-glycoprotein and of 

the uptake organic cation transporter (OCT) 1 and OCT2 have notably been demonstrated to 

be impacted by pesticides.  

- Concentrations of pesticides that block in vitro transporter activities (in the 1-100 µM range) 

are commonly much higher than those reached in humans in response to environmental 

exposure, making the in vivo relevance of transporter inhibition unlikely for most of 

pesticides. 

- A limited number of pesticides has been shown to regulate expression of some drug 

transporters, notably in hepatic cells. 

- Pesticides can additionally be substrates for drug transporters, which may contribute to their 

toxicokinetics and may also govern their toxicity.  

- Overall, pesticides remain poorly characterized with respect to relationships with 

transporters. A more extensive and systematic characterization of the interactions of 

pesticides with drug transporters is consequently required. Polymorphisms in transporters, 



Acc
ep

ted
 M

an
us

cri
pt

pesticide mixture effects and the interplay between transporters and drug metabolizing 

enzymes constitute additional issues that warrant attention. 

1. Introduction

Drug transporters are plasma membrane proteins, implicated in the cellular uptake or efflux of 

xenobiotics. They belong to the solute carrier (SLC) or ATP binding cassette (ABC) 

transporter superfamilies [1]. Human SLC transporters are usually implicated in the uptake of 

drugs, through mediating facilitated diffusion or secondary active transport across the plasma 

membrane [2], whereas ABC transporters are efflux pumps, responsible for the primary active 

export of drugs out of cells, through their intrinsic ATPase activity [3]. Both SLC and ABC 

transporters are expressed at anatomical/histological sites important for xenobiotic 

disposition, including intestine, blood-tissue barriers like the blood-brain barrier, liver and 

kidney [4]. By this way, drug transporters play a major role in the different steps of 

pharmacokinetics, including absorption, distribution and hepatic and renal elimination [5, 6]. 

They may consequently influence drug efficacy as well as drug toxicity. Moreover, drug-

mediated inhibition of their activity can cause pharmacokinetic-based drug-drug interactions 

[7]. This has led drug regulatory agencies to edict guidances for the study of putative 

interactions of new molecular entities with clinically-relevant drug transporters [8]. 

In addition to drugs, environmental pollutants can interact with transporters, i.e., they 

inhibit and/or are handled by them [9, 10, 11], which may have consequences in terms of the 

toxicokinetics and toxicity of pollutants. Environmental chemicals may additionally regulate 

levels of transporter expression, i.e., they notably enhance transporter expression, which may 

in turn result in increased transport activity [12]. Among pollutants which have to be 
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considered for putative interactions with drug transporter activity and/or expression, chemical 

organic pesticides are likely major ones. Indeed, these compounds, defined as any chemical or 

mixture of chemical intended for preventing, destroying, repelling, or mitigating pests, and 

belonging to diverse chemical classes (See Table 1 for a schematic presentation of main 

classes of organic pesticides), are largely used for occupational (agriculture…) or domestic 

purposes, for notably their insecticide, herbicide, fungicide or rodenticide properties. They are 

consequently widely distributed in the environment and humans can be exposed to them in a 

major way, through the oral, dermal or pulmonary route. Such exposures are thought to 

promote the development of various pathologies, including cancers, neurologic diseases and 

endocrine disruption, owing to the diverse toxic effects of pesticides [13, 14]. In the present 

review, we have summarized the current knowledges about interactions of human drug 

transporters with organic pesticides, with special emphasis on possible consequences in terms 

of pesticide toxicokinetics and toxicity. 

 

2. Interactions of pesticides with ABC transporter activities 

2.1 Interactions with P-glycoprotein (P-gp) activity 

P-gp, encoded by multidrug resistance gene 1 (MDR1/ABCB1), was historically characterized 

as an efflux pump for various structurally-unrelated anticancer drugs [15], thus conferring 

multidrug resistance to cancer cells (See Table 2 for a summary of main drug transporters). P-

gp also handles many non-anticancer drugs like the cardiotonic drug digoxin. It is 

physiologically expressed at various blood-tissue barriers and in absorptive or excretory 

organs such as the gut, the liver and the kidney; by this way, P-gp plays a major role in 

pharmacokinetics [16].  

 Various pesticides, belonging to diverse classes, have been shown to inhibit human P-

gp activity. This has been mainly demonstrated through analyzing their effects on cellular 
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accumulation or efflux of radiolabeled or fluorescent reference P-gp substrates in P-gp 

expressing cells [17, 18]. The threshold of at least 50% inhibition of P-gp activity by 

pesticides used at 100 µM or 250 µM concentration can be retained for considering a 

pesticide as a P-gp inhibitor. Using this criteria,  the organochlorine insecticides chlordecone, 

heptachlor and heptachlor epoxide, the organophosphate insecticides azinphos-ethyl, 

chlorpyrifos, coumaphos, phosalone, chlorthiophos, dicapthon, parathion, diazinon and 

fenamiphos, the avermectins ivermectin, abamectin and emamectin benzoate and the 

fungicide clotrimazole have been identified as inhibitors of human P-gp [12, 17, 19, 20, 21, 

22, 23, 24]. Tetrachlorohydroquinone, a major metabolite of pentachlorophenol, as well as the 

insecticide hydramethylnon and the fungicide propiconazole and its metabolites, also block P-

gp-mediated transport [17, 25]. The dibenzoylhydrazines tebufenozide and methoxyfenozide, 

which exert their insecticide activity through permanent activation of the ecdysone receptor, 

constitute additional P-gp inhibitors; they decrease P-gp-mediated transport of the 

antiarrhythmic agent quinidine [26]. With respect to endosulfan, it was found to inhibit 

human P-gp in three studies [17, 21, 27], but not in two other studies [12, 20], which may 

reflect differences in the various P-gp activity assays used in these studies. The herbicides 

acetochlor, alachlor, metolachlor and metazachlor, unlike dimetachlor, propachlor and 

prynachlor, have also been described as P-gp inhibitors [28]. Half maximal inhibitory 

concentrations (IC50) are available only for a few pesticides inhibiting P-gp. In the study of 

Bain and al. [19], they range from 7.3 µM (hydramethylnon) to 229.8 µM (parathion). IC50 

values for P-gp inhibition by endosulfan, phosalone and propiconazole are however lower, 

i.e., around 3 µM [21]; similarly, avermectins block P-gp-mediated efflux at low 

concentrations, around 0.2-0.6 µM [24]. Other pesticides such as the carbamates aldicarb, 

aldoxycarb, aminocarb, carbaryl and propoxur, the dithiocarbamate maneb, the 

organophosphate pesticides mevinphos, dialifos and phosmet, the phenoxy herbicide 
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fluazifop-butyl and various pyrethroids (allethrin, bifenthrin, β-cyfluthrin, λ-cyhalothrin, β-

cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, fluvalinate, cis-permethrin, trans-

permethrin, resmethrin, tefluthrin and tetramethrin), failed to inhibit human P-gp activity to a 

significant extent [12, 17, 18, 19]. It was also the case for atrazine, paraquat, propiconazole, 

vinclozolin and the organochlorine insecticides 2,4’- dichlorodiphenyltrichloroethane (DDT), 

chlordane and toxaphene [12, 17], as well as for cyperquat [29], a bipyridil compound also 

known as 1-methyl-4-phenylpyridinium (MPP+), which has been used as an herbicide in the 

past. Additional organochlorine pesticides such as 4,4’-DDT, dieldrin, lindane, methoxychlor 

and mirex did not block human P-gp-mediated transport [17], whereas they inhibited that of 

mouse P-gp [11], suggesting inter-species differences with respect to interaction of P-gp with 

pesticides. 2,4’-DDT and 4,4’-DDT as well as their metabolite 

dichlorodiphenyldichloroethane (DDE) nevertheless decreased human P-gp ATPase activity 

[30]. For major classes of pesticides, the relative percentage of chemicals inhibiting drug 

transporters, including P-gp, as well as the total number of compound tested against 

transporter activity, according to published data, are indicated in Table 3.   

Transport of pesticides by human P-gp has been investigated through direct analysis of 

their cellular accumulation or efflux in P-gp-positive cells, and also by measuring the 

stimulation/modulation of P-gp ATPase activity, which constitutes an indirect argument for P-

gp-mediated transport. According to experimental data, there is only limited evidence for 

pesticides as substrates for the efflux pump (See Table 4 for a summary of pesticides handled 

by drug transporters). P-gp has been demonstrated to handle paraquat and thus protects 

against cytotoxicity induced by this pesticide [31, 32, 33, 34, 35], but may fail to contribute to 

the systemic pharmacokinetics of this herbicide in mice [36]. The avermectins ivermectin and 

selamectin are substrates for P-gp [37, 38], notably in mouse where the pump limits the brain 

penetration of ivermectin [39]. Endosulfan may be a weak substrate for P-gp [17]. The 
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organophosphate pesticide diazinon as well as rotenone have also been suggested to be P-gp 

substrates, because they stimulated P-gp ATPase activity, unlike dieldrin, endosulfan, 

ivermectin and maneb, without however inhibiting P-gp-mediated transport of rhodamine 123 

[20]. Dibenzoylhydrazine insecticides stimulated P-gp ATPase activity, but are in fact poorly 

transported by the pump [26]. P-gp ATPase activity is additionally stimulated by 

methylparathion, cypermethrin and fenvalerate [27], whereas P-gp seems to be not involved 

in resistance of intestinal Caco-2 cells to propoxur, thus likely discarding the hypothesis that 

the carbamate may be transported by the pump [40]. Propiconazole was also not handled by 

P-gp [25], as well as deltamethrin, cis-permethrin and trans-permethrin [41], the rodenticide 

anti-vitamin K warfarin [42] or the herbicide cyperquat/MPP+ [29, 43, 44].  

2.2 Interactions with multidrug resistance-associated protein (MRP/ABCC) activities 

MRPs constitute a group of ABC transporters, comprising nine members in humans. Seven of 

these nine MRPs, i.e., MRP1 (ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), MRP4 (ABCC4), 

MRP5 (ABCC5), MRP7 (ABCC10) and MRP8 (ABCC11), have been unambiguously 

demonstrated to transport drugs, especially anionic drugs [45]. MRP1 was historically the first 

identified MRP; it was initially characterized as an efflux transporter for anticancer drugs 

overexpressed in drug-resistant cancer cells. MRP1 was next demonstrated to exhibit a broad 

tissue distribution and to transport a wide range of xenobiotics, including anionic drugs and 

drug conjugates [46]. MRP2, like MRP1, primarily transports organic anions and is expressed 

in various tissues, especially in the liver, kidney and gastrointestinal tract [47]. MRP3 is 

present in several tissues, including the liver, where it is located at the sinusoidal pole of 

hepatocytes; it notably transports xenobiotics from the liver into the blood, for a secondary 

renal elimination.  MRP4 is notably expressed in the kidney and the liver and at the blood-

brain barrier. It has wide substrate specificity, including nucleoside analogues and antiviral 

drugs. MRP5 is almost ubiquitously expressed in human tissues. It effluxes a broad range of 
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natural and xenobiotic compounds such as cyclic GMP, antiviral compounds and cancer 

chemotherapeutic agents. MRP7 confers anticancer drug resistance [48], as well as MRP8, 

notably towards nucleoside analogs [49],  

 The avermectins abamectin, emamectin and ivermectin have been reported to inhibit 

MRP activity; the corresponding IC50 values are around 1.5-2.0 µM and have been determined 

through measuring MRP-mediated efflux of the dye glutathione methylfluorescein in human 

neuronal SH-SY5Y cells [24]. The fact that ivermectin inhibited MRP1, MRP2 and MRP3 

ATPase activities after stimulation by their respective activators [38] fully supports this 

conclusion. Whether ivermectin may be a good substrate for MRP1 remains however to be 

established, because conflicting data about this point have been reported [37, 38]. The 

pyrethroids allethrin and tetramethrin, unlike bifenthrin, β-cyfluthrin, λ-cyhalothrin, β-

cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, fluvalinate, cis-permethrin, trans-

permethrin, resmethrin and tefluthrin, were found to inhibit MRP activity in hepatoma MRP2-

expressing HuH-7 cells, with IC50 values around 40-50 µM [18]. The organochlorine 

pesticides endosulfan, chlordane, heptachlor and chordecone also blocked MRP-mediated 

efflux in HuH-7 cells, whereas 4,4’-DDT, 2,4’-DDT, dieldrin and lindane were without effect 

[12]. None of the chloroacetanilides acetochlor, alachlor, dimetachlor, metazachlor, 

metolachlor, propachlor and prynachlor interacts with MRP1 or MRP2; MRP1 was however 

demonstrated to transport an important intermediate of the acetochlor detoxification pathway 

[28]. MRP1 additionally handles the chloroacetanilide herbicide methoxychlor and confers 

resistance to the organophosphorus insecticide fenitrothion and the carbamate herbicide 

chlorpropham, suggesting that these two pesticides may also be substrates [50].  

2.3 Interactions with breast cancer resistance protein (BCRP/ABCG2) activity  

BCRP is an ABC transporter handling both anticancer drugs and non-anticancer drugs, like 

statins, as well as environmental chemicals like carcinogenic heterocyclic aromatic amines 
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[51] and endogenous compounds like urate [52]. It is expressed at blood-tissue barriers and in 

gut and excretory organs like liver and kidney. BCRP is also present in stem cells.  

 The organochlorine pesticides endosulfan, chlordane, heptachlor and chordecone 

inhibit BCRP efflux activity, whereas 4,4’-DDT, 2,4’-DDT, dieldrin and lindane are without 

effect [12]; 2,4’-DDT and 4,4’-DDT as well as their metabolite 

dichlorodiphenyldichloroethane (DDE) have nevertheless been reported to inhibit human 

BCRP ATPase activity [30]. The pyrethroids allethrin and tetramethrin, unlike bifenthrin, β-

cyfluthrin, λ-cyhalothrin, β-cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, 

fluvalinate, cis-permethrin, trans-permethrin, resmethrin and tefluthrin, have been found to 

inhibit BCRP activity, i.e., BCRP-mediated efflux of the fluorescent dye Hoechst 33342, with 

IC50 values around 40-70 µM [18]. The Hoechst H33342 accumulation assay also indicated 

that thirteen widely-used pesticidal active substances including the fungicides azoxystrobin, 

dimethomorph, dithianon and tolclofos-methyl, the benzidizamole carbendazim, the 

organophosphate pesticides chlorpyrifos and dimethoate, the herbicides chlormequat, 

diflufenican and ioxynil, the carbamates methiocarb and propamocarb and the sulfonylurea 

herbicide rimsulfuron are likely inhibitor of rabbit BCRP;  no such evidence was obtained for 

chlorpyrifos-methyl, epoxiconazole, imazalil (also known as enilconazole), glyphosate and 

thiacloprid [53]. BCRP was additionally found to transport the rodenticide warfarin [54], 

whereas ivermectin is unlikely to be a substrate for the pump [55], even if it inhibits its 

activity, with a rather low IC50 value (2.2 µM) [56].  

 

3. Interactions of pesticides with SLC drug transporter activities 

3.1 Interactions with activity of SLC drug transporters handling organic cations 

SLC drug transporters transporting organic cations mainly correspond to organic cation 

transporter (OCT) 1 (SLC22A1), OCT2 (SLC22A2) and OCT3 (SLC22A3), acting as 
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electrogenic and membrane potential-sensitive diffusional transporters, and to multidrug and 

toxin extrusion (MATE) protein 1 (SLC47A1) and MATE2-K (SLC47A2) (a functionally 

active isoform of MATE2), acting as electroneutral, sodium-independent and pH-dependent 

proton antiporters [57]. OCT1 and MATE1 are located at the sinusoidal and canalicular poles 

of hepatocytes, respectively, whereas OCT2 and MATE2-K are found at the basolateral and 

apical membranes of renal proximal tubular cells, respectively. OCT3 has a wide tissue 

distribution. OCT1, OCT2, MATE1 and MATE2-K handle cationic drugs, including 

metformin and oxaliplatin [58]. Endogenous compounds such as neurotransmitters are also 

transported by OCTs. 

With a threshold of at least 50% inhibition of transport activity when used at 100 µM 

for being considered as a transporter inhibitor, the organochlorine pesticides endosulfan, 

chlordane, heptachlor, dieldrin and lindane, unlike 2-4’-DDT, 4’-DDT and chlordecone, were 

found to inhibit OCT1 activity in human hepatoma HepaRG cells, with IC50 values of 0.9 µM 

(dieldrin) and 1.5 µM (lindane) [12]. The pyrethroids allethrin, imiprothrin, prallethrin and 

tetramethrin and the organophosphorus pesticides fenamiphos, fenitrothion, malathion, 

methyl parathion, parathion, phosmet, profenofos and propetamphos also blocked OCT1 

activity, as well as that of OCT2, in HEK293 cells overexpressing these transporters [59]; 

MATE1 activity was similarly inhibited by allethrin, tetramethrin, fenamiphos, phosmet and 

propetamphos [18, 59]. By contrast, bifenthrin, β-cyfluthrin, λ-cyhalothrin, β-cypermethrin, 

deltamethrin, esfenvalerate, fenpropathrin, fluvalinate, cis-permethrin, trans-permethrin, 

resmethrin and tefluthrin failed to impair activities of OCT1, OCT2 and MATE1. Phenothrin 

also did not interfere with OCT1 and OCT2 activities. None of pyrethoids or 

organophosphorus pesticides impair MATE2-K activity [18, 59]. Allethrin and tetramethrin 

IC50 values towards OCT1 activity, i.e., OCT1-mediated uptake of the OCT1 reference 

substrate 4',6-diamidino-2-phenylindole (DAPI), were around 2.6 µM and 4.9 µM, 
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respectively. These two pyrethroids, which also blocked OCT1-mediated uptake of the 

endogenous substrate dopamine, however failed to trans-stimulate OCT1 activity, indicating 

that they are unlikely to be substrates for OCT1 [18] (Table 4). Analysis of accumulation of 

these two pesticides into control (MOCK) HEK293 cells and OCT1-transduced HEK293 cells 

by liquid chromatography tandem-mass spectrometry (LC-MS/MS) fully supports this 

conclusion, through indicating similar levels of pesticides in control HEK293-MOCK cells 

and OCT1-positive counterparts (Fig. 1A). Allethrin and tetramethrin also similarly 

accumulated in MOCK- and OCT2-transduced HEK293 cells (Fig. 1A), thus discarding a 

transport of these two pesticides by OCT2. By contrast, OCT1-transduced cells displayed 

increased accumulation of the OCT1 reference substrate DAPI when compared to control 

MOCK-transduced HEK293 cells (Fig. 1B); in the same way, OCT2-transduced cells 

exhibited increased accumulation of the OCT2 reference substrate rhodamine 123 (Fig. 1B). 

Moreover, the OCT1 inhibitor verapamil failed to enhance allethrin and tetramethrin 

accumulation in OCT1-transduced HEK293 cells, whereas it markedly increased that of DAPI 

(Fig. 1). The OCT2 inhibitor amitriptyline also enhanced cellular level of rhodamine 123 in 

OCT2-transduced HEK293 cells, but not those of allethrin and tetramethrin (Fig. 1). Like 

allethrin and tetramethrin, fenamiphos and phosmet are not transported by OCT1 or OCT2 

(Table 4) [59]. By contrast, cyperquat/MPP+ has been demonstrated to be transported by 

human OCT1, OCT2, OCT3, MATE1 and MATE2-K [60, 61, 62, 63]. MPP+ concomitantly 

inhibits the transport of the mutagenic vital dye ethidium by OCT1 and OCT2 [64]. OCT2 

and MATE1, unlike OCT1 and OCT3, handle paraquat under its native N,N′-dimethyl-4,4′-

bipyridinium dichloride form, which harbors two cationic charges [65]. The monocationic 

radical form of PQ, coming from redox cycling with cellular diaphorases such as NADPH 

oxidase and nitric oxide synthase, has nevertheless been shown to be a substrate for mouse 

Oct3 [66].  
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3.2 Interactions with activity of SLC drug transporters handling organic anions 

There are two main families of SLC drug transporters handling organic anions. The first one 

corresponds to organic anion transporting polypeptides (OATPs/SLCOs), notably OATP1B1 

(SLCO1B1), OATP1B3 (SLCO1B3) and OATP2B1 (SLCO2B1) [67]; the second one is that 

of organic anion transporters (OATs), comprizing OAT1 (SLC22A6) and OAT3 (SLC22A8) 

[68]. OATP1B1 and OATP1B3 are specifically located at the sinusoidal pole of hepatocytes; 

OAT1 and OAT3 are present at the basolateral pole of proximal tubular cells, whereas 

OATP2B1 is more widely distributed.  Substrates for OATPs include anionic drugs and 

endogenous compounds, such as bile acids, bilirubin, prostaglandins and hormones, like 

thyroxine and steroid conjugates [69]. OATs transport anionic compounds, including drugs 

such as penicillins and cephalosporins, endogenous compounds such as estrone-3-sulfate and 

environmental contaminants such as perfluorooctanoic acid [70].  

 The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is a common substrate for 

human renal OAT1 and OAT3, but its transport by OAT1 is markedly greater than that by 

OAT3 [71]. The organochlorine pesticides endosulfan, chlordane, heptachlor, dieldrin, 

lindane, 2-4’-DDT, 4-4’-DDT and chlordecone failed to inhibit OATP activity in human 

hepatoma HepaRG cells [12]. With respect to pyrethroids, allethrin and tetramethrin inhibited 

OATP1B1 and OAT3 activities, and cis-stimulated that of OATP2B1 [18]. Similarly, 

imiprothrin and prallethrin, unlike phenothrin, cis-stimulated OATP2B1 activity and inhibited 

that of OAT3. By contrast allethrin and tetramethrin failed to alter in a major way activities of 

OATP1B3 and OAT1. Similarly, bifenthrin, β-cyfluthrin, λ-cyhalothrin, β-cypermethrin, 

deltamethrin, esfenvalerate, fenpropathrin, fluvalinate, cis-permethrin, trans-permethrin, 

resmethrin and tefluthrin did not impair OATP1B3 and OAT1 activities, as well as those of 

OATP1B1, OATP2B1 and OAT3 [18]. Regarding organophosphorus pesticides, OAT3 

activity was inhibited by fenamiphos, malathion and profenofos, but cis-stimulated by 
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metasystox, whereas dichlorvos, fenitrothion, methamidophos, methyl parathion, 

monocrotophos, parathion, phosmet, propetamphos and temephos were without effect [59]. 

No organophosphorus pesticide blocked OAT1.  Activity of OATP1B1 was inhibited by 

profenofos and temephos, whereas that of OATP2B1 was cis-stimulated by fenamiphos, 

malathion, parathion, phosmet and profenofos [59].  

 

4. Regulation of drug transporter expression by pesticides 

Pesticides have previously been shown to regulate expression of drug detoxifying proteins 

such as hepatic cytochromes P-450 (CYPs) [72, 73]. Indeed, pesticides are known activators 

of nuclear receptors like pregnane X receptor (PXR) and constitutive androstane receptor 

(CAR) [74], acting as xenobiotic-sensing receptors regulating expression of CYPs. By this 

way, several pesticides among organophosphate chemicals, pyrethroids, carbamates, 

organochlorines insecticides and phenylurea compounds up-regulated CYP3A4 and CYP2B6 

expression in hepatocytes [73]. Drug transporters are also targets for nuclear receptors in 

human and/or rodent cells [75]. Indeed, PXR activation induces expression of P-gp in 

intestinal cells [76]. It also enhances levels of MRP2 in primary human hepatocytes  [77], 

MRP3 in human hepatoma HuH-7 cells  [78], Bcrp in mouse Sertoli cells [79] and OCT1 in 

chronic myeloid leukemia cells [80]. CAR additionally up-regulates P-gp in CAR-transfected 

hepatoma HepG2 cells [81] and intestinal LS174 cells [82]. CAR is also implicated in 

regulation of MRP2 in primary human hepatocytes [77], Bcrp in mouse and rat brain 

capillaries [83] and Mrp4 in mouse liver [84]. Another nuclear receptor, i.e., the farnesoid X 

receptor (FXR), increases hepatic expression of MRP2 [77] and of bile salt export pump 

(BSEP/ABCB11) [85], a canalicular hepatic transporter involved in biliary acid elimination.  

Pesticides activating drug sensing receptors are consequently susceptible to induce 

expression of drug transporters. In agreement with this hypothesis, the organochlorine 
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insecticides chlordane, heptachlor, dieldrin, lindane, 2,4’-DDT and chlordecone, which are 

known agonists of PXR [86], increased mRNA expression of P-gp, MRP2 and BCRP in 

hepatic HepaRG cells when used at 10 µM [12]. In the same way, chlorpyrifos, which notably 

activates PXR and CAR [86, 87], enhanced expression of P-gp and BCRP in human villous 

cytotrophoblast cells when used at concentration 10-100 µM [88]. The exact role played by 

PXR and/or CAR in this ABC transporter up-regulation in placental cells remains however 

unclear because the expression of PXR and CAR is very low in the human placenta [89]. PXR 

and CAR also contribute to the impact of fipronil on hepatic expression of transporters like 

MRP2 and MRP3 [90]. Nuclear receptors are additionally likely to participate to regulation of 

transporters (P-gp, BSEP, BCRP or OATP1B1) in primary human hepatocytes exposed to 

chemicals from the ToxCast320 chemical library, comprising many pesticide active 

ingredients [91]. Nuclear-receptor independent ways of drug transporter regulation by 

pesticides have also been described. Thus, ivermectin induced P-gp expression through 

mRNA stabilization in murine hepatocyte cell line [92]. The sinusoidal sodium-taurocholate 

cotransporting polypeptide (NTCP/SLC10A1), which is not known to be regulated by PXR or 

CAR, exhibited decreased mRNA expression in human hepatoma HepaRG cells exposed to 

organochlorines [12]. Finally, it is noteworthy that transporter induction may result from 

chronic exposure to pesticides. Thus, P-gp levels are increased in response to repeated 

exposure of intestinal Caco-2 cells to the organophosphophorus pesticide diazinon [93].  

 

5. Pesticides as modulators of drug transporter activity or expression: implications for 

pesticide toxicity 

5.1 Toxicity due to transporter activity inhibition by pesticides 

Inhibition of ABC or SLC drug transporter activities by a chemical (called the perpetrator) is 

susceptible to cause alterations of pharmacokinetics of a drug (called the victim) substrate for 



Acc
ep

ted
 M

an
us

cri
pt

the incriminated transporter, finally leading to drug toxicity (in the case of increased drug 

plasma concentration) or drug inefficacy (in the case of decreased drug plasma concentration). 

In addition, transport of endogenous substrates may be impaired, which may lead to toxicity, 

like cholestasis due to inhibition of the bile salt transporter BSEP [94], or endocrine 

disruption linked to altered elimination of hormones. For such effects, a key point to take into 

account is whether the perpetrator, whose inhibitory effects towards transporter activity are 

commonly initially demonstrated in in vitro assays, reaches in vivo concentrations efficient 

against the considered transporter. When the perpetrator is a drug, its in vitro IC50 value has to 

be confronted to its maximum unbound plasma concentration (I1) and to its maximal 

theoretical gastrointestinal concentration (I2), calculated as the oral dose in a volume of 250 

mL; according to 2012 FDA guidance for drug-drug interactions, transporter inhibition may 

be clinically achievable when I1/IC50≥0.1 and/or I2/IC50≥10 [95].  The application of such 

thresholds for pesticides may indicate that in vivo inhibition of drug transporter activity in 

response to environmental exposure to pesticides is very unlikely for most of them. Indeed, in 

vitro IC50 values of pesticides inhibiting transporter activity are usually in the 1-100 µM range 

(see above), whereas their plasma concentrations are often in the 1-100 nM range in humans 

[96, 97, 98]. The pesticide concentration may be even much lower when considering only the 

unbound free ones. This hypothesis is fully supported by the fact that at least some pesticides, 

such as dieldrin and atrazine, bind extensively to plasma proteins [99, 100]. Average oral 

daily intake of a pesticide in the food is additionally usually low, in the µg or ng range, 

making unlikely the fact that pesticide IC50 values against transporter activity may be reached 

in the gastrointestinal tract. Pesticide-drug interactions as well as inhibition of physiological 

substrate transport by pesticides may consequently be discarded, for most of pesticides found 

in the environment.  It is however noteworthy that humans are often exposed to mixtures of 

pesticides or to pesticides and other environmental contaminants, whose inhibitory effects 
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towards transporters may be additive or synergic. This may result in in vivo inhibition of 

transporters in response to exposure to chemical mixtures, even if concentration of each single 

pesticide of the mixture is low. The fact that binary mixtures of pesticides, including diazinon, 

have been shown to exhibit synergistic inhibition of P-gp [21] likely supports this hypothesis. 

It is also noteworthy that pesticide metabolites may cause transporter inhibition. This may be 

hypothesized to add or synergize with transporter inhibition triggered by the parental 

pesticide. Examples of pesticide metabolites acting against transporters correspond to 

hydroxylated metabolites of propiconazole, active against P-gp [25], and to chlorpyrifos oxon, 

which inhibits drug labelling of P-gp and stimulates its ATPase activity, in contrast to 

parental chlorpyrifos  [101].  

5.2 Toxicity due to transporter expression changes caused by pesticides  

Regulation of drug transporter expression by pesticides, i.e., induction or repression, can 

theoretically result in enhanced or decreased transport of drugs or endogenous substrates, 

which may in turn alter pharmacokinetics and/or toxicity.  One key point to consider is that 

environmental exposure to pesticides has to result in in vivo pesticide level sufficient for 

triggering transporter regulation, which may be unlikely owing to the relative low 

concentrations of pesticides reported in humans exposed to these chemicals, as already 

discussed above.  Moreover, it is noteworthy that whether transporter expression modulation 

may result in clinically-significant alteration of drug transporter activity remains to be 

formally established. In fact most, if not all, clinical drug-drug interactions in relation with 

transporters are linked to transporter activity inhibition by the drug perpetrator, and not to 

altered transporter expression [7, 102]. The only example is perhaps that of therapeutic 

proteins like tocilizumab, a humanized monoclonal antibody against the interleukin-6 

receptor. Tocilizumab is thought to restore normal expression of transporters, including P-gp, 
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repressed by IL-6 in inflammatory patients, which may be the source of drug-drug 

interactions [103].  

 

6. Pesticides as substrates of drug transporters: implications for toxicokinetics and 

toxicity of pesticides  

6.1 Implications for toxicokinetics 

Handling of pesticides by ABC and/or SLC transporters is likely to contribute to the different 

steps of the disposition process, i.e., intestinal absorption, drug disposition, notably across the 

blood-tissue barriers like the blood-brain barrier, and hepatic and renal elimination. Owing to 

the well-established drug transporter-drug metabolizing enzymes interplay [104], it may also 

influence pesticide metabolism. In this context, it is noteworthy that some pesticides such as 

organochlorine insecticides have historically been considered as lipophilic chemicals, which 

freely diffuses across the plasma membrane according to their concentration gradient, thus 

ruling out any major role for drug transporters. This assertion may now be questioned by the 

putative handling of some pesticides by ABC transporters, notably P-gp and BCRP. Indeed, 

these ABC transporters are present at the apical pole of intestinal cells, where they actively 

expel their substrates into the digestive lumen, thus preventing their absorption [105]. 

Handling of lipophilic pesticides by ABC transporters like P-gp and BCRP may therefore 

theoretically limits their intestinal absorption. Moreover, the concentration of pesticides in the 

gastrointestinal lumen is believed to be low, as already discussed above, which precludes any 

saturation of the ABC efflux pumps. Such lipophilic pesticides may therefore behave as class 

2 compounds in the biopharmaceutics drug disposition classification system (BDDCS) [106]. 

Class 2 drugs are highly permeable, so they will generally be able to enter enterocytes by 

passive diffusion, unaided by uptake transporters. However, due to low solubility limiting 

luminal concentration, they are unlikely to saturate efflux transporters. Consequently, class 2 
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compounds can be pumped out of enterocytes, which can influence bioavailability and 

absorption rate. Pesticides exhibit limited luminal concentration, like class 2 drugs, even if 

this probably reflects the low dairy intake of pesticides, and not a poor solubility, as for class 

2 drugs. Transport of pesticides by ABC pumps may additionally be implicated in reduced 

brain penetration of pesticides, through P-gp- and BCRP-mediated efflux into the lumen of 

brain capillary. The fact that silencing of P-gp led to a 100-fold increase of ivermectin 

distribution into the central nervous system of transgenic mice fully supports this assertion 

[39].  

6.2 Implications for toxicity  

Handling of pesticides by transporters may decrease or increase their toxicity, depending on 

the nature of transport. Thus, efflux by ABC transporters out of cells is expected to result in 

reduced intracellular accumulation of pesticides, and by this way, in decreased toxic effects. 

This is illustrated by the fact that P-gp expression confers resistance to paraquat, through 

stimulating its cellular export out of cells [32].  By this mechanism, P-gp notably protects 

against paraquat-induced toxicity in human and mouse proximal tubule cells [31]. 

Interestingly, the ABC transporter MRP1 may also confer resistance to paraquat; this may be 

due to inhibition of apoptosis caused by the pesticide [107]. MRP1 also decreased toxicity of 

fenitrothion, chlorpropham and methoxychlor in MRP1-transfected cells and protects 

seminiferous tubules from methoxychlor-induced damage [50]. Overexpression of ABC 

transporters has similarly been shown to confer resistance to pesticides in insect cells [108]. 

Transport of pesticides by ABC transporters at blood-tissue barriers, notably at the blood-

brain barrier, also contributes to protect these tissues, notably the central nervous system, 

from pesticide toxicity, as already demonstrated for P-gp and neurologic toxicity of 

ivermectin [39]. In the same way, P-gp may play the same protective role towards pesticides 

at the placental barrier.  
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Handling of pesticides by drug transporters such as SLC transporters may also result 

in decreased toxicity of pesticides. Thus, mouse Oct3 mediates cellular entry of paraquat, but 

only under its reduced monovalent cation form [66]. Because Oct3 is mainly expressed by 

non-dopaminergic cells in the nigrostriatal region, this Oct3-mediated transport of paraquat 

contributes to reduce its accumulation in dopaminergic neurons; this highlights a buffering 

capacity by non-dopaminergic cells, which indirectly protects dopaminergic neurons from 

toxicity of paraquat [66]. Whether SLC transporters may, by contrast, favor toxicity of 

pesticides through increasing their intracellular accumulation remains yet unknown. Such a 

toxicity caused by SLC-transporter mediated uptake of chemicals has nevertheless already 

been demonstrated for other environmental contaminants such as the microcystin congeners. 

These compounds, produced by cyanobacteria, use OATP1B1 and OATP1B3 to enter into 

cells and, therefore, specifically target OATP1B1- or OATP1B3-expressing cells [109]. Such 

an OATP-mediated uptake is consequently responsible for the selective hepatic toxicity of 

microcystins [110].  

 

7. Conclusion 

Various reports have indicated that pesticides belonging to diverse pharmacological/chemical 

classes can interact with drug transporters. Most of these studies described inhibition of ABC 

or SLC drug transporter activities by pesticides; only a few of them concerns the handling of 

pesticides by transporters or the regulation of transporter expression by pesticides. 

Importantly, most, if not all, pesticides required concentrations in the µM range for inhibiting 

transporter activities; such concentrations are much higher than pesticide concentrations (in 

the nM range or less) commonly observed in humans exposed to environmental pesticides. 

Pesticides are therefore unlikely to cause pesticide-drug interaction based on drug transport 

alteration in humans. In the same way, putative pesticide-mediated alteration of endogenous 
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substrate transport and possible deleterious consequences in response to environmental 

exposure may probably be discarded. By contrast, for pesticides recognized as substrates, 

transporters may be implicated in their toxicokinetics and their toxicity towards human health.   

 

8. Expert opinion 

Drug transporters are now considered as major actors of pharmacokinetics [7], which fully 

justify the study of drug-transporter interactions during the development of new molecular 

entities by pharmaceutical companies. Data reported above unambiguously indicate that some 

pesticides also interact with transporters, i.e., they can inhibit their activity, regulate their 

expression or be themselves substrates. This provides proof of concept that transporters 

should be considered when studying the toxicokinetics and toxicity of pesticides in humans. 

For transporter inhibition, the concentrations of pesticides in vitro blocking transporter 

activities have however to be confronted to the levels of unbound pesticides reached in 

humans in response to environmental exposure, in order to precise the in vivo relevance of  

such transporter inhibitions. Indeed, in most cases, the pesticide concentrations required to 

inhibit transporter may probably be much higher than pesticide blood concentrations reached 

in exposed humans. This likely discards any in vivo transporter inhibitions in response to 

environmental exposure to pesticides. In the same way, the in vivo relevance of the cis-

stimulation of some transporter activities by certain pesticides remains to be clarified.  

Chemical pesticides remain much less studied than drugs with respect to interactions 

with transporters, with no or only limited data available for most pesticides. Further studies 

are therefore required to characterize pesticide-transporter interactions in a more extensive 

and systematic manner and to determine their possible implications in deleterious effects of 

pesticides towards human health. To do this, the use of high-throughput assay panels for 

human drug transporters may be welcome. Such assays, mainly based on fluorescent probes 
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substrates for P-gp, MRPs, BCRP, OATPs, OATs and OCTs [111, 112], are fully applicable 

to large series of compounds tested at various concentrations and permit to reduce analysis 

costs. These functional assays may additionally provide structure-activity information, which 

may be useful for modeling quantitative structure-activity relationships (QSAR) with respect 

to interactions with transporters. Such QSAR studies may help to in silico predict inhibition 

of transporters by pesticides and/or handling of pesticides by transporters. QSAR approaches 

have already been applied with success to drug-transporter interactions, including those 

related to P-gp [113], MRP2 [114], BCRP [115], OCT1 [116], OATP1B1/1B3 [117] and 

OAT1/OAT3 [118]. Interestingly, molecular descriptors associated with OCT1 inhibition by 

pyrethroids have been determined and combining pairwise some of these descriptors allow to 

graphically and successfully predict interactions of imiprothrin, phenothrin and prallethrin 

with OCT1, OCT2, OATP2B1, OAT1 and OAT3 [18]. Besides, or together with QSAR 

studies, molecular docking analyses may constitute a valuable approach for predicting 

interaction of pesticides with transporters, as already established for drugs [119]. Overall, the 

application to pesticides of in silico tools developed for characterizing membrane 

permeability and transporter interactions with drugs, may represent a promising way, 

extending data and methods initially focused on drugs to the pesticide area. The graphical 

BOILED-Egg/SwissADME online method, based on lipophilicity and polarity and originally 

designed for drugs [120], has thus permitted to predict intestinal absorption and brain 

penetration of a large set of pesticides (n = 338) belonging to various chemical classes [121]. 

Genes encoding drug transporters are well-known to exhibit polymorphisms, which 

may have functional consequences, i.e., some genetic variants may display increased or 

decreased transport activity [122]. Such transporter polymorphisms concern most, if not all, 

drug transporters, including P-gp, BCRP, OATPs, OATS and OCTs. They are thought to be 

responsible for population-specific differences in drug transport and considerable inter-
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individual variation in physiology and pharmacotherapy [123]. In the context of 

environmental exposure to pesticides, such transporter polymorphisms may have to retain 

special attention. Indeed, they may result in inter-individual variation in toxicokinetics and 

toxicity of pesticides and may thus contribute in a notable way to individual susceptibility to 

these environmental pollutants. For example, subjects with genetic variants of ABCB1 gene 

associated with low P-gp activity may have enhanced intestinal absorption and brain 

penetration of pesticides, by reduction of  P-gp-mediated efflux of the chemicals at the 

intestinal and blood-brain barriers; such subjects may therefore be more susceptible to toxicity 

of pesticides. This hypothesis is fully supported by the fact that exposure to commonly used 

pesticides, specifically organochlorine and organophosphate insecticides, and the presence of 

variant ABCB1 genotypes at two polymorphic sites, jointly increase the risk of Parkinson’s 

disease [124].  

 The fact that pesticides are often used as mixtures of enantiomers has additionally to 

be taken into account when considering drug transporters and pesticides. Indeed, the 

stereoselectivity of chiral drug transport is well-established [125] and enantiomers of 

pesticides may therefore differentially interact with transporters. The handling of pesticides 

by SLC transporters distinct from main drug transporters, such as the L-type  amino acid  

LAT1/2 (SLC7A5/SLC7A8) transporter or the dopamine transporter (DAT/SLC6A3), which 

handles glyphosate [126] or paraquat [66], respectively, also merits attention. In the same 

way, the molecular nature of the membrane transporters responsible for the established 

transepithelial transport of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) [127] 

and of the pyrethroids deltamethrin, cis-permethrin and trans-permethrin [41] across intestinal 

Caco-2 cells remains to be determined. The functional interplay between drug-metabolizing 

enzymes and transporters in pesticide absorption and disposition has additionally to be 

considered, as already done for drugs [128]. This interplay may notably correspond to 
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preferential handling of pesticide metabolites by transporters, which suggests that pesticide 

metabolites may have to be investigated as potential transporter substrates and/or inhibitors. 

Additive or synergic effects towards transporters of pesticides in mixture with other pesticides 

or environmental contaminants constitute another important issue to apprehend. Finally, data 

about handling of pesticides by drug transporters may help to ameliorate the relevance and the 

accuracy of physiologically-based pharmacokinetic  (PBPK) models, which represent 

promising approaches for pesticide risk assessment in humans [129, 130].  
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Legend to figure 

Figure 1. Accumulation of the pyrethroids allethrin and tetramethrin in OCT1- and OCT2-

transfected HEK293 cells 
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(A) HEK293 cells transduced with MOCK (HEK-MOCK), OCT1 (HEK-OCT1) or OCT2 

(HEK-OCT2) were incubated with 100 µM allethrin or 100 µM tetramethrin in the absence 

(untreated) or presence of the OCT1 inhibitor verapamil (50 µM) or the OCT2 inhibitor 

amitriptyline (100 µM) for 5 min at 37°C. Intracellular accumulations of the pyrethroids were 

next determined by LC-MS/MS analysis and normalized to total protein content. (B) Cellular 

accumulation of the OCT1 substrate DAPI and the OCT2 substrate rhodamine 123 was 

determined as previously described [18], in the absence (untreated) or presence of verapamil 

or amitriptyline. (A, B) Data are the means ± SEM of three independent experiments. 

F.A.U., fluorescence arbitrary unit. ***, p<0.001 (ANOVA followed by Newman-Keuls post-

hoc test). 
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Table 1.Overview of the main classes of organic pesticide 

Pesticide class Pesticide examples 
Main type of 

activity 
Mechanism of 

action 
Comments 

Organophosphorus 
compounds 

Chlorpyrifos, malathion, 
diazinon, dichlorvos 

Insecticide 
Irreversible 

acetylcholinesterase 
inhibition 

Among the most used 
insecticides 

Carbamates Aldicarb, carbaryl, propoxur, Insecticide 
Reversible 

acetylcholinesterase 
inhibition 

N-methylcarbamates for the 
majority 

Pyrethroids 
Allethrin, deltamethrin, 

resmethrin, cypermethrin 
Insecticide Voltage-sensitive sodium 

channel disruption 
Among the most used 

insecticides 

Organochlorine 
compounds 

DDT, chlordane, aldrin, 
endrin, dieldrin, heptachlor, 
lindane, mirex, chlordecone 

Insecticide 

Alteration of the 
electrophysiological 

properties of cell 
membranes (particularly 

nerve axons) 

Banned from most 
countries, but exposure 
continues due to high 

remanence of 
organochlorine pesticides 

Rotenoids Rotenone Insecticide mitochondrial respiratory 
chain inhibition 

Nicotine and 
neonicotinoids 

Nicotine, imidacloprid, 
thiacloprid, acetamiprid, 

nitenpyram 
Insecticide Activation of the nicotinic 

acetylcholine receptor 

Formadinines Chlordimeform, amitraz Insecticide 

Activation of octopamine 
receptor (insects) or α2-

adrenergic receptor 
(mammals) 

Phenylpyrazoles Fipronil Insecticide Blockage of GABAA-gated 
chloride channel 

Avermectins Ivermectin 
Insecticide/ 
antiparasitic 

Activation of glutamate-
dependent chloride 

channels 

Miscellaneous 
N,N-diethyl-3-

methylbenzamide (DEET) 
Insect repellent Inhibition of olfactory 

receptors of insecticides 
30% of the USA population 

uses DEET every year 

Phenoxy 
Compounds 

2,4-dichlorophenoxyacetic 
acid (2,4-D), 2,4,5-

trichlorophenoxyacetic acid 
(2,4,5-T), 4-chloro-2- 

methylphenoxyacetic acid 
(MCPA),  fluazifop-butyl 

Herbicide Chemical analogs of auxin 
Among the most used 

herbicides 

Bipyridil compounds Paraquat, diquat Herbicide Photosynthesis inhibition 
Among the most commonly 

used herbicides 

Chloroacetanilides 
Alachlor, acetochlor, 

metolachlor, methoxychlor 
Herbicide 

Inhibition of cyclisation 
enzymes, part of the 
gibberellin pathway 

Triazines Atrazine, simazine, propazine Herbicide Inhibition of 
photosynthesis 

Phosphonomethyl 
amino acids 

Glyphosate, glufosinate Herbicide 
Inhibition of amino acid 

synthesis 
Most widely used 

herbicides worldwide 

Phenylurea Diuron Herbicide Inhibition of 
photosynthesis 

Chloroalkylthiol 
fungicides 

Captan, folpet Fungicide Thiol reactant inhibiting 
respiration 

Dithiocarbamates 
Maneb, ziram, zineb, 

mancozeb, thiram 
Fungicide Release of carbon disulfide 

Often associated with metal
cations 

Halogenated 
benzonitrile 

Chlorothalonil Fungicide 

Reduction of fungal 
intracellular glutathione 
molecules to alternate 

forms 

Among the most used 
fungicide in the USA 

Benzimidazoles Benomyl, carbendazim Fungicide Inhibition of fungal growth 
by tubulin binding 

Azols 
Clotrimazole, propiconazole, 
Epoxiconazole, enilconazole 

Fungicide 
Inhibition of lanosterol 14 

α-demethylase 

Dicarboximides Vinclozolin Fungicide Lipid synthesis inhibition Banned in several countries 
Coumarines/ 

indan-1,3 -dione 
derivatives 

Warfarin, diphacinone Rodenticide Anticoagulant/ 
Anti-vitamin K 
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Table 2. Classification of main drug transporters 

Transporter family Transporter Main expression 
Main type of 

substrates 

ABCB 
P-gp (ABCB1) 

Intestine, liver, kidney, 
blood-brain barrier 

Hydrophobic compounds 

BSEP (ABCB11) Liver Bile acids 

ABCC 

MRP1 (ABCC1) Ubiquitous 
Hydrophobic 

compounds, hydrophilic 
anions, conjugates 

MRP2 (ABCC2) Intestine, liver, kidney 
Hydrophilic anions, 

conjugates 
MRP3 (ABCC4) Liver, kidney Hydrophilic anions, 

conjugates 
MRP4 (ABCC4) Liver, kidney, blood-

brain barrier 
Nucleotides 

MRP5 (ABCC5) Ubiquitous Nucleotides 

ABCG BCRP (ABCG2) 
Intestine, liver, kidney, 

blood-brain barrier,  
stem cells 

Hydrophobic 
compounds, hydrophilic 

anions, conjugates 

SLCO 

OATP1B1 (SLCO1B1) Liver Organic anions 
OATP1B3 (SLCO1B3) Liver Organic anions 
OATP2B1 (SLCO2B1) Liver, intestine Organic anions 

SLC10A NTCP (SLC10A1) Liver Bile acids 

SLC22A 

OCT1 (SLC22A1) Liver Organic cations 
OCT2 (SLC22A2) Kidney Organic cations 
OCT3 (SLC22A3) Ubiquitous Organic cations 
OAT1 (SLC22A6) Kidney Organic anions 
OAT2 (SLC22A7) Liver Organic anions 
OAT3 (SLC22A8) Kidney Organic anions 

SLC47A 
MATE1 (SLC47A1) Liver, kidney Organic cations 

MATE2-K (SLC47A2) Kidney Organic cations 
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Table 3. Inhibitory effects of pesticides towards drug transporter activities according to 
organic pesticide classes. 

Transporter 

Percentage of inhibitory pesticides
a

(n = total number of tested pesticides)
Organophosphorus 

pesticides 
Organochlorine 

pesticides 
Pyrethroids Carbamates Chloroacetanilides 

P-gp 
76.9 % (n=13) 

 [17, 19] 
30.8 % (n=13)

[12, 17] 
0.0 % (n=14)

[18] 
0.0 % (n=6) 

[17] 
57.1 % (n=7) [28] 

MRP1/MRP2 No data 50.0 % (n=8) [12] 
14.3 % (n=14)

[18] 
No data 0.0 % (n=7) [28] 

BCRP 66.7 % (n=3) [53] 50.0 % (n=8) [12] 
14.3 % (n=14)

[18] 
100 % (n=2) 

[53] 
0.0 % (n=7) [28] 

OCT1 61.5 % (n=13) [59] 62.5 % (n=8) [12] 
23.5 % (n=17)

[18] 
No data No data 

OCT2 61.5 % (n=13) [59] No data 
23.5 % (n=17) 

[18] 
No data No data 

MATE1 23.1 % (n=13) [59] No data 
14.3 % (n=14) 

[18] 
No data No data 

MATE2-K 0 % (n=13) [59] No data 
0 % (n=14) 

[18] 
No data  No data 

OATPs 

15.4 % 
(OATP1B1) 

0.0 % 
(OATP2B1) 
(n=13) [59] 

0.0 % (Total 
OATP activity) 

(n=8) [12] 

14.3 % 
(OATP1B1), 

0.0 % 
(OATP1B3) 
(n=14) [18] 

No data No data 

OAT1 0 % (n=13) [59] No data 
0.0 % (n=17) 

[18] 
No data No data 

OAT3 23.1 % (n=13) [59] No data 
23.5 % (n=17) 

[18] 
No data No data 

aPesticide concentrations are usually set at 100-250 µM 
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Table 4: Pesticides substrates for drug transporters 

Transporter Substrate Not substrate

P-gp 
Paraquat [31], ivermectin [38, 39], 
endosulfan (weak substrate) [17] 

Propiconazole [25], deltamethrin [41], cis-
permethrin [41], trans-permethrin [41], 

warfarin [42], cyperquat/MPP+ [29] 

MRP1 
Methoxychlor [50], fenitrothion [50], 
chlorpropham [50], ivermectin [38] 

BCRP Warfarin [54] Ivermectin [55]

OCT1 Cyperquat/MPP+ [60] 
Allethrin (present study), tetramethrin 

(present study), paraquat [65], fenamiphos 
[59], phosmet [59] 

OCT2 Cyperquat/MPP+ [60], paraquat [65] 
Allethrin (present study), tetramethrin 

(present study), fenamiphos [59],  
phosmet [59] 

OCT3 Cyperquat/MPP+ [61] Paraquat [65] 
MATE1 Cyperquat/MPP+ [62], paraquat [65] No data 

MATE2-K Cyperquat/MPP+ [63] No data

OAT1 
2,4-dichlorophenoxyacetic acid 

 (2,4-D) [71] 
No data 

OAT3 
2,4-dichlorophenoxyacetic acid 

(2,4-D) [71] 
No data 




