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Abstract 

Purpose. Minimal invasive trans-catheter aortic valve implantation (TAVI) has emerged as a treat-

ment of choice for high-risk patients with severe aortic stenosis. However, the planning of TAVI pro-

cedures would greatly benefit from automation to speed up, secure and guide the deployment of the 

prosthetic valve. We propose a hybrid approach allowing the computation of relevant anatomical 

measurements along with an enhanced visualization. 

Methods. After an initial step of centerline detection and aorta segmentation, model-based and statis-

tical-based methods are used in combination with 3D active contour models to exploit the complemen-

tary aspects of these methods and automatically detect aortic leaflets and coronary ostia locations. Im-

portant anatomical measurements are then derived from these landmarks. 

Results. A validation on 50 patients showed good precision with respect to expert sizing for the as-

cending aorta diameter calculation (2.2 +/- 2.1 mm), the annulus diameter (1.31 +/- 0.75mm), and both 

the right and left coronary ostia detection (1.96 +/- 0.87 mm and 1.80 +/- 0.74 mm, respectively). The 

visualization is enhanced thanks to the aorta and aortic root segmentation, the latter showing good 

agreement with manual expert delineation (Jaccard index: 0.96 +/- 0.03). 

Conclusions. This pipeline is promising and could greatly facilitate TAVI planning. 
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1 Introduction 

Minimal invasive trans-catheter aortic valve implantation (TAVI) is an emerging technique 

that is especially suitable for high-risk patients with severe aortic stenosis, but that has also 

the potential to be applied to lower surgical-risk patients [1]. However, exact targeting re-

mains very important, since complications can appear due to a misplaced valve. Adverse ef-

fects arising from misplaced valve can be reduced with improved patient selection and aortic 

sizing. Specifically, it is crucial to decide the suitable type and dimensions of prosthesis based 

on the aortic root geometry. For this type of pre-procedural planning, computed tomography 

angiography (CTA) scan has been accepted as the modality of choice. 

Using CTA, a number of studies have proposed imaging pipelines to extract the aortic valve 

anatomical parameters and derived clinical measurements. While solutions using manual in-

teractions have been first proposed to guide TAVI planning (e.g. [2,3]), automatic planning 

can reduce the inconsistency in sizing due to inter-observer variability [4]. From the TAVI 

planning, many steps can be independently decomposed, from the segmentation of the thorac-

ic aorta to the automatic detection of key anatomical landmarks. For the thoracic aorta seg-

mentation, multi-atlas-based segmentation with Hough transform have been proposed in non-

contrast CT [5] or with 3D level set approaches [6] in CTA. For aortic root segmentation, 3D 

normalized cuts [7,8] have been used. Korosoglou et al. [9] used a model-based segmentation 

approach to highlight the usefulness of software-assisted pre-procedural assessment, while 

Gao et al. [10] automatically segment the aortic root following an atlas-based approach. 

Automatic detection of landmarks is essential for TAVI planning but often laborious to ex-

tract. From these measurements, annulus radius and orientation, and distance from annulus 

plane to right and left coronary ostia can be derived. Zheng et al. [11,12] proposed a learning-

based approach to automatically detect major landmarks with marginal space learning based 

on the C-arm CT. Model-based approach has been followed by Waechter et al. [13] to locate 



coronary ostia and annulus plane. Ionasec et al. [14] also proposed a valve model to detect 

landmarks but their work was based on 4D CT. Automatic measurements of aortic annulus 

diameters has been proposed with 3d transesophageal echocardiography (TEE) [15] or ultra-

sound images [16–18]. Grbic et al. [19] employed robust machine learning algorithms to es-

timate the valve model parameters from non-contrast CT including information on valve leaf-

lets and calcium. Segmentation of aortic valve from TEE using an improved probability esti-

mation and continuous max-flow approach has also been proposed [20], or using a combina-

tion of shape-based B-Spline explicit active surface and generalized Hough transform [21]. 

From the literature it has been demonstrated that automated landmarks detection allows 

standardizing the planning, reducing inter-observer variation and reducing sizing time. While 

specific aspects of the TAVI planning have been mostly independently studied so far, and 

often with imaging modalities that are not adopted by the cardio-vascular community, there is 

no standardized automated solution that encompass the different steps that compose the TAVI 

planning, i.e. the segmentation of the thoracic aorta, the extraction of aorta centerlines, the 

aortic root segmentation and the major anatomical landmarks detection. The purpose of this 

work is to propose a complete TAVI planning tool based on an image processing pipeline that 

exploits the complementary aspects of state-of-the-art detection approaches. 

2 Material and methods 

The proposed image-processing pipeline consists of 4 main steps and is depicted in Fig. 1. 

The input data is the pre-procedural electrocardiographic (ECG)-gated CTA, widely adopted 

by cardio-vascular surgeons. It is loaded into the EndoSize® software [22], a CE- and FDA-

marked validated medical device for planning and sizing of endovascular procedures. After 

the initial centerline extraction and aorta segmentation, a method for automatic detection of 

aortic leaflets is presented, as well as a method for the automatic detection of coronary artery 



ostia. For enhanced 3D visualization and landmarks adjustment, we also propose a 3D seg-

mentation of the aortic root. The final step includes a refinement of anatomical landmarks 

position. Each step is independently presented and validated using a large dataset of patients 

operated for TAVI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Workflow of segmentation/detection within the TAVI planning software 



2.1 Step #1 & step #2 - Centerline extraction & aorta segmentation 

The only required user interaction is the placement of one seed point approximatively set in 

the aortic root. A volume of interest (VOI) is set in order to keep the ascending aorta, the aor-

tic arch and the descending aorta, using volumes resolution of 1x1x1 mm. Then, after a rough 

segmentation of the whole aorta using binary threshold (100 HU to 600 HU), a dynamic pro-

gramming approach is applied in the Hough space for localizing key center points in the aorta. 

We exploit here the 3-D tubular shape characteristic of the aorta, where appearance of the 

ascending and descending aortas in axial slices approximates a circular shape. The objective 

is to choose one point in the Hough accumulator of each axial image. A dynamic program-

ming approach is employed to find the optimal combination of points from the Hough accu-

mulators by taking both the center coordinates and the radius as input parameters. We finally 

used a fast-marching-based minimal path extraction to refine the centerline detection in case 

of errors. 

 

Fig. 2: Visualization of the different aorta levels 



Starting from the detected centerline, the aorta is also automatically segmented. As this step 

has already been presented in a previous paper [22], it will not be developed in detail here. 

This segmentation of the upper part of the aorta is mainly used for visualization purposes 

(Fig. 2.), but is also useful to determine the ascending aorta diameter, which is a key parame-

ter for TAVI planning. Min, max and mean diameter of each slice perpendicular to the center-

line are made available to the user. 

2.2 Step #3 - Global pose estimation 

The processing pipeline then focuses on the aortic root. From the final segmented aorta, its 

centerline, and the user seed point, a second VOI centered on the aortic root is derived with a 

tube mask of constant diameter (computed according to the maximum aorta diameter) along 

the centerline and smoothed using anisotropic diffusion. Then, the global pose of the aortic 

root was estimated following a model-based approach. Due to computation time constrain, a 

single low resolution atlas (average model) of the aortic root was constructed offline using 25 

volumes following the standard iterative methodology of atlas creation [23], resulting in a 

volume with both an average unbiased shape and average intensity (size 26x26x26, 2mm3 

isotropic resolution). Internal experiments were conducted and showed that from 25 patients, 

the accuracy of the global pose didn’t significantly change. Eight keypoints were positioned 

on patient’s images by an expert and warped into the atlas coordinate system: the left and 

right coronary ostia, the three aortic cusps leaflets and three seed points approximatively cor-

responding to the barycenter of the cusps. Then, the keypoints information are transferred to 

the patient coordinate system by affine intensity-based registration algorithm (metric: cross-

correlation, optimizer: Powell, isotropic scaling), where calcifications were masked out using 

a simple threshold (intensity > 800 HU). From the position, orientation, and scale of the aver-



age shape, we can infer a first rough estimation of the position of each of the 8 anatomical 

keypoints. 

2.3 Step #4 - Local landmarks detection & aortic root segmentation 

The 8 keypoints are further either refined or directly used as seed points under the guidance of 

their own specific detectors.  

 Step #4a – aortic root segmentation: Starting from 2mm diameter spheres initialized from 

seed points in the barycenter of the three cusps (computed from step #3), 3D deformable 

models were employed to accurately segment the aortic root by constraining smooth 

boundaries. Specifically, a 3D gradient vector flow snake [24] with a descent gradient op-

timizer was employed, with proper internal and external energy tuned to keep a smooth 

curvature along the cusps (alpha=0.1, beta=3, gamma=0.01, number of iterations=200). 

Combining these segmentations allows extracting the entire aortic root, and is useful to re-

move all unnecessary arterial structures (e.g. heart, coronary arteries) for proper visualiza-

tion. 

 Step #4b - leaflet position adjustment: Similar to hierarchical approaches, and using the 

positions initialized in step #3, the three aortic cusps leaflets are refined in a smaller 2cm 

diameter VOI. Three high resolution atlases (size 26x26x26, 0.6mm3 isotropic resolution) 

were constructed using the same learning database of 25 patients, and deformable registra-

tion (diffeomorphic demons’ algorithm, cross-correlation similarity metric, gradient descent 

optimizer, rigid registration initialization) was used to warp final landmark positions on the 

different patient local VOIs. 

 Step #4c – coronary ostia position adjustment: A training phase is necessary to learn the 

relationship between the image and the coronary ostia location. We used a combination of 

3D Haar-like features, histogram of gradient (HoG) and speeded up robust features (SURF) 



trained using a Support Vector Machine (gaussian kernel) on an external database of 100 

patients originally intended for thoracic endovascular aneurysm repair (TEVAR). Even if 

patients treated with TAVI have usually more calcifications than patients with TEVAR, no 

significant differences exist for coronary anatomy between both groups. The correct posi-

tion is automatically detected on the new volume by restraining the area of research in a 

smaller 2cm diameter VOI around the positions estimated from step #3. 

2.4 Step #5 - Landmarks position refinement 

To take advantage of all previous methods, results from the different steps were combined. 

Landmark positions found in step #4b and step #4c were further locally refined using the aor-

tic root segmentation from step #4a, which is well suitable to precisely detect boundaries. 

Specifically, landmarks were adjusted to the closest point of the 3D aortic root surface. Im-

portant TAVI measurements were then derived from these landmarks. The annulus plane was 

defined as the plane connecting the three leaflets. Given the annulus plane, the annulus to os-

tia distance was also computed for both coronary ostia. 

2.5 Evaluation 

Anonymized electrocardiogram-gated CTA scans (Siemens Healthcare, Munich, Germany) 

with resolution of 0.87x0.87x0.62 mm, 75 mL of contrast media, from 50 symptomatic pa-

tients (80 +/- 5 years old, 65% male) originally intended for pre-operative planning of TAVI 

at the Rennes University Hospital were systematically obtained during a 1 year period be-

tween 2015 and 2016. All patients had a tricuspid valve. All steps were independently evalu-

ated. Centerline detection was qualitatively assessed. To be correctly detected, a centerline 

has to include the ascending aorta, the aortic arch and the descending aorta and has to have all 

points within the aorta. For the aorta segmentation, we computed the maximum ascending 



aorta diameter, which is another important measure to derive from the planning. The aortic 

root landmarks detection was compared to a manual expert delineation throughout the pipe-

line to evaluate the influence of each step. Due to the high inter-observer variability, the same 

expert (an engineer but with a long background in TAVI planning) annotated the training and 

test patients. In addition to the position of the landmarks, the annulus radius and the annulus 

to ostia heights were also evaluated. Impact of each step was iteratively validated using a 

paired sample t-test. Finally, the accuracy of the aortic root segmentation was assessed by 

comparing the segmentation results with manual delineations using the Jaccard index. 

 

Fig. 3: Examples of centerlines extraction and aorta segmentation for 9 patients 



3 Results 

3.1 Centerline detection & aorta segmentation 

Aorta centerlines from 48 patients out of 50 were correctly extracted based on the initial seed 

point only (Fig. 3.). For the two remaining patients, very late contrast injections were noticed 

that highlight other neighboring structures. Qualitatively, aorta segmentations were also con-

clusive for the entire database (Fig. 3.), and an error of 2.2 +/- 2.1 mm was found when com-

paring the automatic maximum ascending aorta diameter with the expert sizing. 

3.2 Anatomical landmarks detection 

Landmarks detection showed very accurate results for the aortic leaflets detection, and accu-

rate results for the coronary ostia detection (Fig. 4.). Each additional step showed statistically 

lower errors than the previous step (p<0.05). Aortic leaflets detection showed error of 1.96 +/- 

0.84 mm, 2.34 +/- 0.78 mm and 1.23 +/- 1.12 mm for the right, left and non-coronary ostia, 

respectively. The annulus diameter, derived from the aortic leaflet detection and the center-

line, showed an error of 1.31 +/- 0.75 mm, while right and left coronary ostia heights showed 

errors of 1.96 +/- 0.87 mm and 1.80 +/- 0.74 mm, respectively. 

3.3 Aortic root segmentation 

The aortic root segmentation showed accurate results compared to manual delineations: aver-

age Jaccard index of 0.96 +/- 0.03, average false positive ratio of 4.0 +/- 2.3 % and an average 

false negative ratio of 0.6 +/- 0.2 %. 



 

Fig. 4: Difference (in mm) between automatic landmark detection and expert positioning at each step of the 

pipeline 

4 Discussion 

A TAVI planning tool with automatic measurements is presented that allows for simplified 

planning. One simple user interaction is needed to directly access the dedicated VOI and re-

trieve a list of key anatomical measurements, which considerably reduces user interactions 

compared to traditional TAVI sizing. In certain cases, and according to physician’s practice, 

slight adjustments might be necessary. The visualization is also simplified thanks to the aortic 

root segmentation, allowing the generation of additional visualization modalities such as 

valve close-up, half pipe or calcification view (Fig. 5.). The pipeline showed descent compu-

tation burden, with an average total processing time of less than 8s on a 3.0 GHz Quad Core 2 

CPU, totally compatible with clinical routine. The next step of the software includes the 

choice of access sites before the generation of a summarized sizing sheet. A set of commercial 

prosthetic aortic valve is then proposed to be able to choose the most suitable one. This step is 



of high importance because of the recent development of a large set of available valve pros-

thesis (e.g. [25]). A clinical study is currently under consideration to evaluate the time and 

accuracy obtained with/without the use of this automatic pipeline. 

 

Fig. 5: Visualization of the measurement step within the EndoSize® TAVI module 

The choice of using various approaches for detecting anatomical landmarks was driven by 

two main observations: first, model-based approaches may not be adapted for VOIs including 

arteries, as the registration is driven by the aortic root boundaries more than by arteries. Sec-

ond, even if supervised discriminative machine learning techniques are robust to different 

field-of-views and contrast injections, it is not as accurate when dealing with strong intensity 

differences (i.e. calcifications). Due to the high anatomical variability, our database of 100 

patients was not sufficient for this problem. For our aortic root segmentation method, active 

contour models are robust to noise and less sensitive to large intensity gaps than other image 

processing methods. Step #5 was therefore useful to constrain landmarks on the aortic root 

surface. The succession of steps was validated by systematically quantifying errors for each 

landmark and the derived measures. 



Compared to other studies, our current framework demonstrated similar accuracies, but pro-

poses a wide set of automatic measurement and visualization tools that no study has presented 

so far. While segmentations are difficult to compare due to database heterogeneity or metrics 

used, it is however possible to confront our landmark detection results with the literature. For 

aortic leaflets detection based on C-arm CT, Zheng et al. [11,12] achieved a mean detection 

error of 2.09 +/- 1.18 mm, and a 2.07 +/- 1.53 mm detection error for coronary ostia, which is 

very close from our results. Using pre-operative CT, Waechter et al. [13] obtained impressive 

accuracy for coronary ostia detection (error of 1.2 +/- 0.6 mm for the left ostia, 1.0 +/- 0.8 mm 

for the right ostia), however the validation is performed only on 20 patients and no results on 

centerline detection and ascending aorta segmentation is proposed. Elattar et al. [26] reported 

a 2.81 +/- 2.08 mm error between automatic landmarks detection and the reference landmarks, 

comparable with the inter-observer variability of 2.38 +/- 1.56 mm, while Liang et al. [27] 

reported a mean error of 0.69mm for aortic valve leaflets detection. Considering the high in-

ter-observer variability discussed in the work of Zhao et al. [4] and Elattar et al. [26], a TAVI 

sizing can be considered accurate enough with results below 3mm, which is the case in this 

study. 

This study suffers from some limitations. First, the manual delineation has been performed by 

a single surgeon, while intra- and inter-expert variability would have been informative. The 

on-going clinical study includes three surgeons of different experience level and will allow us 

to quantify those variabilities. Second, this workflow is well suitable for patients with a tri-

cuspid valve, and the lack of patients with bicuspid valves prevented us to train and validate a 

specific workflow. Finally, the set of parameters used for the different processing steps has 

been tuned and validated on clinical data from one single site, and could be not fully opti-

mized when experimented on CTA with different contrast injection protocols or resolution. 



5 Conclusion 

We proposed and evaluated a hybrid approach for TAVI planning allowing the computation 

of relevant anatomical measurements. After a minimal user interaction, it is possible to detect 

the aorta centerline, segment the aorta, detect key anatomical landmarks and segment the aor-

tic root in an automatic fashion. The first model-based pose estimation, the atlas-based leaflets 

detection, the statistical-based coronary ostia detection, and the automatic segmentation of the 

aortic root are suitable to directly access the dedicated VOI, propose a set of automatic meas-

urements and enhance the visualization of the aortic root. With an upcoming clinical evalua-

tion, the proposed pipeline is promising and could simplify TAVI planning. 
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