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Understanding the dynamics of a droplet pushed by an external fluid in a confined
geometry calls for the identification of all the dissipation mechanisms at play in the
lubrication film between droplet and cell wall. Experimentally, Reflection Interference
Contrast Microscopy (RICM) has proven an efficient tool to measure the thickness of
such lubrication films for microfluidic droplets, with a precision of a few nanometers
(Huerre et al. (2016)). The present work takes advantage of the high accuracy of this
technique to chart quantitatively the lubrication film between oil droplets and the glass
wall of a microfluidic chamber. We find the lubrication films to exhibit a complex 3D
shape, which we are able to rationalize using a hydrodynamical model in the lubrication
approximation. We show that the complete topography cannot be recovered using a single
model boundary condition along the whole interface. Rather, surface tension gradients
are negligible at the front of the bubble, whereas they significantly modify the film profile
at the rear, where a surfactant accumulation induces local thickening of the lubrication
film. The presence of ravines on the sides of the droplet is due to 3D effects which can
be qualitatively reproduced numerically. To our knowledge, this is the first experimental
investigation of such local effects on traveling droplets.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Since the groundwork laid by Taylor & Saffman (1959), our understanding of traveling
menisci in confined environments has been increasingly refined. As the non-wetting
disperse phase advances, a lubrication film of external phase develops between the
interface and the substrate, where all the dissipation is localized. Droplet motion depends
on the shape of that interface, as well as its physico-chemical properties. This was
first evidenced by Bretherton (1961), in the case of a slender bubble traveling in a
horizontal capillary tube. The thickness of the lubrication film was found to be set by
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a balance between capillary and viscous forces in the external phase, expressed via the
capillary number, Ca = ηoUd

γ , where ηo, Ud and γ are respectively the external phase

viscosity, the bubble velocity and the interfacial tension. For Ca 6 10−3, and assuming a
vanishing tangential stress at the interface (stress-free boundary condition), this classical
analysis predicts a film thickness scaling in Ca2/3 far from the front meniscus, and an
oscillation of the interface at the back of the bubble. This theory was then extended
to different model boundary conditions: incompressible interfaces (the Ca2/3 scaling
was recovered with corrections to the pre-factors by Shen et al. (2002) and Cantat
(2013)), and viscous droplets (Hodges et al. (2004) found an additional contribution
scaling in Ca). That approach was also adapted to non-axisymmetric problems, such as
two-phase displacement through Hele-Shaw cells. In such a configuration Park & Homsy
(1984) extended Bretherton’s results to a meniscus of arbitrary shape with an asymptotic
approach. Similarly, the shape of the lubrication film for a bubble of radius much larger
than the cell gap was derived for a stress-free boundary condition by Burgess & Foster
(1990). The shape of the lubrication film was also studied by Halpern & Secomb (1992)
in the framework of the derivation of the speed of red blood cells squeezed between two
parallel plates. In that later case, the interface is rigid instead of being stress-free.

These theoretical results were found in good agreement with experimental work ever
since Bretherton’s early work (Bretherton (1961)), with sometimes discrepancies at-
tributed to additional effects neglected in the model. Recent examples include surfactant-
covered bubbles (Denkov et al. (2006)) and viscous droplets (Huerre et al. (2015)).
However, most of these works could only access average quantities over the size of the
droplet, since the height of the lubrication film was generally deduced from the velocities
of the droplet and external phase, via the conservation of the flow. Interferometry
methods were used to measure the height of thin films directly, but only for non-
confined cases such as a soap film Mysels & Cox (1962), the wetting film left on a
plate Snoeijer et al. (2008) or the lubrication film under a foam (Denkov et al. (2006)).
In this context, a previous study investigating droplets confined in a microfluidic Hele-
Shaw cell via Reflection Interference Contrast Microscopy (RICM) provided the first
direct measurement of the lubrication film thickness in a confined geometry, Huerre
et al. (2016). Though it was not the focus of that article, the lubrication film was
found to exhibit complex 3D topographies, which had been predicted by Burgess &
Foster (1990) but never quantitatively characterized experimentally. This challenging
experimental characterization is the aim of the present article.

Fluorinated-oil droplets travel through a microfluidic Hele-Shaw cell, in an aqueous
solution containing a single surfactant (C10TAB). They are confined into a pancake
shape, as the cell gap is much smaller than the droplet diameter. Using RICM, we
measure lubrication film thicknesses down to a precision of a few nanometers (Huerre
et al. (2016)). We find the lubrication films to exhibit a complex 3D shape: ravines
develop along the sides, while a bump appears at the rear of the droplet.

The parameters governing this out of equilibrium shape are out of the range accessible
to the current direct numerical simulations Zhu & Gallaire (2016). Especially the capillary
number is to low, and the aspect ratio between the film thickness and the bubble size
to large. It is thus crucial to develop approximated analytical models to understand and
predict the observed shapes. In this aim we develop a model based on the lubrication
approximations at various level of refinement. The film profile along the symmetry plane
of the drop is described using a 2D geometry in section 4. An important result of
the paper is that the stress free condition at the liquid/liquid interface applies in the
front of the bubble, whereas Marangoni effects are important at the rear. We show that
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Figure 1. Schematic representation of the experimental set-up. (a) Top view of the microfluidic
chip. (b) Optical set-up used for reflection interference contrast microscopy (RICM). The
Hele-Shaw cell is placed just above the objective so that the thin film of water between the
bottom wall and the oil droplet is imaged. (c) Side view of the droplet in its frame of reference.
The gray domain is the region of the film that can be characterized.

surfactant accumulation at the droplet rear induces an interface stiffening which lead to
a film thickening that may reach a factor 2, as predicted by Park (1992). The surfactant
transport is shown to be dominated by the convection in this region, and the lubrication
equations coupled to the surfactant transport are solved in this regime, leading to a good
agreement with the experiments. In contrast, in section 5, a full 3D model is used to
describe the ravines on the sides, at the price of the simplified stress free condition at
the liquid/liquid interface, following Burgess & Foster (1990).

2. Experimental set-up

2.1. Materials and methods

Fluorinated-oil droplets (C6F14: 3M Fluorinert FC-72, of viscosity ηi = 0.64 mPa.s)
are traveling in an aqueous solution of C10TAB (Sigma-Aldrich, concentration co =
990 mM) and NaCl (concentration csalt= 1 M). The high concentration of salt ensures
that the Debye length is decreased down to λd = 0.2 nm, i.e. much smaller than the
typical thickness of the lubrication films in our experiments. The viscosity of the external
phase was measured to be ηo = 2.5 mPa.s (Anton Paar MCR 302 rheometer), while the
interfacial tension between the two phases was measured to be γ = 15 mN/m (KRUSS
DSA30 tensiometer).

The microfluidic chip is shown in Fig. 1.a. The upper part of the chamber is made
of PDMS and fabricated using soft photo-lithography, Xia & Whitesides (1998). It is
permanently bonded to a glass slide via oxygen plasma. The PDMS layer is covered
by a second glass slide, to ensure that the channels do not deform even at the highest
pressures applied, Taccoen (2015). The droplets are generated at a T-junction using
a MAESFLO pressure controller, and accelerated with a Nemesys syringe pump. The
droplets then reach a Hele-Shaw cell of height 2Ho = 14 µm, width lo = 2500 µm and
length Lo = 9 mm. The external phase flow is controlled by the syringe pump and ranges
from 9 to 36 µL/min. The resulting droplet velocities Ud in the Hele-Shaw cavity range
from 2300 to 14700 µm/s, which corresponds to capillary numbers between 3.9 × 10−4

and 2.4×10−3. The flow is measured at the exit of the channel with a Fluigent flow-well.
The droplets are large enough to adopt a pancake shape of height very close to 2Ho

and radius much larger than Ho in the Hele-Shaw cell (see Fig. 1.c). The droplet is
separated from the top and bottom cell walls by a continuous thin film of external phase,
stabilized by surfactant and hydrodynamical forces. Outside this region, the interface
is almost not deformed by the flow and keeps its equilibrium shape. For this reason,
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Figure 2. (a) RICM picture of a droplet traveling through the Hele-Shaw cell, in the x direction.
The droplet diameter is 170 µm in this picture; Ca = 7.2 × 10−4. (b) Theoretical variation of
the reflected light intensity with the film thickness (the optical model is detailed in Huerre et al.
(2016)); (c) Film topography extracted from picture (a).

the domain of continuous phase trapped between the lateral part of the interface and
the bottom (respectively top) wall is referred to as the bottom (respectively top) static
meniscus (see Fig. 1.c). All the experiments have been performed with a thin film radius
of R ' 91 ±6 µm.

The topography of the lubrication film is measured at the bottom wall, below the
moving droplet, using reflection interference contrast microscopy (RICM), Fig. 1.b. This
technique has been covered in detail in a previous article, and only the main steps are
mentioned here (see Huerre et al. (2016)). Light is provided by a lamp X-Cite 120Q
with a RGB filter (Semrock: FF01- 464 nm/542 nm/639 nm), so that the intensity is
high enough to investigate faster droplets, compared to the previous work. Experimental
movies are acquired using a high-speed camera (Photron) at 250 Hz and a Zeiss Neofluar
63/1.25 antiflex objective. The pixel resolution is δpix = 0.67 µm. A raw RICM picture of
a traveling droplet moving from left to right is shown on Fig. 2.a. Contrasted gray levels
are observed within the thin film, whereas the static meniscus corresponds to a uniform
gray level: this well-defined transition provides an experimental definition of the frontier
between the thin film of radius R and the unresolved meniscus. The film thickness is
determined with high accuracy from the RICM picture, to a precision of 4 nm, using
the relationship between the light intensity and the film thickness given in Fig. 2.b. The
detail of the image processing is given in Appendix A. A height difference of 100 nm
corresponds to one half intensity oscillation: if the film thickness varies for more than
100 nm over a single pixel, the signal is lost, as happens outside the central disc in Fig.
2.a, and an average gray level is measured. The region we are able to characterize is
represented in Fig. 1.c.

2.2. Notes on the experiments

We first reported experimental evidence of 3D topographies of the lubrication film
using a similar experimental set-up in a previous work (Huerre et al. (2015)). The present
work aims to investigate these 3D geometries more locally. As listed below, the physico-
chemical properties of the solution we choose belongs a priori to the class of systems
leading to stress-free interfaces. However, even in this model situation we show that
strong surfactant effects are observed in some domains on the interface.

(i) First, Park & Homsy (1984) showed that the viscosity of the droplet has a negligible
influence, on the film thickness, as long as the viscosity ratio between the inner and outer
phases remains smaller than Ca−1/3. In our experimental conditions, we set ηi/ηo = 0.256
and Ca−1/3 = 7 at the highest velocity explored, so that additional effects due to droplet
viscosity are expected to be negligible.

(ii) Secondly, Bretherton’s model assumes a stress-free boundary condition, but an
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Figure 3. Definition of the geometrical parameters and of the separate domains in the
lubrication film. The disc of radius R corresponds to the region where h(x, y) can be measured,
and is divided into the front and rear meniscus domains, the central domain and the two lateral
meniscus domains, represented using different gray levels. For clarity the radial extension of the
dynamical meniscii are oversized.

interface viscosity or elasticity can induce a thickening of the lubrication film by a factor
of up to 2.5 (Quéré & de Ryck (1998); Shen et al. (2002); Scheid et al. (2010); Delacotte
et al. (2012); Champougny et al. (2015)). We chose to use a surfactant (C10TAB) that was
previously shown to have negligible influence on the boundary condition by Delacotte
et al. (2012), in similar experimental conditions: same solution (without salt), same
capillary range, but larger scale (meniscus size).

(iii) In the range of confinement that is investigated using microfluidics, the thin liquid
film squeezed between the droplet and the wall may be so thin that intermolecular
interactions come into play and may set the lubrication film thickness, Huerre et al.
(2015). In order to screen the electrostatic contribution of the disjoining pressure, the
Debye layers are screened by adding salt in the external phase such that the Debye
length is reduced to λD= 0.2 nm. The intermolecular interaction is thus governed by the
dispersion contribution of the van der Waals interactions. In appendix C, we show that
in the range of scales that are measured in the reported experiments, the film thickness
is governed by hydrodynamics and that disjoining pressure effects can be comfortably
neglected. This effect will not be neither considered nor discussed in the following.

As a whole, care has been taken in order to fulfill a priori stress-free boundary
conditions, for a droplet of negligible viscous effect, and for which intermolecular effects
lie within the error bars.

3. Geometry and film domains

The geometry of the film is described in the droplet reference frame (O, ex, ey, ez). The
origin O sits at the center of the film in the bottom wall plane (x, y), with −x the direction
of wall motion, and z the normal to the wall oriented upwards. Polar coordinates (ρ, θ, z)
are used, with a polar axis in the x direction. h(x, y) is the film thickness, between the
bottom wall and the liquid/liquid interface (see Fig. 1.c).

At first glance, the contour of the thin film is almost circular, with relative variations
of its radius of order δR/R ∼ 3%, the in-plane curvature being slightly smaller at
the rear than at the front. The corresponding Laplace pressure variation scales as
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Figure 4. Longitudinal profiles of the film thickness h(x, y), along the lines (a) y = 0 µm,
(b) y = −34 µm (|y| = 0.4R) and (c) y = −68 µm (|y| = 0.8R). The capillary number is
Ca = 7.2×10−4. Inset: the dashed line indicates the location of the longitudinal profile for each
y value.

δP = γδR/R2 ∼ 5 Pa. This is consistent with the order of magnitude of the viscous
pressure field (ηo − ηi)UdR/H2

0 ∼ 18 Pa, responsible for this deformation at the droplet
scale. We neglect it in what follows, and assume that the thin film is a disc of radius
R while the lateral droplet interface keeps its static equilibrium shape, with a total
curvature close to 1/H0.

The film topography extracted from the RICM picture in Fig. 2.a is plotted in Fig. 2.c.
It shows a complex catamaran-like 3D shape, with a bump at the rear and two ravines on
the sides, as previously observed by Huerre et al. (2016). To address the complexity of this
shape, the film is decomposed into four parts, shown in Fig.3 and analyzed independently:
i) the central region, (ii) the front dynamical meniscus, iii) the rear dynamical meniscus
and, iv) the lateral dynamical meniscus. Fig. 4 shows longitudinal film profiles taken at
different values of y for a given Ca. Far enough from the front and rear menisci, the film
thickness keeps a value independent of x, h∞(y), that can be defined without ambiguity
for |y| < ymax = R sin(θmax), see Fig. 3. This angle, of order θmax ∼ 1.2 for all Ca, allows
us to define experimentally the frontier to the lateral meniscus: with this convention
ymax = 0.92R. In turn, the region where h(x, y) = h∞(y) is referred to as the central
region, or flat film.

4. Longitudinal film profiles for y = 0

4.1. 2D theoretical framework

Bretherton’s classical result is established for the configuration shown in Fig. 1.c, for a
droplet invariant along y and of negligible viscosity. The flow in the thin film is determined

using the lubrication approximation ∂p
∂x = ηo

∂2u
∂z2 , where the pressure p does not depend

on z and u is the x-component of the velocity field in the droplet’s frame. Continuity of

the normal stress at the interface imposes a Laplace pressure difference po − p = γ ∂
2h
∂x2 ,

where po is the uniform internal pressure within the droplet. The boundary conditions
u(z = 0) = −Ud and u(z = h) = us(x) give the velocity profile:

u(x, z) =
γ

2ηo

∂3h

∂x3
(h− z) z +

(us + Ud)

h
z − Ud . (4.1)

At the front meniscus, at the small x limit, a flat film of unknown thickness h = h∞
is assumed, as well as a constant interfacial velocity u0

s. The velocity field in this film

is therefore given by u =
(
u0
s+Ud
h∞

)
z − Ud, and the flow rate Q(x) =

∫ h
0
udz becomes
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Figure 5. Front meniscus profile and film height in the central region. Film profiles h(x, y)
along the x axis (y = 0) for (a) Ca = 7.2×10−4, (b) Ca = 1.3×10−3 and (c) Ca = 1.5×10−3.
Solid line: Bretherton’s prediction from Eq. (4.4). (d) Variation of h∞(y = 0) with Ca. Solid

line: Bretherton’s solution, hBreth = 1.337 HoCa
2/3.

Q0 =
h∞(u0

s−Ud)
2 . For an incompressible and steady flow, writing Q(x) = Q0 gives:

−γ ∂
3h

∂x3
=

6ηo
h3

[
h(us − Ud)− h∞(u0

s − Ud)
]
. (4.2)

Additionally, the continuity of the tangential stress at the interface leads to the following
Marangoni relation:

∂δγ

∂x
= ηo

∂u

∂z
(h) , (4.3)

with δγ the interfacial stress variation relative to its reference value γ. The equation (4.2)
is general, in the sense that it is valid for any rheological properties of the interface, as
long as δγ � γ.

In his study, Bretherton imposes a stress-free condition, i.e. δγ = 0. The corresponding

boundary condition at the interface, ∂u
∂z = 0, then yields us = −Ud + γ

2ηo
∂3h
∂x3 h

2 and

u0
s = −Ud. By substituting these two expressions in Eq. (4.2), Bretherton’s classical

equation is recovered:

γ
∂3h

∂x3
=

3ηoUd
h3

[h− h∞] . (4.4)

Finally, we impose a curvature 1/Ho at large x to solve this equation numerically and
write the thickness in the flat film:

hBreth = 1.337HoCa
2/3 . (4.5)

To derive the profile in the rear meniscus, the same approach is used. However, the
problem is not symmetric with respect to the y axis in terms of boundary conditions. At
the front meniscus x > 0 and the curvature is set to 1/H0 at large x. However, at the rear
meniscus, x 6 0 and there are two constraints to ensure the uniqueness of the solution:
setting a curvature equal to 1/H0 at small x, and an asymptotic film thickness at large
x. This leads to a monotonic evolution of the profile at the front and to an oscillation in
the rear meniscus.

4.2. Front meniscus and central region

Examples of film profiles close to the front meniscus along the x axis and for y = 0
are given in Fig. 5.a-b. These experimental profiles are in quantitative agreement with
numerical solutions of Eq. (4.4) for a meniscus of curvature 1/Ho at large x. In particular,
we recover h∞(y = 0) = hBreth from Eq. (4.5), within the precision of our error bars,
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over the whole range of capillary numbers investigated (Fig. 5.c). This confirms that
additional contributions we aimed to keep negligible, such as droplet viscosity, disjoining
pressure or surfactant effects, do not affect the profile significantly in this region of the
droplet, where Bretherton’s model correctly captures the film thickness.

Regarding the non axisymmetric geometry, Burgess & Foster (1990) found under
similar assumptions that the 2D prediction for the film thickness remains valid in the
(x,O, z) plane as long as (Ho/R)3 � Ca� Ho/R� 1, which was confirmed numerically
by Zhu & Gallaire (2016). In our case the constraint (Ho/R)3 � Ca is not fully satisfied
at our smallest capillary numbers, and a geometrical correction on the meniscus curvature
might be expected. The Laplace pressure drop, at the droplet interface, at equilibrium
is given by (de Laplace (1806)):

∆P = γ

(
1

R1
+

1

R2

)
=

γ

Ho

(
1 +

π

4

H0

R

)
(4.6)

with R1 and R2 the two principal radii of curvature of the interface. As one
principal curvature is zero at the contact with the wall, this relation gives us
the radius of curvature of the meniscus near the transition to the flat film:
r∗ = Ho(1− (πHo/(4R)) = Ho(1− 0.06) at the first order in Ho/R. Using r∗ instead of
Ho in Eq. 4.5 gives a correction on the film thickness of order Ca2/3Ho/R, neglected
in Burgess & Foster (1990). Here, this correction is of about 6% and lies within the
experimental error bar. For this reason, further comparisons with the theory are made
using a meniscus curvature of 1/Ho.

4.3. Rear meniscus

As shown in Fig.6, the transition between the central part of the film and the rear
meniscus is characterized by a non-monotonous variation of the film thickness, in contrast
to the behavior at the front of the droplet. The determination of the film thickness,
from the images, in this region is thus delicate and is discussed in Appendix A. When
approaching the rear meniscus from the flat film along the x axis, the film thickness first
increases towards a maximum value hmax, then decreases before finally diverging when
reaching the meniscus. The minimum thickness, located between the bump at hmax and
the rear meniscus, is not resolved on all images and its value is therefore not reported
in this paper. Indeed, around the minimum, the film thickness varies so fast that an
average gray level is obtained on the images. Consequently, the position of the minimum
is resolved within one pixel whereas the film thickness value is not resolved. On the
graphs the unresolved meniscus is symbolized by a gray zone, see Fig. 6.

Given the very good agreement found at the front meniscus, these experimental profiles
are first compared to Bretherton’s prediction for the rear meniscus, i.e. the solution of Eq.
(4.4) for a stress-free boundary condition, with a curvature 1/Ho at small x and a flat film
of thickness hBreth at large x. Surprisingly, we find that the experimental profiles of the
rear meniscus are very far from the theory, see Fig. 6.a.b.c. The ratio hmax/h∞(y = 0)
is plotted in Fig. 7.a: we measure hmax/h∞(y = 0) ' 1.7 for all capillary numbers,
whereas the prediction for a stress-free interface is hBreth

max /hBreth = 1.064. Similarly,
the distance ` over which the film thickening develops (see Fig. 6.e) is found to be 7
µm, whatever the capillary number (see Fig. 7.b) and is much larger than the value
predicted by Bretherthon’s model. The rear bump predicted by Bretherton’s model is
governed by the Laplace pressure induced by the capillary suction in the meniscus. As
our experimental value of the bump height (hmax − h∞(0)) is one order of magnitude
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Figure 6. Oscillation at the rear meniscus. Longitudinal thickness profiles for three increasing
values of Ca: (a, d) Ca = 7.2× 10−4, (b, e) Ca = 1.3× 10−3, (c, f) Ca = 1.8× 10−3. The film
thickness at large x is h∞(0) and the local maximum is hmax. Dashed lines (a, b, c): Bretherton’s
prediction from Eq. (4.4). Dotted lines (d, e, f): Film profile deduced using the surfactant mass
transport model (Eq. (4.16) with Ma = 1.6). Solid lines (d, e, f): theoretical predictions from

Eq. (4.18) using umax
s = Ud

(
1− 2h∞(0)

hmax

)
. The gray zone symbolizes the unresolved meniscus.
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Figure 7. (a) Maximum height at the bump, relative to the height in the flat film. (b)
Length of the thickening region ` as a function of the capillary number Ca = ηoUd/γ.

larger than Bretherton’s prediction, this thickening must arise from another physical
phenomenon.

It is well known for spherical bubbles rising in a surfactant solution that surfactants
accumulate at the rear and rigidify the interface. If the diffusion is slow enough in
comparison with convection, the Marangoni effect leads to the stagnant-cap regime: the
interface velocity is the bubble velocity on a spherical cap at the rear, whereas the stress
free condition still applies on the remaining part of the interface Cuenot et al. (1997).
In confined situations Park (1992) and Cantat & Dollet (2012) show that, stiffening can
actually lead to thickening factor equal to 2 if the interface velocity reaches the rear
meniscus velocity (full stiffening).

In the following, we propose a model to predict the film profile observed at the rear.
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Similarly to the front region, the system is almost invariant in the y direction close to
the x axis, and we use a 2D model. The rear meniscus domain is split into two regions: a
thickening region between the flat film and the rear bump, and the oscillating region, see
Fig. 6.e. In the first one, the Laplace pressure is neglected on the basis of the previous
analysis, and the surfactant transport is solved. In the second a full stiffening of the
interface is assumed and the lubrication equation are solved, with Laplace pressure.
These simplified approaches allow to reproduce the observed profiles and thus to identify
the dominant physical ingredients in each region.

The dominant term of the transport equation is determined on the basis of the following
characteristic times: the diffusion time along the x direction based on the distance `, td1 =
`2/D = 5×10−2 s (D = 10−9 m2/s); the diffusion time in the z direction, td2 = h2

∞/D =
10−5 s (h∞ = 10−7 m); the sorption kinetic characteristic time ts = Γ∞/(kco) = 3×10−7

s (Γ∞ ' 3 × 10−6 mol/m2 is the interfacial concentration on the film and k ' 10−2

m/s Quéré & de Ryck (1998)); and the characteristic convection time tc = `/Ud =
7 × 10−3 s (Ud = 10−3 m/s). As both ts and td2 are much smaller than tc and td1,
the bulk concentration is homogeneous over z and is in equilibrium with the interface
concentration. Conversely, td1 is much larger than tc, and axial diffusion is thus small
compared to axial convection. For these two reasons the diffusive processes can be scaled
out. In this limit the transport equation only depends on convection and can be obtained
by a simple mass balance in a fluid slice located between x and x+ dx.

In steady state the interfacial concentration Γ is given by surfactant mass conservation
along the x direction

∂x

(
usΓ +

∫ h

0

c udz

)
= 0 , (4.7)

with c the bulk concentration. c does not depend on z, as discussed before, and using

the mass conservation
∫ h

0
udz = −Udh∞, Eq.(4.7) is integrated into:

usΓ = −UdΓ∞ + (c− c∞)Udh∞ , (4.8)

with c∞ and Γ∞ the bulk and interface concentrations in the film, far from the thickening
region.

Assuming a linear sorption law Brenner (2013) and fast sorption kinetics, the interfacial
concentration is in equilibrium with the bulk concentration c:

Γ

c
=
Γ∞
c∞

= hΓ , (4.9)

For Γ∞ = 3× 10−6 mol/m2 and c∞ = co = 103 mol/m3, hΓ ' 3 nm.
Finally, in absence of Laplace pressure, the equation 4.2 simplifies into

us(x) = Ud

[
1− 2h∞(0)

h(x, 0)

]
. (4.10)

The interfacial velocity in the wetting film can vary between us = −Ud, i.e. the wall
velocity, in the stress free case (assumed at the front) and us = 0, i.e. velocity of the rear
meniscus, in the fully rigidified case. The film thickness is thus in the range [h∞; 2h∞],
or equivalently, the thickening factor due to Marangoni effects at the rear ranges from 1
to 2. The velocity profile in the film is linear and the Eq. (4.3) becomes, for small tension
variations,

ηo
us + Ud

h
= −|∂Γ γ|

∂Γ

∂x
. (4.11)

The equations (4.8), (4.9), (4.10) and (4.11) constitute a closed set of equations for the
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unknown functions h, us, c and Γ , solved in the following. Introducing the Marangoni
number Ma = |∂Γ γ|Γ∞/γ and K = h∞/hΓ , we use the dimensionless variables us =
ÛUd, x = X̂2h∞Ma/(KCa), h = h∞Ĥ and Γ = Γ̂ Γ∞. The equations (4.8), (4.10) and
(4.11) become

Û Γ̂ = −1 + (Γ̂ − 1)K (4.12)

2

Ĥ
= 1− Û (4.13)

1 + Û

Ĥ
= −K∂X̂ Γ̂ /2 (4.14)

Substitution leads to an equation on Û only

∂X̂ Û =
(Û2 − 1)(K − Û)2

K(1 +K)
' (Û2 − 1) (4.15)

The last equality is due to the fact that K � 1 (K = h∞/hΓ ' 30). This equation can
be solved analytically and we get the following expressions for Û , Ĥ and Γ̂ :

Û = − tanh(X̂) , Ĥ =
2

1 + tanh(X̂)
, Γ̂ =

1 +K

K + tanh(X̂)
(4.16)

The profile h(x) in the thickening region is recovered by adjusting with experimental
curves a single fitting parameter Ma. These profiles are sketched with dotted lines in
Fig. 6.d.e.f. The value of Ma is found to be the same Ma = 1.6 ± 0.2 whatever the
capillary number and allows to determine a typical value of the Gibbs-Marangoni elastic
modulus E = −dγ/d lnΓ = γMa =24 mN/m in good agreement with values found in
the literature Georgieva et al. (2009).

It is important to note that a significant difference between our geometry and the
rising bubble in 3D studied in Cuenot et al. (1997) is that the Marangoni effect, i.e. the
surface tension gradient, have a direct signature on the film thickness. We thus determine
the surface tension profile from the experimental value of the thickness, and we compare
them to our theoretical predictions. The interface velocity field is extracted from Eq.
(4.10) and the surface tension is then obtained from Eq. (4.11) which can be integrated
into

δγ(x) = ηo

∫ x

xmin

us(x
′) + Ud

h(x′, 0)
dx′ , (4.17)

with xmin = −60 µm an arbitrary value far from the rear meniscus, where the surface
tension is the reference one.

Equation (4.10) gives access to the interfacial velocity profile in the thickening region,
shown in Fig. 8.a. It varies from -Ud in the flat film to a maximal value at the bump,
umax
s in the range [−0.3,−0.1]Ud, see Fig. 8.b. The relative interfacial tension variation
δγ(x)/γ is plotted in Fig. 8.a. The surface tension decreases from γ = 15 mN/m in
the flat film (the reference value at equilibrium) to a smaller value γmin at the top of
the bump. ∆γ = γmin − γ is constant over our range of capillary numbers within the
precision of our error bars, and of order ∆γ ∼ −5× 10−4N/m, which corresponds to a
∼ 3% decrease. These predictions are obtained using Eq. (4.10) and (4.11), which do not
rely on any assumption on surfactant transport. They are valid whatever the interfacial
rheology, as long as the Laplace pressure variations are negligible. Remarkably, both the
surface tension and surface velocity variations directly deduced from h are consistent
with the full model, with Ma = 1.6, see lines Fig. 8.a.
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Figure 8. (a) Surface tension (star) and interfacial velocity (cross) in the thickening region,
relative to their values in the flat film. Data points are obtained by applying Eq. (4.10) and Eq.
(4.17) to the experimental thickness profile for Ca = 1.3 × 10−3 (Fig. 6.c). Solid and dashed
lines correspond respectively to the interfacial tension and velocity deduced from Eq. (4.16) with
Ma = 1.6. (b) Variation of the maximum interfacial velocity at the bump relative to that of
the droplet, as a function of Ca.

We now turn to the oscillating region, closer to the rear meniscus, where both the
Laplace pressure effect and the presence of surfactant at the interface contribute. We
propose a semi-empirical model to predict the film profile in this domain. In light of
the previous analysis, we assume an incompressible interface of uniform velocity umax

s ,
measured above. Eq. (4.2) then becomes:

−γ ∂
3h

∂x3
=

6ηo
h3

[umax
s − Ud] [h− h∗∞] (4.18)

with umax
s = Ud(1− 2h∞

hmax
). The curvature at small x is 1/H0 and the film thickness h∗∞

at large x is fitted so that the maximum height hmax is recovered by the model, i.e.
h∗∞ = hmax/1.064. This numerical prediction is now in very good agreement with the
experimental back oscillation, see Fig. 6, thus validating that the interface velocity does
not vary much once it reaches values as small as umax

s .

4.4. Conclusion

These results are consistent with the accumulation of surfactants at the rear of the
droplet, transported from the drop front by convection: the interface flows at the velocity
−Ud in the film, and thus brings surfactant in the rear region. If axial diffusion is not fast
enough, surfactants accumulate and reduce the surface tension. This induces a Marangoni
stress which, in turn, reduces the amplitude of the backwards interface velocity. Fig. 9
provides a schematic representation of the mechanisms at play. The resulting Marangoni
stress imposes a constant interfacial velocity in the oscillating region. The thickening
region corresponds to a compression zone in the thin film, where the interfacial velocity
rapidly increases from a value close to the wall velocity in the flat film, to a value close
to the droplet velocity at the rear. The signature of this transition is a sudden thickening
of the film.

In a nutshell, the lubrication film must be split into three regions in terms of boundary
conditions: 1) the front meniscus and flat film, with a stress-free interface, 2) the
oscillating region at the rear meniscus, with an incompressible interface of velocity umax

s ,
and 3) a transition zone, or thickening region, between the first two.
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Figure 9. Schematic side views of the droplet. (a) Bretherton’s classical model predicts two
stagnation points: a divergent one in the front dynamical meniscus, and a convergent one in the
rear dynamical meniscus. (b) Representation of a surfactant concentration field at the interface,
consistent with our measurements for the interfacial velocity.

5. Transverse film profiles

The transverse variation of the film thickness h(0, y) as a function of y is shown in Fig.
10. By definition, h(0, y) = h∞(y) for |y| < ymax. In this domain, h∞(y) is maximal for
y = 0 and slowly decreases as |y| increases. Then for |y| > ymax, the thickness decreases
with a steeper slope before increasing sharply close to the lateral meniscus, creating what
we refer to as lateral ravines.

5.1. Central region and front meniscus

Burgess & Foster (1990) showed that Bretherton’s 2D approach remains valid close
to the front of the droplet if the capillary number is defined using the projection of the
velocity along the normal to the film contour eρ. This can be understood qualitatively at
the scale of the dynamical meniscus, in the local frame (eρ, eθ, ez). In the plane (eρ, ez)
chosen at an arbitrary angle θfr � π/2 (Fig. 3), Bretherton’s problem is recovered: the
Laplace pressure is governed by the curvature 1/Ho of a meniscus quasi-invariant in the
eθ direction, the viscous forces are governed by the wall velocity −Ud cos(θfr), and the
tangential wall velocity Ud sin(θfr) has no influence on the profile. Since the thickness
of the lubrication film deposited behind the front dynamical meniscus is determined by
the balance of the viscous and Laplace pressure contributions, it is expected to decrease
with increasing θfr.

Then, far enough from the front dynamical meniscus along eρ, the pressure gra-
dients scale as ∇P film ∼ γh∞/R3. This pressure gradient induces velocities of order
∇P filmh2/ηo ∼ 10−8m/s, which are negligible compared to our droplet velocities. Once
formed in the front meniscus domain, the thin film stays at rest on the wall in the central
region until it reaches the rear meniscus domain. The film thickness hBF,c(y) in the
central region is thus determined by the velocity normal to the droplet’s contour at the
same value of y, −Ud cos(θfr), and does not depend on x. This leads to the prediction for
the central film (Burgess & Foster (1990)):

hBF,c(y) = 1.337Ho

[
Ca cos(θfr)

]2/3
= 1.337HoCa

2/3

[
1− y2

R2

]1/3

. (5.1)

This corresponds to a weighted Bretherton model, based on the local normal velocity
in the front meniscus domain. A similar approach, using the normal velocity to introduce
a modified capillary number, was adopted in Nagel (2014) to derive the viscous friction
in the dynamical meniscus of a Hele-Shaw droplet. The transverse variation of h∞(y)
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Figure 10. Transverse film profiles, for (a) Ca = 5.7 × 10−4, (b) Ca = 7.2 × 10−4, (c)
Ca = 2×10−3 and (d) Ca = 2.4×10−3. The dashed line is hBF,c, given by Eq. (5.1). The black
solid line is the solution of Eq. (5.4). The dotted lines indicate ymax.

is compared to hBF,c(y) in Fig. 10, for |y| < ymax. We find that the vault shape of the
experimental profile is qualitatively recovered by the model, but the decrease on the
sides is overestimated. The disjoining pressure cannot be responsible for that thickening.
Indeed, as stated in section 2.2, the main contribution setting a film thickness above 40
nm is clearly attributed to hydrodynamics while van der Waals dispersion contribution
lies within the error bar.

5.2. Lateral region

At y = ymax the front meniscus domain ends without sharp transition (see section 3).
In the lateral region, the polar coordinates are more convenient, and we consider below
h(ρ, θ). In this region, for a given θ, h(ρ, θ) first decreases before increasing, i.e. a pinch
develops, see the radial profiles plotted in Fig. 11. We define the film thickness at the
pinch hp(θ) as the minimum of h(ρ, θ) for a given θ in the lateral domain. The variation
of hp(θ) with θ is shown in Fig. 13: hp(θ) decreases down to a minimal value hmin, for
θm slightly larger than π/2, then increases under the influence of the rear meniscus. For
|θ| larger than a critical angle θb ∈ [θm;π − θmax], there is a bump preceding the pinch,
see Fig. 11.e and 11.f.
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Figure 11. Radial profiles for (a) θ = − 6π
16
' θmax, (b) θ = − 7π

16
, (c) θ = − 8π

16
(d) θ = − 9π

16
, (e)

θ = − 10π
16

and (f) θ = − 11π
16

for Ca = 7.2×10−4 . Solid line: solution of (5.4) with the numerical

profile hnum(ρ, θmax) as initial condition, i.e. the solution of (5.3) for θ = θmax = π
2
− δ

′
θφ

′
max.

Dashed line: solution of (5.4) using the experimental profile hexp(ρ, θmax) as an initial condition.
Inset: the dotted line indicates the location of the radial profile for each angle value.

5.2.1. Hydrodynamical approach

To describe formally the lateral meniscus, a weighted 2D Bretherton model based on
the normal velocity is no longer physical, since the meniscus is no longer perpendicular
to the flow, and would lead to a null film thickness for θ = π/2. In this region, the
orthoradial viscous entrainment, stemming from the orthoradial wall velocity Ud sin(θ),
has to be considered. To account for this truly 3D process, the lubrication equations
established by Burgess & Foster (1990) are adapted to our geometry and solved nu-
merically. This model relies on the same approximations as previously, except for the
assumption of transverse translational invariance. The Stokes equation in the lubrication
approximation, ∇2Dp = ηo∂

2u/∂z2, is written in cylindrical coordinates and integrated
three times with respect to z to get the flow through the film thickness h. The boundary
conditions are u(0) = −Udex and ∂u/∂z(h) = 0. Applying the continuity equation to
the flow yields:

Ud cos θ
∂h

∂ρ
− Ud sin θ

ρ

∂h

∂θ
− ∂

∂ρ

[
γ

3ηo

∂3h

∂ρ3
h3

]
= 0, (5.2)

see detail in Appendix B.
The second term of Eq. (5.2) is negligible for angle θ up to θ = θmax since the

orthoradial variations (1/ρ)(∂h/∂θ) of h is much smaller than the radial variations ∂h/∂ρ
of h for H0 � R . In this condition, the second term can be neglected in (5.2), for θ < θmax

so that Bretherton’s equation (4.4) is recovered using the local normal velocity Ud cos θ:

Ud cos θ(h− h∞) =
γ

3ηo

∂3h

∂ρ3
h3. (5.3)

As discussed earlier, solving this equation leads to the solution (5.1).
On the lateral side of the droplet, however, the orthoradial component of the viscous
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. 

Figure 12. Analogy with a soap film deposited along θ rather than over time. (a) A film of

thickness h∞(φmax) = 1.337HoCa
2/3(φmax)2/3 is deposited at (R,−φmax) = (R,−(π

2
− θmax))

and (b) thins until the influence of the rear meniscus is felt.

driving has to be considered and all three terms of (5.2) must be taken into account. To
build a master equation, ensuring that the first two terms in Eq. (5.2) are of the same
order of magnitude as long as the rescaled angle is of order 1, Burgess & Foster (1990)
introduce the following rescalings:

ρ = R+Hoδrr
′

z = Hoδzz
′

h = Hoδzh
′

θ − π

2
= φ = δθφ

′

where δr =
(
ε1/2Ca

)2/5
, δz =

(
ε1/2Ca

)4/5
and δθ = ε1/2

(
ε1/2Ca

)1/5
. These quantities

involve ε = H0/R and the capillary number Ca, under the assumption Ca� ε� 1. With
Ca = 7.2× 10−4 and ε = 8× 10−2, we get δr = 0.03, δz = 0.001 and δθ = 0.05 rad= 3◦.
Using these non dimensional variables and a first order expansion of the sin and cos
terms around π/2, Eq. (5.2) becomes:(

1

3
h

′

r′r′r′
h

′3 + φ
′
h

′
)
r′

= −h
′

φ′ (5.4)

5.2.2. Analogy with marginal pinching in soap films

To put this last equation in a different light, it is worth noticing that by taking out the
term for a radial viscous supply of liquid ((φ

′
h′)r′ , negligible for θ ∼ π/2) and replacing

φ
′

by the time t, we recover the equation describing the drainage of a soap film (Aradian
et al. (2001)). In other words, in this region the lubrication film can be pictured as a soap
film being drained along θ, rather than over time. The capillary suction by the lateral
meniscus is responsible for the apparition of the pinch for θ > θmax on both sides of the
droplet, see Fig. 11.

This process is quantified by Aradian et al. (2001) in a 2D geometry, much simpler than
the 3D droplet investigated by Burgess & Foster (1990) and the present work. However,
we can establish that the scalings obtained for the pinch thickness and width are identical
in both cases. In Aradian et al. (2001), a foam film is put into contact with a meniscus
at time t = 0. The film is pinched, with a minimal thickness Hm and a pinch width W
evolving over time. They assume a no-slip condition at the air/liquid interfaces, so that
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the problem is equivalent to a film deposited on a solid wall, with a stress free condition
at the air/liquid interface, and can be directly translated to our case.

We look at the droplet motion in the laboratory frame of reference, (O′, x′, y′, z′);
the geometrical parameters used are defined in Fig. 12. A thin film is produced at a
position (x′, y′) when the front of the droplet passes that point, at time called t1. The
rear meniscus reaches this point (x′, y′) at the time called t2. If y′ � R, i.e. close to the
x axis, the fluid velocity is negligible in the central film (see section 5.1) and the thin
film is thus at rest on the wall between t1 and t2. However, close to the lateral meniscus,
this assumption fails. The lateral capillary suction (in the y′ direction) induces a film
thinning lasting between times t1 and t2 and the formation of the pinch.

To compare our study with Aradian’s one, we consider the film deposited at the point
(x′0, y

′
0), with y′0 = ymax. It has the polar coordinates (ρ = R;φ = −φmax = −(π/2−θmax)

at the time t1 (with the laboratory and drop frames at the same position at time t1).
For convenience sake, we choose t1 = 0. The thickness of the deposited thin film is
h∞(φmax) = 1.337HoCa

2/3(φmax)2/3 (at first order in φmax). At a later time t, the polar
coordinates are (ρ = R;φ = −φmax + Udt/R)) (see Fig. 12). So the age of the film since
the beginning of the pinching process is simply t = (φ+ φmax)R/Ud.

The scaling laws at long times for the pinch profile give us (Aradian et al. (2001)):

W ∼ Ho

(
ηoh∞(φmax)

γ

)1/4

(t)−1/4

Hm ∼ Ho

(
ηoh∞(φmax)

γ

)1/2

(t)−1/2 (5.5)

In these equations, the theoretical value of φmax remains to be determined. It corre-
sponds to the point where the film thickness gradient, projected along x, is no longer
dominated by the radial gradient (Burgess & Foster (1990)). In the lateral region, at
the first order in φ, ∂h/∂x = −(1/R)∂h/∂φ − φ∂h/∂ρ. Equaling both contributions at
φ = φmax, and using ∂/∂φ ∼ 1/φmax and ∂/∂ρ ∼ 1/W , we get φmax = (W/R)1/2.
Inserting it in h∞(φmax) and solving the system 5.5 yields:

W ∼ Ho

(
Ho
R

)1/5
Ca2/5

(
1 + φ

φmax

)−1/4

Hm ∼ Ho

(
Ho
R

)2/5
Ca4/5

(
1 + φ

φmax

)−1/2

φmax ∼
(
Ho
R

)3/5
Ca1/5 (5.6)

This is the same scaling as the one established by Burgess & Foster (1990).
As a last remark, the interface profile at given time (or angle in our situation) is

related to two different length scales in Aradian et al. (2001): the radius of curvature
in the vicinity of the pinch, and the distance between the minimal thickness and the
unperturbed flat film. The first one scales as W , which decreases with φ, whereas the

second scales as λ ∼ HoCa
3/5(Ho/R)1/5

(
1 + φ

φmax

)1/4

, which increases with φ. The

presence of two different length scales to characterize the interface profile in the radial
direction means that, contrary to the front dynamical meniscus, the profiles are not self
similar in the lateral region.

5.2.3. Results and discussion

To compare that theoretical approach to our experimental data, we establish numerical
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Figure 13. (a) Numerical topography obtained by joining the profiles calculated in the different
dynamical meniscii with the central domain for Ca = 7.2×10−4. (b) Colormap of the lubrication
film thickness for Ca = 7.2 × 10−4. (c) Minimum film thickness across the pinch hp(θ) as a
function of θ for |θ| ∈ [θmax;π − θmax]. The inflexion point occurs for θi =1.47 rad and the
minimal thickness hmin is reached for θm =1.72 rad. Solid line: solution of (5.4) using the

solution of (5.3) for θ = θmax = π
2
− δ

′
θφ

′
max, hnum(ρ, θmax), as an initial condition for the

numerical calculation. Dashed line: solution of (5.4) using the experimental profile for θ = θmax,
hexp(ρ, θmax), as an initial condition.

profiles by solving Eq. (5.4) for −φ′

max 6 φ
′
6 φ

′

max with φ
′

max =7.5 and −18 6 r
′
6 26.

This corresponds, in physical units, to the parameter range [θmax;π − θmax] and [ρmin =
79µm ; ρmax = 90µm]. A profile h′(r′,−φ′max) is chosen as an initial condition and the pro-
files h′(r′, φ′) for larger angles are obtained using a Crank-Nicolson scheme. The boundary
conditions are a constant curvature in the meniscus, d2h/dr2(ρmax) = 1/Ho, and a
connection to a flat film of constant thickness, h(ρmin, θ) = h(ρmin, θmax). The simulations
have been performed using either the numerical profile from Eq. (5.3), hnum(ρ, θmax), or
the experimental profile hexp(ρ, θmax) for the initial condition at φ′ = −φ′max. An example
of the numerical topography of the film obtained by joining the calculated profiles in the
different dynamical meniscii with the central domain is shown in Fig. 13.a, while the solid
line and the dashed line in Fig. 13.b are the solutions of (5.4) computed respectively from
hnum(ρ, θmax) and hexp(ρ, θmax).

Several qualitative features are well recovered by the simulations. As expected, a pinch
develops, Fig. 11, as the film thickness decreases slowly from the initial condition before
increasing sharply near the rear meniscus, see Fig. 13.b. Its characteristic width in the eρ
direction is in good agreement with the experimental observations, Fig. 11. In agreement
with Eq. 5.6, W decreases with φ for φ ∈ [−φmax;φm] (φm = θm− π

2 ), however our image
resolution does not allow us to measure a power law exponent for its variation with φ or
Ca. The angles θm, corresponding to the smallest pinch thickness, and θb, at which the
bump appears, are both predicted quantitatively, see Fig. 11.d-e. θi, shown in Fig. 14.a
and Fig. 13.b, is the angle at which the curvature inversion occurs and is used to measure
the ravines angular extension. The angular extent of the pinch, ∆θ = θm−θi, is measured
from hp(θ), and its variation with Ca is shown in Fig. 14.b, for both experimental and
numerical datasets. The correct order of magnitude is recovered, though we cannot draw
conclusions on the trend in Ca.

In contrast, the film thickness at the pinch is strongly underestimated by the model,
for every capillary number and independently on the initial conditions. The minimum
film thickness in the lateral meniscus, hmin, does not seem to follow the predicted scaling
∝ Ca4/5 (Fig. 14.c). As for hp(θ), or equivalently Hm, the angular range |θ| ∈ [θi, θm]
over which the scaling from Eq. (5.6) can be compared to the experimental profile (Fig.
13.b), and predicts a decrease with θ, is too small to allow us to measure a power law
exponent. Then, for |θ| > θm ' π/2 + 0.06π, hp(θ) increases with |θ| due to the rear
meniscus, which could not be captured by the analogy with a 2D soap film.
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Figure 14. (a) Experimental topography for Ca = 7.2×10−4. (b) Angular extent of the lateral
meniscus as a function of Ca. The dashed line is ∆θ given by the numerical calculation. (c)
Minimal film thickness in the lateral region, hmin, as a function of Ca. The dotted line is hmin

obtained from the numerical calculation.

To sum things up in the lateral region, the hydrodynamical model manages to predict
accurately the appearance of the pinch and the related characteristic angles, but fails
to capture quantitatively the height of the lubrication film, which is underestimated
even in the outer edges of the central region. Similarly to what we observe at the rear
meniscus, we expect Marangoni effects to account for this thickening: the pinching of the
film by capillary suction could be slowed down by a stiffening of the interface. Modeling
the lateral sides of the film topography would then require to determine the surfactant
distribution at the interface, and calculate the resulting additional Marangoni stresses
affecting the flow in the film. This is a much more complex endeavour than at the
rear meniscus, where the uniaxial flow allowed us to neglect the pressure gradients at
the bump, and thus estimate the interfacial velocity. In the lateral region, the loss of
uniaxiality does not allow to estimate the 2D interfacial velocity and is beyond the scope
of this paper. The numerical topography obtained from this model is actually more likely
to reproduce the lubrication film developing in non surfactant laded systems or slower
droplets, for which Marangoni effects are less prone to appear.

6. Conclusion

We report on the first quantitative experimental study analyzing the whole topography
of the lubrication film under a moving, confined droplet. A purely hydrodynamical model
allows us to qualitatively recover its main features, such as a thickening of the lubrication
film as the velocity increases, with the development of ravines along the sides and an
oscillation at the rear. Importantly, we find that the complete topography cannot be
well-described by assuming a single general boundary condition along the whole interface.
Bretherton’s model captures quantitatively the behavior at the front meniscus and in the
central, flat region. However, variations in surfactant distribution and interface velocity
lead to local thickening of the lubrication film, compared to the theoretical predictions.
The film profile in the rear region is well reproduced considering a convective surfactant
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transport model in the thickening region and by assuming the interface to be locally
incompressible, due to a higher concentration of surfactant around a stagnation point, in
the oscillating region. Another film thickening occurring on the sides is more challenging
to model, as it would require to write the surfactant distribution in a region where the
interfacial velocity is 2D.

To our knowledge, we provide the first experimental evidence of a non-homogeneous
surfactant concentration between the front and rear meniscus of a moving droplet, and
a first measurement of such surface tension variations. The strength of this experimental
approach is to provide surface tension profile directly from the interface profile without
requiring any a priori surfactant transport model. In short, our experimental approach
proves very well-adapted to the study of confined traveling droplets. Several interfacial
properties have been extracted and we believe it could provide insight into more complex
systems, such as viscous droplets, non-soluble surfactants, or complex fluids.

Appendix A. Determination of the film thickness at the rear
oscillation

The relation between light intensity and film thickness is shown in Fig. 15.g: a given
gray level can correspond to different heights. This appendix details our method to
discriminate between the possible thicknesses. First, we determine the thickness of the
film at the center of the droplet. There, the correct branch of the intensity-thickness
relation can be identified by following the variation of the intensity with Ca, starting
from a slow droplet for which the center sits on branch (1), see the picture in Fig. 15.a.
Then, from pictures a to c, the intensity decreases as the film thickness increases along
branch (1). Once the first minimum is reached, the intensity increases from pictures d
to f, corresponding to a film thickening along branch (2). Then, as we move towards
the front of the droplet, i.e. along the positive x axis (y = 0), the intensity decreases
in Fig. 15.a. This corresponds to a decrease along the right side of branch (1), and a
film thickness increase. A similar analysis is made for each picture. Oppositely, along
the positive y axis (x = 0), the intensity increase means a shift towards the left side of
branch (1) and a decrease in film thickness.

In contrast with the monotonous behavior at the front end, a crescent-like pattern is
visible at the rear in Fig.15.a, where the light intensity varies over the whole range of
gray levels. This makes the identification of the thickness a priori ambiguous. Moreover,
the topography involves a local extremum (the middle of the crescent), so that the line
level continuity can not be used to remove the ambiguity. In Fig. 15.a for instance, the
isolated bright crescent surrounded by dark pixels can either be a ravine branch (1))
or a bump (branch (2). To remove uncertainty, the two possible thickness profiles are
shown in Fig. 16 for different Ca. Since the thickness is expected to vary monotonously
for increasing capillary numbers, we can screen for the correct film profiles. In these
examples, only the red stars correspond to a physical trend of film thickness evolution,
and we can rule out the black dots that show a non monotonous evolution of the film
thickness with increasing Ca.

The discarded profile, showing a deep ravine (black dots), is closer to Bretherton’s
theoretical prediction than the profile we selected. However, Bretherton’s solution does
not recover the right radial length-scale for the profile variation, and thus cannot in any
case be an accurate fit to model the oscillation at the rear meniscus.
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Figure 15. Raw pictures of droplets for (a) Ca = 7.2 × 10−4 (diameter 170 µm), (b)
Ca = 9.5×10−4 (diameter 173 µm), (c) Ca = 1.3×10−3 (diameter 180 µm), (d) Ca = 1.5×10−3

(diameter 176 µm), (e) Ca = 1.8× 10−3 (diameter 174 µm), (f) Ca = 2× 10−3 (diameter 195
µm). (g) Light intensity as a function of the film thickness, deduced from the optical model
detailed in Huerre et al. (2016).
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Figure 16. Two possible profiles (black dot :ravine, red star: bump) at the back of the droplet
for (a) Ca = 7.2× 10−4, (b) Ca = 9.5× 10−4; (c) Ca = 1.3× 10−3; (d) Ca = 1.5× 10−3; (e)
Ca = 1.8× 10−3; (f) Ca = 2× 10−3

Appendix B. Lubrication equations for a circular droplet

The lubrication equation is ∇2Dp = η∂2u/∂z2, with the velocity u = uρeρ + uθeθ.
Using the boundary condition u(0) = −Udex and ∂u/∂z(h) = 0 we get:

1
ηo

∂p
∂ρ =

∂2uρ
∂z2 = A =⇒ uρ = A

2

(
z2 − 2 z h

)
− Ud cos θ (B 1)

1
ηoρ

∂p
∂θ = ∂2uθ

∂z2 = A′ =⇒ uθ = A′

2

(
z2 − 2 z h

)
+ Ud sin θ (B 2)
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The flux Q =
∫ h

0
udz is given by

Q =

(
−A

3
h3 − Udh cos θ

)
eρ +

(
−A

′

3
h3 + Udh sin θ

)
eθ (B 3)

div(Q) = 0 = 1
ρ
∂(ρQρ)
∂ρ + 1

ρ
∂Qθ
∂θ (B 4)

= −Ah
3

3ρ −
1
3
∂(Ah3)
∂ρ − Udh cos θ

ρ − Ud cos θ ∂h∂ρ −
1
3ρ
∂(A′h3)
∂θ + Ud sin θ

ρ
∂h
∂θ + Udh cos θ

ρ (B 5)

Assuming Ah3/ρ � ∂(Ah3)/∂ρ and (1/ρ) ∂(A′h3)/∂θ � ∂(Ah3)/∂ρ we get the
Reynolds’ equation

Ud cos θ
∂h

∂ρ
− Ud sin θ

ρ

∂h

∂θ
+

1

3

∂Ah3

∂ρ
= 0 (B 6)

where A is given by the Laplace’s law A = 1
ηo

∂p
∂ρ = − γ

ηo
∂3h
∂ρ3 .

Appendix C. Disjoining pressure contribution

In the range of confinement that is investigated using microfluidics, the thin liquid film
squeezed between the droplet and the wall may be so thin that intermolecular interactions
come into play and may set the lubrication film thickness, Huerre et al. (2015). In a static
configuration, our experimental set-up can even be used to build disjoining pressure
isotherms where the pressure is set by the level of confinement, allowing to investigate
high pressures thanks to small cavity thicknesses. The film thickness is measured using
RICM, Huerre et al. (2017). In these two previous works, the dominant contribution of the
intermolecular interaction was due to electrostatic interactions. Under such experimental
conditions, the flow in the thin liquid film is given, using the lubrication approximation
by:

∂

∂x

(
γ
∂2h

∂x2
+Πdisj

)
= −η0

∂2u

∂z2
(C 1)

where γ∂2h/∂x2 is the Laplace pressure, u is the x-component of the velocity in the
droplet’s frame, and Πdisj is the disjoining pressure given by :

Πdisj = Πelec +Πν=0
vdW +Πν>0

vdW

where Πelec = 64nkBT tanh (eΨ1/kBT ) tanh (eΨ2/kBT ) exp(−h/λD) is the entropic con-
tribution of the electrostatic interaction, where e is the charge of an electron, λD is the
Debye length and Ψi is the potential of interface i. For sake of simplicity we consider
an upper limit of this contribution by taking tanh (eΨ1/kBT ) tanh (eΨ2/kBT ) = −1.

Πν=0
vdW = exp(−h/λD) × Aν=0

6πh3
is the van der Waals interaction at zero frequency, and

Πν>0
vdW =

Aν>0

6πh3
is the van der Waals dispersion contribution. For a droplet at rest, the

disjoining pressure sets the film thickness, which is equilibrated by the Laplace pressure
γ/H0 ∼ 2 kPa, see FIG. 17.a. In our experimental configuration, the surfactant that
we use is charged positively, and the glass substrate is charged negatively leading to
an attractive electrostatic interaction. Actually, the droplets wet the substrate at low
velocity. In order to avoid such interactions, the Debye layers are purposely screened by
adding salt in the external phase such that the Debye length is reduced to λd = 0.2
nm. At rest, the estimated film thickness from figure 17 would be 5 nm. Such a small
film thickness is explained in our experimental configuration by both a high confinement
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Figure 17. (a) Van der Waals and electrostatic contributions to the total disjoining pressure
Πdisj. The red horizontal line represents the imposed confinement pressure γ/Ho. (b) Zoom:
of the previous graph. Both imposed pressure and disjoining pressure are equal at equilibrium,
leading to an equilibrium film thickness of 5 nm (intersection of both curves).

(small H0), leading to high pressures as noted in Huerre et al. (2017), and a small
Debye length (0.2 nm). The fact that we experimentally observe film thicknesses above
40 nm in all the reported experiments shows that the film thickness is monitored by
hydrodynamics. As such, a film thickness about 40 nm corresponds to a disjoining
pressure about 4 Pa (FIG.17.b), a value which is three orders of magnitude lower than
the capillary suction given by the Laplace pressure. We believe that disjoining pressure
effects can be comfortably neglected in equation (C 1) and lie within the error bars.

Acknowledgements

We thank Dr. Michel Stchakovsky for performing the ellipsometric measurements of
the refractive indices used in the optical model. This work was supported by CNRS,
IPGG (Equipex ANR-10-EQPX-34), ESPCI Paris, Agence Nationale de la Recherche
(ANR) under the grant 13-BS09-0011-01.

REFERENCES

Aradian, Achod, Raphael, Elie & De Gennes, P-G 2001 Marginal pinching in soap films.
EPL (Europhysics Letters) 55 (6), 834.

Brenner, Howard 2013 Interfacial transport processes and rheology. Elsevier.
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188.
Burgess, D & Foster, MR 1990 Analysis of the boundary conditions for a Hele-Shaw bubble.

Physics of Fluids A: Fluid Dynamics 2 (7), 1105–1117.
Cantat, I. 2013 Liquid meniscus friction on a wet wall: bubbles, lamellae and foams. Phys.

Fluids 25, 031303.
Cantat, I. & Dollet, B. 2012 Liquid films with high surface modulus moving in tubes:

dynamic wetting film and jumpy motion. Soft Matt. 8, 7790.
Champougny, Lorène, Scheid, Benoit, Restagno, Frédéric, Vermant, Jan & Rio,

Emmanuelle 2015 Surfactant-induced rigidity of interfaces: a unified approach to free
and dip-coated films. Soft Matter 11 (14), 2758–2770.

Cuenot, B, Magnaudet, J & Spennato, B 1997 The effects of slightly soluble surfactants
on the flow around a spherical bubble. Journal of Fluid Mechanics 339, 25–53.

Delacotte, J., Montel, L., Restagno, F., Scheid, B., Dollet, B., Stone, H. A.,



24 B. Reichert, I. Cantat and M. -C. Jullien

Langevin, D. & Rio, E. 2012 Plate coating: Influence of concentrated surfactants on
the film thickness. Langmuir 28 (8), 3821–3830.

Denkov, N. D., Tcholakova, S., Golemanov, K., Subramanian, V. & Lips, A. 2006
Foam-wall friction: Effect of air volume fraction for tangentially immobile bubble surface.
Colloids Surf. A 282, 329–347.
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