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Abstract. Treatment of nido-[1,2-(Cp*Ru)2(µ-H)2B3H7], 1 with five equivalents of Te powder 

led to the isolation of diruthenium pentalene analogue [(Cp*Ru){(Cp*Ru)2B6H14}(RuCp*)], 2 

and a metal indenyl complex [(Cp*Ru)2B2H6C6H3(CH3)], 3. The [(Cp*Ru)2B6H14] fragment in 2 

may be considered as a true metal-boron analogue of η5-η5-pentalene ligand (C8H6) and 

[(Cp*Ru)B2H6C6H3(CH3)] fragment in 3 is an analogue of η5-indenyl ligand. The solid state X-

ray structures were unambiguously determined by crystallographic analysis of compounds 2 and 

3. Further, the density functional theory (DFT) calculations were performed to investigate the 

bonding and the electronic properties of 2a (Cp analogue of 2). The frontier molecular orbital 

analysis of both 2a and 2b (Cp analogue of [(Cp*Ru)B8H14(RuCp*)]) reveals a lower HOMO–

LUMO gap indicating less thermodynamic stability. 
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1. Introduction 

Over the past several decades, the significant research efforts in the field of transition metal boron 

chemistry have established several sandwich type metallaborane compounds.1-4 In majority of 

these boron containing polyhapto π-ligand based sandwich complexes, metal atoms are 

sandwiched mainly by two types of polyhapto π-ligands (Chart 1).1-4 The first such type of 

sandwich molecule [(η5-C5H5)FeB5H10] was reported by Grimes and coworkers in 1977.1 Latter 

in 1984, Grimes reported [(η5-C5H5)CoB4H8]2 that showed the connection of isolobal analogy 

between (η4-C4H4) and (η4-B4H8) fragment. Fehlner and coworkers in 2005 reported a novel 
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dinuclear ruthenium-pentalene analogue ([(Cp*Ru)B8H14(RuCp*]).3 Successively, they reported 

[(η5-C5Me5Ir)B5H9] which was an analogue of [(η5-C5H5)2Fe], in which [B5H9]2- moiety is 

isoelectronic with the [η5-C5H5]- ligand.4 

As a part of our research efforts in the field of transition-metal-boron chemistry, we have 

isolated and characterized a wide range of metallaborane compounds of group 4-95-10 starting 

from novel boron-rich metallaboranes such as 15- and a 16-vertex rhodaborane clusters10b-c to 

complexes with a one boron for example, σ-borane,9a-d boryl,9e trimetallic bridging borylene9f-g,10d 

complexes. Recently, we have synthesized various metallaheteroboranes through the activation of 

heterocumulenes9h, diaryl-dichalcogenide ligands6a-c or chalcogen powders.7a-c As a result, we 

have thermolysed the nido-[1,2-(Cp*Ru)2(µ-H)2B3H7] with Te powder that resulted in the 

formation of a diruthenium pentalene analogue 2 and a metal indenyl complex 3. In this report, 

we describe the detailed structural characterization and bonding of these sandwich molecules.  
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Chart 1. Selected examples of sandwich complexes containing polyhapto borane ligands analogous to organic 

π-ligands.  

2. Experimental 

2.1 General considerations 

All the manipulations were conducted under an Ar/N2 atmosphere using standard Schlenk 

techniques or glove box. Solvent were distilled prior to use under Argon. LiBH4.THF 2.0 M, 

Cp*H, Tellurium powder (Aldrich) were used as received. [Cp*RuCl2]2
11 and nido-[1,2-

(Cp*Ru)2(µ-H)2B3H7]12 was prepared according to the literature methods. The external reference 

[Bu4N(B3H8)]13 for the 11B NMR, was synthesized with the literature method. Preparative thin-

layer chromatography was performed with Merck 105554 TLC Silica gel 60 F254, layer thickness 

250 µm on aluminum sheets (20 x 20 cm). The NMR spectra were recorded on a 500 MHz 

Bruker FT-NMR spectrometer. The residual solvent protons were used as reference (δ, ppm, 
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CDCl3, 7.26; C6D6, 7.16), while a sealed tube containing [Bu4N(B3H8)] in [D6]-benzene (δB, ppm, 

-30.07) was used as an external reference for the 11B NMR. The Infrared spectra were recorded 

on a Jasco FT/IR-1400 spectrometer. Mass spectra were recorded on Bruker MicroTOF-II mass 

spectrometer in ESI ionization mode. The CV measurements were carried out on a CH 

potentiostat, model 668. 

2.2 Synthesis of compound 2 

Compound 1 (0.1 g, 0.19 mmol) was taken in a flame-dried Schlenk tube and dissolved in toluene 

(15 mL). The resulting solution was heated with five equivalents of Te powder (0.123 g, 0.95 

mmol) at 80 °C for 18 hours. The reaction mixture was filtered through Celite using hexane. The 

filtrate was concentrated and the residue was chromatographed on silica gel TLC plates. Elution 

with a hexane/CH2Cl2 (90:10 v/v) mixture yielded orange 2 (0.09 g, 4.5%) and yellow 314.  

2: MS (ESI+): m/z calculated for [C40H74B6Ru4 + H+], 1029.2, found, 1029.3; 11B{1H} NMR (160 

MHz, d6-benzene, 22 °C): δ = 21.5 (s, 1B), 14.2 (s, 1B), 11.5 (s, 1B), 9.5 (s, 1B), -1.9 (s, 1B), -

30.6 (s, 1B); 1H NMR (500 MHz, d6-benzene, 22 °C): δ = 5.45 (br, BHt), 4.82 (br, BHt), 3.39 (br, 

BHt), 2.96 (br, BHt), 1.98 (s, 15H, Cp*), 1.91 (s, 15H, Cp*), 1.89 (s, 15H, Cp*), 1.82 (s, 15H, 

Cp*), -0.78 (br, 1H, B-H-B), -1.50 (br, 1H, B-H-B), -2.56 (br, 1H, B-H-B), -4.48 (br, 1H, B-H-

B), -11.08 (br, 1H, Ru-H-B), -12.17 (br, 1H, Ru-H-B), -12.47 (br, 1H, Ru-H-B), -14.04 (br,1H, 

Ru-H-B), -11.85 (s, 1H, Ru-H-Ru), -14.66 (s, 1H, Ru-H-Ru); 13C{1H} NMR (125 MHz, d6-

benzene, 22 °C): δ = 95.2, 94.8, 87.5, 86.6 (s, C5Me5), 12.3, 12.2, 11.7, 10.5 (s, C5Me5); IR 

(DCM, cm-1): 2962 (C-H), 2354, 2406 and 2480 (B-Ht). Raman (DCM, cm-1): 289 (Ru-Ru). 

2.3 X-ray structure determination 

The crystal data for 2 and 3 were collected and integrated using a Bruker Axs kappa apex2 CCD 

diffractometer with graphite monochromated Mo-Kα (λ = 0.71073 Å) radiation at 150 K. The 

structures were solved by heavy atom methods using SHELXS-9715a or SIR9215b and refined 

using SHELXL-97.15c 
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Table1. Crystal data and structural refinement for compounds 2 and 3 

Compound 2 3 
CCCDC no. 1828946 1828947 
Empirical formula C40H64B6Ru4 C27H42B2Ru2 
Formula weight 1014.05 590.36 
Temperature/K 150(2) 150(2) 
Crystal system triclinic orthorhombic 
Space group P-1 P212121 
a/Å 11.1227(9) 11.4420(6) 
b/Å 14.2888(11) 14.4265(9) 
c/Å 15.6289(13) 16.3603(9) 
α/° 70.293(3) 90 
β/° 86.130(3) 90 
γ/° 70.142(3) 90 
Volume/Å3 2196.3(3) 2700.6(3) 
Z 2 4 
ρcalcg/cm3 1.533 1.452 
μ/mm-1 1.375 1.13 
F(000) 1020 1208 
2θ range for data collection/° 5.834 to 49.998 6.122 to 54.948 
Reflections collected 28291 15672 

zIndependent reflections 7709 [Rint = 0.0606, 
Rsigma = 0.0614] 

6158 [Rint = 0.0551, Rsigma = 
0.0629] 

Goodness-of-fit on F2 1.163 1.104 

Final R indexes [I>=2σ (I)] R1 = 0.0595, wR2 = 
0.1356 

R1 = 0.0453, wR2 = 0.0900 

Final R indexes [all data] 
R1 = 0.0780, wR2 = 
0.1495 R1 = 0.0551, wR2 = 0.0939 

 

2.4 Computational details 

Quantum chemical calculations were performed on compounds 2a, 2b and 3a (Cp analogues of 3 

nido-[(Cp*Ru)2B2H8C6H3(CH3)]) using density functional theory (DFT) as implemented in the 

Gaussin09 package.16 The calculations were carried out with the Cp analogue compounds instead 

of Cp* in order to save computing time. Without any symmetry constraints, all the geometry 

optimizations were carried out in gaseous state, (no solvent effect) using PBE0 functional17 in 

combination with triple-ζ quality basis set Def2-TZVP. The calculated 11B chemical shielding 

values, determined at the PBE0/Def2-TZVP level of calculations, were referenced to B2H6 

(PBE0/Def2-TZVP, B shielding constant 85.9 ppm), and these chemical shift values (δ) were 

then converted to the standard BF3·OEt2 scale using the experimental value of +16.6 ppm for 
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B2H6. The 1H chemical shifts were referenced to TMS (SiMe4). The computation of the NMR 

shielding tensors employed gauge-including atomic orbitals (GIAOs),18 using the implementation 

of Schreckenbach, Wolff, Ziegler, and co-workers.19 The ChemCraft package20 was used for the 

visualizations. The two-dimension electron density and Laplacian electronic distribution plots 

were generated using Multiwfn package.21 

3. Results and Discussion 

3.1 Synthesis of [(Cp*Ru){(Cp*Ru)2B6H14}(RuCp*)], 2 

As shown in Scheme 1, the thermolysis of nido-1 with five equivalents of Te powder yielded a 

moderately air stable solid 2. Compound 2 isolated as orange solid in its purest form by thin-layer 

chromatography (TLC) and characterized by 11B{1H}, 1H and 13C{1H} NMR, IR spectroscopy 

and a single-crystal X-ray diffraction study. In parallel to the formation of compound 2, reaction 

also yielded compound 3 in very less yield.14 Compound 3 was characterised with limited 

spectroscopic data and a single-crystal X-ray diffraction analysis. 
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toluene, 80 °C
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Scheme 1. Synthesis of compounds 2 and 3. 

The solid-state X-ray structure of 2, shown in Figure 1, can be viewed as a fused structure in 

which two diruthenaborane cages fused in a transoid fashion with two common boron atoms, to 

generate a planar Ru2B6 fragment. The framework is analogous to that of isoelectronic dinuclear 

pentalene complexes [Cp*M(C8H6)MCp*], (M = Fe or Ru)22 and [(Cp*Ru)(B8H14)(RuCp*)]3 

(Chart 2). In compound 2 the ruthenium atoms are bonded symmetrically to the Cp* ligands. The 

average Ru-B distance is found to be larger (dRu-B 2.228 Å) as compared to 

[(Cp*Ru)B8H14(RuCp*)] (dRu-B 2.15 Å). The average distance between two Ru is 2.837 Å. As 

shown in Figure 1, two Ru atoms (Ru2 and Ru3) are bridged by Cp* and [(Cp*Ru)2B6H14] 

fragment, in which the ends of B4Hx (x = 6 or 8) are bonded by two Ru atoms (Ru1 and Ru4) 

forming cyclic metal-boron rings. These cyclic RuB4Hx (x = 6 or 8) units are fused by a B-B bond 

(B3-B6) resulting a fused dimetallacycle. The B6-Ru1-B1-B2-B3 ring is puckered with the Ru1 

lying 0.128 Å out of the least square plane defined by boron atoms B1-B2-B3-B6 (mean 
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deviation from the plane = 0.045 Å). Similarly, in the Ru4 B6-B5-Ru4-B4-B3 ring the Ru4 lies 

0.528 Å out of the least square plane defined by boron atoms B6-B5-B3-B4 (mean deviation from 

the plane = 0.003 Å). 
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Chart 2. Dimetala pentalene complex [Cp*M(pentalene)MCp*] (M = Fe and Ru), pentalene analogue 

[Cp*Ru(B8H14)RuCp*] and a metallaborane analogue of diruthenium pentalene, 2. 

 

Figure 1. Molecular structure of compound 2. Selected interatomic distances (Å) and angles (°): Ru1-Ru2 

2.854(7), Ru3-Ru4 2.821(5), Ru1-B6 2.402(10), Ru1-B1 2.99(13), B1-B2 1.811(14), B3-B6 1.789(12), B1-Ru1-

B6 81.0(4), B2-B3-B4 135.7(7), Ru1-B6-B5 133.9(5). 

 

Consistence with the X-ray structure determination, the 11B{1H} NMR spectrum reveals six 

different resonances (δ = 21.58, 14.23, 11.59, 9.53, -1.95 and -30.66 ppm) reflecting the lack of 
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symmetry in the molecule. In addition to Cp* protons, the 1H NMR spectrum of 2 shows up-field 

resonances at δ = -0.78, -1.50, -2.56 and -4.48 for B-H-B, -11.08, -12.17, -12.47 and -14.04 for 

B-H-Ru and -11.85 and -14.66 ppm for the presence of Ru-H-Ru protons. Assignment of the Ru-

Ru stretching vibration in compound 2 is evidenced by a single resonance-enhanced band at 289 

cm-1, which falls within the reported range.23 

 

 

Figure 2. Frontier molecular orbitals of 2a and 2b (isocontour value ± 0.03 [e/Bohr3]1/2). 

To gain some insight into the electronic structure and bonding nature of 2a (Cp analogue of 

2), we carried out the density functional theory (DFT) calculations16 and compared with 2b. The 

optimized structure of 2a (Figure S13 and Table S1) is in good match with its X-ray structure. 

Further, the DFT calcultaions helped us to confirm the position of the bridging hydrogen atoms 

that could not be located by X-ray diffraction studies. The DFT computed energy gap between 

the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO)  for  2a  of  4.43  eV at PBE0 level  is  consistent with its high  thermodynamic stability. 

However, the HOMO–LUMO gap for 2a is much lesser than its parent metallaborane 2b (5.66 

eV). This led us to compare their MO diagrams (Figure 2). Analyses of the frontier orbitals for 2a 

reveals a significant increase in HOMO energy (ca. 0.67 eV) and decrease in LUMO energy (ca. 
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0.56 eV) with respect to 2b. Consequently, it leads to the decrease in HOMO–LUMO gap of 2a 

compared to 2b (Figure 2). Previous theoretical calculations on compound 2b showed that the 

LUMO of B8H14
2-, which is essentially vacant orbitals cantered at B8H14

2- ligand, is destabilized 

and higher in energy due to the electropositive nature of B.24 In contrast, the presence of two 2 

electron donor {Cp*RuH} fragments in the central [(Cp*Ru)2B6H14]2- ligand of 2a destabilizes 

the HOMO and stabilizes the LUMO, resulting in a smaller HOMO/LUMO gap of 2a (compared 

to 2b). This may be attributed to the presence of electron rich {Cp*RuH} fragments compared to 

the BH units. 

To understand the bonding of the nearly planar [Cp*Ru2B6H14]2- unit and the nature of Ru-B 

and B-B bonding in 2a, the topological analyses25 were carried out. As shown in Figure 3, the 

results show an area of charge concentration along each Ru-B and B-B bonds in [Ru2B6] plane 

indicating the σ/π delocalized bonds between Ru and B atoms. In addition, the boron-metal 

interaction has more covalent character as compared to B-B bonds in 2a. This is also indicated by 

higher values of the electron density (ρ) and a negative value of the energy density [H(r)] at bcps 

(Table S3). 

 

Figure 3. Contour line diagram of the Laplacian of the electron density, ∇2ρ(r) of 2a in the plane of [Ru2B6] 

generated using the Multiwfn program package at the PBE0/Def2-TZVP level of theory. Solid red lines show 

areas of charge concentration (−∇2ρ(r) > 0), while dashed black lines indicate areas of charge depletion (−∇2ρ(r) 

< 0). Solid brown and blue lines indicate bond paths and zero-flux-surfaces, respectively, and blue dots indicate 

bond critical points (BCPs). 

Compound 2 is a redox active molecule and which has been concluded from its cyclic 

voltammetric studies. The cyclic voltammogram of [Cp*Ru(C8H6)RuCp*] exhibits one reversible 

oxidation wave and an irreversible wave at 0.29 V higher potential.22b The irreversible behaviour 
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is attributed to the oxidation reaction of the Cp* ligand, analogous to the behaviour of [Cp*2Ru] 

on oxidation. Compound 2 in a similar way exhibits three successive one-electron oxidations with 

the first two are separated by approximately 0.4 V while the 2nd and 3rd potentials are separated 

by 0.23 V. The first redox event 20/2+is quasi-reversible, but the second and third oxidations 

2+/22+and 22+/23+ are irreversible as shown by the lack of a return wave. The cyclic 

voltammogram of 2 is similar to that of [(Cp*Ru)B8H14(RuCp*)]3 that shows two successive one-

electron oxidations separated by approximately 0.8V (Figure S5 in SI). 

3.2 Solid state X-ray structure of 3 

Although compounds 2 and 3 were isolated from same reaction, all of our attempts to 

reproduce 3 were failed. However, with the limited spectroscopic data and an X-ray 

crystallographic analysis, we have characterized compound 3. The 11B{1H} chemical shifts 

appeared at δ = -16.8 and -19.2 ppm with equal intensity arise from the two different boron 

environments. The 1H NMR spectrum of 3 displayed two signals (δ = 1.87 and 1.51 ppm) 

corresponding to Cp* protons in 1:1 ratio. Further, it predicts the presence of three up-fielded 

resonances at δ = -10.84, -11.16 and -12.23 ppm. These observed up-fielded chemical shifts may 

be due to the presence of Ru-H-B and Ru-H-Ru hydrogens.  

The solid-state X-ray structure of compound 3 may be considered as an eight-sep nido-

[(Cp*Ru)2B2H8C6H3(CH3)] cluster (Figure 4). Compound 3 ([(Cp*Ru)2B2H8C6H3(CH3)]) can be 

viewed as an edge fused ruthenaborane cluster in which a toluene ring being fused to a 

pentagonal pyramidal ring Ru2B2C2. The structure of 3 is analogous to the isoelectronic 

ruthenium indenyl complex with a central indenyl ligand [(ɳ5-C5R5)Ru(η5-C9H7)] (R = Me).26 The 

C-C bond length in 3 that is fused with the pentagonal pyramid ring is about 1.43 Å, which can be 

considered to have a partial double bond character. The respective C-C bond in 3 is slightly 

longer than the C=C bond length of toluene (1.40 Å), but shorter as compared to similar reported 

indenyl compounds,27 which indeed longer than normal C=C length (1.33 Å). The Ru-Ru bond 

distance (2.9578 Å) is considerably longer than the reported diruthena-boranes12,28 The RuB2C6 

fragment in 3 is a true analogue of the ɳ5-indenly ligand and this further illustrates the similarity 

of the properties of boron and its immediate neighbour carbon and their tendency to form similar 

structures by using the concept of isolobal analogy.29 
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Figure 4. Molecular structure of compound 3. Selected bond distances (Å) and angle (°): Ru1-Ru2 2.9578(8), 

Ru1-B21 2.349(12), Ru2-B21 2.391(11), Ru2-B28 2.386(10) C22-C27 1.43(3) Ru1-C22-B21 71.00(8), B21-

Ru2-B28 76.4(4), B21-C22-C27 117.7(15), and C23-C22-C27 120.6 (17). 

4. Conclusions  

In this article, we have synthesised and structurally characterized the metallaborane 

analogue of diruthena pentalene and an indenyl complex. Diruthena pentalene complex 2 is a 

notable entry in to the class of pentalene complexes containing main group and transition metals. 

On the other hand, compound 3 that contains a {RuB2C6} fragment is a true analogue of η5-

indenyl ligand. Theoretical calculations adequately explained the electronic structure of 2. Further 

we have demonstrated that the HOMO-LUMO gap decreases when two of the BH fragments in 

the parent molecule were replaced by two 2 electron {Cp*RuH} fragments. 

Supplementary Information (SI) 

Supplementary data contains the X-ray crystallographic files in CIF format for 2 and 3, CCDC 

1828946 (2) and 1828947 (3) for this work. These data can be obtained free of charge from the 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_-request/cif. All 

additional information pertaining to characterization of the complexes 2-3 using ESI-MS 

technique, IR spectra and multinuclear NMR spectra (Figure S1 - Figure S8), computational 

details are given in the Supplementary Information available at www.ias.ac.in/chemsci. 
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