
HAL Id: hal-01839322
https://univ-rennes.hal.science/hal-01839322

Submitted on 14 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fractional Wavelet Scattering Network and Applications
Li Liu, Jiasong Wu, Dengwang Li, Lotfi Senhadji, Huazhong Shu

To cite this version:
Li Liu, Jiasong Wu, Dengwang Li, Lotfi Senhadji, Huazhong Shu. Fractional Wavelet Scattering
Network and Applications. IEEE Transactions on Biomedical Engineering, 2019, 66 (2), pp.553-563.
�10.1109/TBME.2018.2850356�. �hal-01839322�

https://univ-rennes.hal.science/hal-01839322
https://hal.archives-ouvertes.fr


JOURNAL OF LATEX CLASS FILES, VOL. , NO. , MANUSCRIP IS ACCEPTED IN JUNE, 2018 1

Fractional Wavelet Scattering Network and
Applications

Li Liu, Jiasong Wu, Member, IEEE, Dengwang Li, Lotfi Senhadji, Senior Member, IEEE
and Huazhong Shu, Senior Member, IEEE

Abstract—Objective: The present study introduces a fractional
wavelet scattering network (FrScatNet), which is a generalized
translation invariant version of the classical wavelet scattering
network (ScatNet). Methods: In our approach, the FrScatNet is
constructed based on the fractional wavelet transform (FRWT).
The fractional scattering coefficients are iteratively computed
using FRWTs and modulus operators. The feature vectors
constructed by fractional scattering coefficients are usually used
for signal classification. In this work, an application example
of FrScatNet is provided in order to assess its performance
on pathological images. Firstly, the FrScatNet extracts feature
vectors from patches of the original histological images under
different orders. Then we classify those patches into target (be-
nign or malignant) and background groups. And the FrScatNet
property is analyzed by comparing error rates computed from
different fractional orders respectively. Based on the above patho-
logical image classification, a gland segmentation algorithm is
proposed by combining the boundary information and the gland
location. Results: The error rates for different fractional orders of
FrScatNet are examined and show that the classification accuracy
is improved in fractional scattering domain. We also compare the
FrScatNet based gland segmentation method with those proposed
in the 2015 MICCAI Gland Segmentation Challenge and our
method achieves comparable results. Conclusion: The FrScatNet
is shown to achieve accurate and robust results. More stable and
discriminative fractional scattering coefficients are obtained by
the FrScatNet in this work. Significance: The added fractional
order parameter is able to analyze the image in the fractional
scattering domain.

Index Terms—fractional wavelet transform (FRWT), scattering
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network, classification, histopathology image, gland segmenta-
tion.

I. INTRODUCTION

INmost cases, when dealing with images, the conveyed
information varies considerably over time and space. Ex-

tracting robust features and measuring similarities in order to
get an effective image analysis is not straightforward [1]. The
presence of noise, deformations and non-stationary behavior
make it difficult to segment [2]–[4] or to classify [5] signals.
In image processing, textural pattern, as one of robust features,
is usually used to describe surface object properties and their
relationships to the surrounding environment [6]–[8].

The Wavelet Transform (WT) is one of the most widely
used tools for transient and non-stationary signals and image
texture analysis. It is able to simultaneously describe signals
in both time and frequency domains although some limitations
have been pointed out [9]. To overcome these difficulties,
fractional Fourier transform (FRFT) has been proposed, gen-
eralizing the Fourier transform (FT) and extending the time-
frequency plane to the time-fractional-frequency plane [10].
However, the fractional Fourier representation fails in locating
the occurrence of the FRFT spectral content at a particular
time due to its global kernel [11], which is indispensable
when analyzing non-stationary signals. A modification, called
short time FRFT [12], is developed to try to overcome this
time location problem. But the technique is limited by the
fundamental uncertainty principle in its application [13]. Like
the FRFT, the fractional WT (FRWT) derived in [14] is
aimed at representing the fractional spectrum. Constructed
on the FRFT, it also fails in obtaining the local information
of the signal. Many other FRWTs are also developed to
jointly display time and FRFD (fractional Fourier domain)-
frequency information of a signal [15]. More general FRWT
methods are proposed based on fractional convolution [16],
[17]. The FRWT reported in [16] is easy to implement and
has low computational complexity. The FRWT described in
[17] depicts more mathematical properties. In this study, we
choose the FRWT presented in [16] to construct the fractional
wavelet scattering network (FrScatNet).

For classification purpose, a feature vector must be set.
Wavelet coefficients are often used. Because WTs are not
invariant to translation, a scattering operator that is invariant to
translation and rotation is built from the wavelet coefficients
[18]. The translation invariant representation is computed
by cascading WTs and modulus pooling operators, which
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averages the amplitude of iterated wavelet coefficients [1],
[18], [19]. Due to the WT limitations in the time-frequency
domain, if the energy concentration of a signal is not optimal
in the frequency domain, the wavelet coefficients are not the
best representation of its energy distribution. So, the detected
scattering coefficients are not the most discriminative features
for signal classification. In this study, the fractional scattering
coefficients are computed by cascading FRWT and averaging
the amplitude of iterated fractional wavelet coefficients in
order to address this issue. The obtained FrScatNet generalizes
the classical wavelet scattering network (ScatNet) from the
scattering domain to the fractional scattering domain. The
added fractional order parameter is then able to analyze
the signal in the fractional scattering domain. We test the
efficiency of the FrScatNet on two-dimensional images in
this study. Besides, we also use it to achieve the gland
segmentation in colon histology images of tissue slides stained
with Hematoxylin and Eosin (H&E).

Let us briefly summarize the state-of-the-art in this very
challenging research area. Histopathological biopsy evaluation
is considered as the gold standard for colon, prostate, and
breast cancer diagnosis, malignancy confirmation and grading
[20], [21]. Colorectal adenocarcinoma is the most common
form of colon cancer. It is of fundamental importance to
achieve good intra-observer and inter-observer reproducibility
in the cancer grading. An automated method with the capa-
bility to detect the morphological information can be used
as computer assistant for cancer grading. There are plenty of
difficulties existing in quantifying the morphology of gland
automatically. The structure, morphology, size and location
of a gland vary significantly. Especially, cancer progresses
may cause changes in the component organization, and also
lead to tissue degeneration. In addition, some glands are even
touching to each other leading to the coalescence problem
[22]. Various approaches have been proposed to achieve gland
segmentation, such as texture based methods [23], [24] ,and
structure based methods [25], [26]. The drawbacks of all these
methods are that they solely use pixel-level color information
while assuming a regular architecture of glandular structures.
Recently, convolutional neural networks have been considered.
Kainz et al [27] combined deep convolutional neural network
and total variation. Li et al [28] used handcrafted features and
convolutional neural networks to recognize glands. Xu et al
[22] presented a multichannel learning approach to extract re-
gion, boundary and location cues. In the MICCAI 2015 gland
segmentation challenge contest [26], the convolutional neural
networks were used and achieved impressive performance.
Chen et al [29] presented a novel deep contour-aware network.
Sirinukunwattana et al [30] proposed a multipath convolutional
neural network segmentation algorithm. Ronneberger et al [31]
applied a u-shaped deep convolutional network. Despite the
good results obtained by these neural networks, the involved
cascaded nonlinearities make their properties and optimal
configurations not clear. The scattering networks address these
questions from a mathematical and algorithmic perspective
by concentrating on a particular class of deep convolutional
networks [1]. Because the scattering network is learning-free
due to the fixed wavelet basis, it can be implemented easily

with less parameters and hardware resource.
In this paper, we propose a generalized FrScatNet based on

the FRWT and use it to classify signals and solve the challeng-
ing problem in gland segmentation. Section II describes the
data sets onto which our experiments are conducted and our
proposed fractional scattering network. Section III illustrates
the results achieved so far and compares our approach to
other reference methods. A discussion is also provided before
concluding (Section IV).

II. METHODS

The used public data sets are firstly sketched and then a full
presentation of the FrScatNet is given.

A. Data Sets

The medical dataset Warwick-QU is provided by the Colon
Histology Images Challenge Contest held at MICCAI2015
[26], [30]. The dataset consists of 165 images derived from
16 H&E stained colon histological slides of stage T3 or T42
colorectal adenocarcinoma. The slides are digitally scanned
at 20 magnifications by Zeiss MIRAX MIDI Slide Scanner
with a pixel resolution of 0.465m. The whole-slide images are
subsequently rescaled to a pixel resolution of 0.620m. Each
section belongs to a different patient. The dataset is grouped
into 85 training images, 60 testing images (test A) and 20
testing images (test B). The annotations are regarded as ground
truth. The dataset exhibits high inter-subject variability in both
stain distribution and tissue architecture.

The public texture database created in [32] includes surfaces
with significant viewpoint changes and scale differences within
each class, whose texture is due mainly to albedo variations,
3D shapes, and a mixture of both. The database is also chosen
as the benchmark for texture recognition. It contains 25 texture
classes and each class has 40 examples. The resolution of the
samples is 640× 480 pixels.

B. The Proposed Fractional Scattering Network

In this section, the formulation of the FrScatNet is de-
scribed. We start by introducing the definition of the FRWT.
Then, a FRWT-based scattering network is proposed. In the
following, the convolution network structure is described.

1) FRWT Definition: According to the definition in [11],
[33], the FRFT can provide signal representation in the frac-
tional Fourier domain, but it fails in obtaining the local struc-
tures of the signal. FRWT is able to handle the problem and
display signal information in the fractional wavelet domain.

For the continuous-time finite energy signal x(t) (i.e. signal
belonging to L2(R), the WT is defined as follows:

Wx(a, b) =
1√
a

∫
R
x(t)ψ̄

( t− b
a

)
(1)

where ψ(t) is the mother wavelet. The ψ̄ denotes complex
conjugate of ψ. The compressed or dilated wavelet ψa,b(t) =
(1/a1/2) ·ψ((t−b)/a) is obtained by the affine transformation
of the mother wavelet. a ∈ R+ is the continuous scale
parameter and b ∈ R represents the shift of the mother wavelet
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(a) (b) (c) (d) (e)

Fig. 1. (a) Realizations of two stationary processes X(µ). Top: Brodatz texture. Bottom: Gaussian process. (b) First-order scattering coefficients S[λ1]x
from the ScatNet [1] are nearly the same (α1 = 1.00, α2 = 1.00). (c) Second-order scattering coefficients S[λ1, λ2]x from the ScatNet [1] are clearly
different (α1 = 1.00, α2 = 1.00). (d) First-order fractional scattering coefficients S[λ1]x from the FrScatNet are clearly different (α1 = 1.00, α2 = 0.70).(e)
Second-order fractional scattering coefficients S[λ1, λ2]x from FrScatNet are also clearly different (α1 = 1.00, α2 = 0.70).

along the t domain. The different scale WT intrinsically
behaves as frequency band-pass filters, which describes the
signal in the time-frequency plane. FRWT has been proposed
as an extension of WT to analyze the time-varying FRFT
spectra [15], [17].

Different definitions of fractional convolution have been
proposed in the literature. According to the definition intro-
duced in [34], the fractional convolution of two signals x(t)
and h(t) ∈ L2(R) is expressed as follows:

xΘαy = e−
j
2 t

2 cot(θ)[x(t)e
j
2 t

2 cot(θ) ∗ h(t)] (2)

where Θα denotes the fractional convolution operator. The
parameter α is the fractional order and θ = απ/2 represents
the rotation angle.

A kind of FRWT with simple structure and easy implemen-
tation is proposed in [15], [16]. It is constructed based on the
fractional convolution according to the relationship between
WT and the classical convolution shown in Eq. (1). For a
given signal x(t) ∈ L2(R), the α order FRWT is:

Wα
x (a, b) = x(t)Θα

( 1√
a
ψ̄(− t

a
)
)

= e−
j
2 b

2 cot(θ)

∫
R
(e

j
2 t

2 cot(θ))ψ̄a,b(t)dt

(3)

where the kernel function is defined by multiplying the clas-
sical wavelet ψa,b(t)with the following chirp signal:

ψα,a,b(t) = ψa,b(t)e
− j2 (t2−b2) cot(θ) (4)

We only consider the parameter 0 < θ < π, and it is easy to
extend outside the interval (0, π). When α = 1, the FRWT
defined in Eq. (3) reduces to conventional WT. The FRWT on
different scales also behaves as a set of band-pass filters.

2) Fractional Scattering Wavelets: In this step, a scatter-
ing transform computes nonlinear invariants from fractional
wavelet coefficients by modulus operator chosen as a nonlin-
ear pooling operator since it has the capability to preserve
the signal energy. For the complex signal x(t) = xr(t) +
jxi(t), xr(t), xi(t) ∈ L2(R), the modulus operator is defined
as |x(t)| = (|xr(t)|2 + |xi(t)|2)1/2. The wavelet-modulus
coefficients, termed as the translation invariant coefficients,
are built from the fractional wavelet by the modulus operator
defined as:

U [λ]x = |xΘαψλ| (5)

More fractional wavelet-modulus coefficients can be obtained
by further iterating on the FRWTs and the modulus operator
along any path. The scattering propagator U [p] for a given
signal x(t) ∈ L2(R) is defined by cascading fractional
wavelet-modulus operators:

U [p]x = U [λm] . . . U [λ2]U [λ1]x

= | ‖xΘαψλ1
|Θαψλ2

| . . . Θαψλm |,
(6)

where U [∅]x = x and ∅ denotes an empty set. A path is defined
by the sequence p = (λ1, λ2, . . . , λm) with a length of m.

For classification purpose, the local descriptors are com-
puted by defining a windowed fractional scattering transform
with a scaled spatial window φ2J :

S[p]x = U [p]xΘαφ2J

= | ‖xΘαψλ1 |Θαψλ2 | . . . Θαψλm |Θαφ2J
(7)

where S[∅]x = xΘαφ2J . The fractional scattering operator
S performs a spatial averaging on a domain whose width is
proportional to 2J . The resulting windowed scattering is nearly
invariant to a translation.
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Fig. 2. An illustration of classification application of the FrScatNet.

3) Fractional Scattering Network: For the path p =
(λ1, λ2, . . . , λm), a convolution network is constructed by
iterating the fractional scattering propagator W̃ , which is built
based on the fractional scattering transform to compute the
fractional complex wavelet coefficient modulus and filter the
lower frequency. In this section a convolution network with
three layers is constructed by iterating the fractional scattering
propagator W̃ (Fig. 2). We generalize the classical WT to
FRWT, so the fractional wavelet coefficients are obtained from
different fractional wavelet domain. The built FrScatNet has
the ability to analyze the image in fractional scattering domain.
The fractional scattering propagator W̃ is applied to the
input signal x to compute the first layer of fractional wavelet
coefficient modulus U [λ1]x and output its local average S[∅]x.
Applying W̃ to all propagated signals U [p]x of the mth layer
outputs fractional scattering signals S[p]x and computes all
propagated signals on the next layer.

The scattering transform is non-expensive and preserves the
signal norm by given conditions like in work [1]. According
to the Proposition 2.1 in [18], if the input signal f is complex
and the following rule is obeyed:

∀J ∈ Z, |φ̂(2Jω)|2 +
∑

j<J,r∈G
|ψ̂(2jrω)|2 = 1 (8)

Then ‖Wf‖2 = ‖f‖2 is obtained by using Plancherel formula.
The similar condition can be given. If there exists ε > 0, such
that for ω ∈ R2,

1− ε ≤ |φ̂(ω)|2 +

∞∑
j=0

∑
r∈G
|ψ̂(2jrω)|2 ≤ 1 (9)

Applying the Plancherel formula, we can deduce that if f is
complex, then Wf satisfies (1−ε)‖f‖2 ≤ ‖Wf‖2 ≤ ‖f‖2 with
‖Wf‖2 = ‖f ∗φ2‖2 +

∑
r∈G ‖f ∗ψλ‖2 [18]. According to the

fractional wavelet transform in Eq. (2). The norm of Wx(u) =

xΘαφ2J (u), xΘαψλ(u), (P = {λ = 2−jr : r ∈ G, j ≤ J})
satisfies ‖W‖2 = ‖Wf‖2 with f = x(u)ejt

2 cot(θ)/2. f is
a complex function and ‖f‖2 = ‖x‖2 . So we can get that
(1 − ε)‖x‖2 ≤ ‖W‖2 ≤ ‖x‖2. We suppose that ε ≤ 1
and the fractional wavelet transform W is non-expansive. If
ε = 0, then W is unitary and it is able to contain the norm
of x. In this work, we use two kinds of wavelet transform
to construct FrScatNet. For the Morlet wavelet, the value
of parameter σ in φ is set as 0.7. The value of σ in ψ
is 0.5. And Eq. (9) is satisfied with ε = 0.98. φ is the
low pass filter and ψ is the wavelet based on Gabor filter
which is widely used in image processing [35], [36]. For
the dual-tree complex wavelet, we let φ = (1/(2

√
2)φ1 and

ψ = (1/8)ψ1satisfying Eq. (9) with ε = 0.99. φ1 and ψ1 are
defined in work [37], [38]. The fractional scattering propagator
W̃x(u) = xΘαφ2J (u), |xΘαψλ(u)|λ∈P is obtained with a
fractional wavelet transform W followed by a modulus, which
are both non-expansive. So W̃ is also non-expansive. Since S
iteratively applies W̃ , it is also non-expansive. If W is unitary,
then W̃ also preserves the signal norm ‖W̃x‖2 = ‖x‖2. The
FrScatNet is built layer by layer by iterating on fractional
scattering propagator W̃ . If W̃ preserves the signal norm, then
the signal energy is equal to the sum of the fractional scattering
energy of each layer plus the energy of the last propagated
layer [1], [18]:

‖x‖2 =

m̄∑
m=0

∑
p∈Pm

‖S[p]x‖2 +
∑

p∈P m̄+1

‖U [p]‖2 (10)

By letting the network depth m̄ tend to infinity, it results that
the FrScatNet preserves the signal energy [1], [18]:

‖x‖2 =
∑
p∈Pm

‖S[p]x‖2 = ‖Sx‖2 (11)
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(a) Annotation images (b) Sub-images (c) Annotation images (d) Sub-images

Fig. 3. Sub-images obtained by the proposed method. Green rectangles represent the sub-images from the background regions. Red rectangles denote the
sub-images from the benign areas. Yellow rectangles denote the sub-images from the malignant areas.

The output of the FrScatNet is obtained by cascading the
fractional scattering coefficients of every layer. The frac-
tional windowed scattering S is computed with a cascade
of wavelet modulus operators, thus its properties depend
upon the FRWT properties. The fractional scattering process
is implemented along the frequency decreasing paths where
most of the fractional scattering energy is concentrated. A
frequency decreasing path p = (2−j1r1, . . . , 2

−jmrm) satisfies
0 ≤ jk ≤ jk+1 ≤ J . The fractional scattering coefficients
are the lower frequencies filtered by the low pass filter, due
to the energy of the signal mainly distributed on the lower
frequency region. The signal analysis capability of the classical
WT is limited in the time-frequency plane. If the distribution
of the signal energy is not most concentrated on the frequency
domain, the feature vector extracted by the network is not
the best for the signal discrimination. Therefore, we extend
the classical WT to the FRWT, which is able to offer signal
energy representations in the time-fractional-frequency plane,
and try to find the appropriate fractional order for the signal
representation.

Image textures can be modeled as realization of stationary
processes. The spectrum method is an important tool for
texture analysis. The power spectrum only depending on the
second-order moments is then not sufficient to discriminate
image textures whose second-order moments are very simi-
lar. The scattering representation of the stationary processes
depends upon second-order and normalized higher order mo-
ments. Thus, it can discriminate textures having the same
second-order moments but different higher order moments [1].
In the proposed method, the fractional windowed scattering is
computed based on the fractional wavelet transform, which
can represent the image energy distribution in the fractional
wavelet scattering domain. Therefore, the scattering imple-
mentation can be achieved through the path where most of
the signal energy is concentrated in the fractional wavelet
scattering domain, and the discrimination capability of the first
order fractional scattering coefficients is improved. We can see
that the first-order scattering coefficients depicted in Fig. 1(b),
estimated from each realization, are nearly the same in the
ScatNet while their second-order scattering coefficients shown
in Fig. 1(c) are different. However, in the FrScatNet both
the first- and second- order fractional scattering coefficients
displayed in Fig. 1(d, e) are clearly different and have the
discriminatory ability.

C. Classification

A scattering transform eliminates the image variability due
to translations and linearizes small deformations [1]. Classifi-
cation is then carried out with a Gaussian kernel SVM and a
generative PCA classifier, respectively. The overall framework
of the FrScatNet is illustrated in Fig. 2.

Firstly, a three-layer FrScatNet is constructed based on
fractional wavelet transform. Secondly, all the normalized data
are put into the FrScatNet. The characteristic matrix Q, of size
of L × N × D, is obtained by concatenating the fractional
scattering coefficients of all three layers. L is the length of the
feature vector detected from each input signal. N denotes the
number of the total input signals. D represents the number
of the fractional orders. In the next step, the input data are
randomly divided into training and testing sets. Therefore, the
corresponding characteristic matrix Q is also divided into the
training characteristic matrix QTrain , the testing characteristic
matrix QTest , and termed as Q = [QTrain QTest].

III. EXPERIMENTS AND RESULTS

We test here the classification performance of the FrScatNet
on two-dimensional signals and analyze its properties. We also
propose an algorithm to achieve gland segmentation from the
histology images.

A. Image Classification, Application and Discussion

In the proposed framework, we generalize the Morlet
wavelet and dual-tree complex wavelet to fractional wavelets
according to Eq. (3). These two corresponding fractional
wavelets are used to construct the FrScatNet and compute the
fractional scattering representations, respectively. So two sets
of characteristic matrix are created to test the performance of
the proposed framework and analyze the signal energy distri-
butions. The FrScatNet constructed by the fractional complex
Morlet wavelets identified as FrameworkI is initialized with
the finest scale 2J = 16 and the total number of angles
K = 8. The band-pass filters are constructed using the Gabor
wavelets and the low frequency band is a Gaussian. The 2D
fractional dual-tree complex wavelet based scattering network
denoted as FrameworkII is initialized with five stages and
six distinct orientations. In each direction, one of the two
wavelets can be interpreted as the real part of a 2D complex-
valued wavelet, the other as its imaginary part [37], [38]. The
fractional orders for both frameworks are the same. For the
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TABLE I
CLASSIFICATION ERRORS IN TERMS OF FRSCATNET IN TWO-DIMENSIONAL DATABASES.

Dt
1 Fw

2 Cf
3 Rt

4 Fractional order (α1 = 1, α2 ) Fractional order (α2 = 1, α1 )
0.05 0.10 0.40 0.70 1.00 1.30 1.60 1.90 1.95 0.05 0.10 0.40 0.70 1.00 1.30 1.60 1.90 1.95

BD

I
PCA 0.5 0.218 0.241 0.108 0.187 0.204 0.196 0.185 0.231 0.226 0.235 0.264 0.197 0.117 0.204 0.200 0.200 0.251 0.251

0.8 0.241 0.274 0.113 0.192 0.220 0.217 0.203 0.254 0.248 0.264 0.289 0.210 0.121 0.220 0.217 0.216 0.272 0.269

SVM 0.5 0.213 0.257 0.156 0.200 0.260 0.202 0.200 0.249 0.199 0.228 0.251 0.243 0.227 0.260 0.259 0.155 0.250 0.210
0.8 0.239 0.276 0.206 0.219 0.292 0.229 0.223 0.295 0.218 0.269 0.285 0.267 0.261 0.292 0.277 0.201 0.273 0.259

II
PCA 0.5 0.243 0.274 0.129 0.237 0.303 0.234 0.227 0.296 0.242 0.284 0.282 0.277 0.277 0.303 0.284 0.259 0.291 0.133

0.8 0.251 0.303 0.147 0.228 0.345 0.243 0.241 0.295 0.251 0.292 0.293 0.287 0.292 0.345 0.276 0.277 0.308 0.152

SVM 0.5 0.227 0.263 0.216 0.228 0.302 0.230 0.185 0.267 0.233 0.257 0.272 0.244 0.258 0.302 0.246 0.173 0.328 0.230
0.8 0.228 0.276 0.219 0.228 0.312 0.232 0.218 0.270 0.233 0.264 0.257 0.254 0.275 0.312 0.250 0.202 0.331 0.242

MD

I
PCA 0.5 0.241 0.237 0.141 0.232 0.148 0.239 0.221 0.227 0.233 0.241 0.255 0.220 0.237 0.148 0.240 0.229 0.246 0.230

0.8 0.283 0.272 0.115 0.277 0.138 0.279 0.262 0.302 0.258 0.262 0.286 0.265 0.289 0.138 0.288 0.269 0.302 0.267

SVM 0.5 0.291 0.280 0.277 0.290 0.154 0.297 0.270 0.289 0.274 0.292 0.333 0.285 0.294 0.154 0.298 0.294 0.318 0.308
0.8 0.310 0.314 0.320 0.335 0.183 0.325 0.315 0.329 0.305 0.319 0.356 0.334 0.333 0.188 0.355 0.325 0.370 0.346

II
PCA 0.5 0.255 0.265 0.247 0.259 0.276 0.188 0.244 0.279 0.245 0.268 0.317 0.255 0.273 0.276 0.264 0.185 0.320 0.259

0.8 0.289 0.298 0.270 0.289 0.333 0.204 0.280 0.290 0.292 0.302 0.330 0.294 0.301 0.333 0.299 0.208 0.364 0.271

SVM 0.5 0.289 0.322 0.295 0.285 0.336 0.293 0.172 0.371 0.286 0.288 0.326 0.300 0.304 0.336 0.309 0.172 0.386 0.289
0.8 0.315 0.356 0.312 0.320 0.344 0.324 0.118 0.366 0.312 0.329 0.357 0.326 0.327 0.344 0.328 0.203 0.397 0.312

TSD

I
PCA 0.5 0.440 0.401 0.442 0.487 0.161 0.487 0.423 0.394 0.453 0.363 0.396 0.412 0.405 0.161 0.408 0.398 0.411 0.363

0.8 0.353 0.369 0.418 0.460 0.086 0.445 0.382 0.331 0.359 0.282 0.305 0.347 0.338 0.086 0.344 0.336 0.346 0.275

SVM 0.5 0.415 0.401 0.405 0.458 0.190 0.453 0.409 0.389 0.415 0.367 0.394 0.377 0.423 0.190 0.413 0.389 0.381 0.363
0.8 0.333 0.332 0.333 0.380 0.120 0.385 0.365 0.310 0.332 0.312 0.340 0.348 0.352 0.120 0.333 0.327 0.340 0.303

II
PCA 0.5 0.545 0.498 0.544 0.498 0.281 0.577 0.526 0.483 0.542 0.498 0.548 0.518 0.562 0.281 0.549 0.545 0.506 0.528

0.8 0.501 0.455 0.497 0.551 0.178 0.548 0.492 0.460 0.488 0.406 0.502 0.517 0.495 0.178 0.505 0.505 0.426 0.457

SVM 0.5 0.475 0.435 0.461 0.511 0.276 0.525 0.453 0.443 0.460 0.451 0.495 0.432 0.491 0.276 0.490 0.456 0.479 0.483
0.8 0.432 0.400 0.410 0.480 0.133 0.447 0.402 0.380 0.418 0.400 0.413 0.405 0.445 0.133 0.423 0.450 0.427 0.397

TABLE II
CLASSIFICATION ERRORS IN TERMS OF FRSCATNET IN H&E TRAINING DATABASES.

Data Ratio
Fractional order (α1 , α2 )

(0.4, (0.7, (1.3, (1.6, (0.4, (0.7, (1.3, (1.6, (0.4, (0.7, (1.3, (1.6, (0.4, (0.7, (1.3, (1.6,
0.4) 0.4) 0.4) 0.4) 0.7) 0.7) 0.7) 0.7) 1.3) 1.3) 1.3) 1.3) 1.6) 1.6) 1.6) 1.6)

BD 0.5 0.249 0.248 0.228 0.244 0.236 0.247 0.243 0.250 0.208 0.238 0.227 0.245 0.224 0.232 0.255 0.278
0.8 0.231 0.239 0.218 0.237 0.249 0.245 0.236 0.232 0.219 0.229 0.235 0.276 0.252 0.247 0.248 0.267

MD 0.5 0.229 0.239 0.284 0.263 0.280 0.245 0.239 0.310 0.292 0.292 0.286 0.297 0.288 0.296 0.304 0.292
0.8 0.259 0.261 0.264 0.255 0.269 0.242 0.234 0.291 0.271 0.249 0.276 0.293 0.282 0.286 0.305 0.284

two-dimensional wavelet, two fractional orders α1 and α2 are
needed to determine the rotational angle. The angle is defined
as θ = απ/2 ranging from 0 to π, so the fractional order α
changes from 0 to 2. To save computation time, we fix one
order as 1.00 and the other one changes within the range zero
to two for computing the fractional scattering coefficients. The
chosen values are 0.05, 0.10, 0.40, 0.70, 1.00, 1.30, 1.60, 1.90,
and 1.95, respectively. The corresponding FRWT reduces to
conventional WT when α1 = α2 = 1.00. Their performance
is evaluated by comparing the classifier outputs.

The feature matrix obtained from FrameworkI is then put
into two different kinds of classifiers named as PCA and
SVM to achieve the classification, respectively. So does the
feature matrix from FrameworkII. The dimensions of principal
component are chosen as 10, 15, 20, 25, 30, 35, 40, 45, 50, 60,
70, and 80 in the PCA classifier. For the SVM classifier, the
best-performing set of parameters is identified by calculating
the five-fold cross-validation error over the trainings for each
combination of parameters. The parameter C is set to 20, 24,
28 and the parameter gamma is set to 2−16, 2−12, 2−8. The
input data are divided into training and testing sets randomly.
We set the ratio as 1:1 and 4:1 in our experiment. The
classification results are averaged over 5 different random
splits for each ratio.

1) Warwick-QU Dataset: The training set Warwick-QU
includes 85 original pathological color images and their cor-
responding annotated binary images. The annotation is shown
in Fig. 3(b) and 3(d). The training set is combined by 37 color
images with gland type labelled as Benign and 48 color images

1Database
2Framework
3Classifier
4Ratio

with gland type identified as Malignant. Two sets of databases
are generated from the training set to test the properties of the
proposed framework.

We construct the benign and background database (BD)
from the 37 original pathological color images with benign
glands. The corresponding annotated image is used as a mask
to determine the benign gland area. Firstly, a k-mean based
algorithm [39] aggregates nearby pixels into super-pixels of
nearly uniform size for each original images. Then, the original
image with size of m × n × 3 is enlarged to obtain a new
image with size of (m + 16) × (n + 16) × 3 by a mirror
method. In the next, a sliding block window with size of
32 × 32 × 3 is positioned at the center of these super-pixels.
If the overlapping area between the sliding window and the
irregular benign area is more than 0.95, then the obtained
sub-image is classified as belonging to benign database, or
it is denoted as background database. In this way, we obtain
a total of 7631 sub-images shown as the red rectangles from
the benign areas and 12529 sub-images as the green rectangles
from the background areas of 37 original pathological color
images with benign gland in Fig. 3(a). The same process is
also applied to each of the original images issued from the 48
original pathological color images with malignant glands to
construct the malignant and background database (MD). There
are 15857 sub-images illustrated as the yellow rectangles from
the malignant areas and 10782 sub-images shown as the green
rectangles from the background areas in Fig. 3(c). These two
constructed sets are used for training.

All normalized sub-images from the databases are put into
the FrScatNet. For the BD, the obtained feature matrix Q cor-
responding to FrameworkI and FrameworkII have respectively
the size 681×20160×18 and 391×20160×18. For the MD, the
obtained Q in the same situation corresponds respectively to
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Fig. 4. Fractional scattering coefficients of two-dimensional images from the FrameworkI in different fractional orders. (a1-h1) are of a random benign
image from the DB. (a2-h2) are of a random background image from the DB. (a3-h3) are from a random malignant image from the MB. (a4-h4) are from a
random background image from the MB. (a5-h5) are computed from a random image in T01 bark1 of TSD. (a6-h6) are computed from a random image in
T08 granite of TSD; (a) are first-order fractional scattering coefficients when α1 = 1.00, α2 = 0.40. (b) are second-order fractional scattering coefficients
when α1 = 1.00, α2 = 0.40. (c) are first-order scattering coefficients when α1 = 1.00, α2 = 1.00. (d) are second-order scattering coefficients when
α1 = 1.00, α2 = 1.00. (e) are first-order fractional scattering coefficients when α1 = 1.00, α2 = 1.60. (f) are second-order fractional scattering coefficients
when α1 = 1.00, α2 = 1.60. (g) are first-order fractional scattering coefficients when α1 = 1.60, α2 = 1.00. (h) are second-order fractional scattering
coefficients when α1 = 1.60, α2 = 1.00.

681×26639×18 and 391×26639×18. The classification result
is shown in Table. I. For the BD, the classification error is
minimum in the FrameworkI when the fractional orders are set
to α1 = 1.00 and α2 = 0.40 by using the PCA classifier and
the fractional orders α1 = 1.60 and α2 = 1.00 for the SVM
classifier. In the FrameworkII , the minimum classification
error happens when α1 = 1.00 and α2 = 0.40 with the PCA
classifier and, with SVM, α1 = 1.60 and α2 = 1.00. We
can see that the classification result is better in the fractional
wavelet scattering domain than the wavelet scattering domain
for the BD, and the performance from FrameworkI is better
than that from the FrameworkII. The fractional scattering
coefficients of images from the benign group (Fig. 4(a1-h1))
and the background group (Fig. 4(a2-h2)) of BD detected by
the FrameworkI are shown in Fig. 4. The first- and second-
order fractional scattering coefficients (Fig. 4(a1-b1), (a2-b2),

(g1-h1), (g2-h2)) from the FrScatNet are clearly different.

For the MD, in the FrameworkI, the error is minimum when
α1 = 1.00 and α2 = 0.40 when using PCA classifier and
α1 = 1.00 and α2 = 1.00 (the classical wavelet transform)
when applying SVM. In the FrameworkII , the best classifi-
cation occurs when α1 = 1.60 and α2 = 1.00 with PCA and
α1 = 1.00 and α2 = 1.60 with SVM. We get the conclusion
that for most MD cases, the best classification is achieved
in the fractional wavelet scattering domain. The fractional
scattering coefficients of images belonging to the MD resulting
from FrameworkI are also displayed in Fig. 4(a3-h3) and Fig.
4(a4-h4). The first- and second-order scattering coefficients
(Fig. 4(c3-d3) and Fig. 4(c4-d4)) from the classical ScatNet
are clearly different, and those fractional scattering coefficients
(Fig. 4(g3-h3) and Fig. 4(g4-h4)) from the FrScatNet are also
clearly different.
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Fig. 5. The framework structure of the proposed gland segmentation algo-
rithm.

2) Textured Surfaces Dataset: All normalized images from
the texture surfaces dataset (TSD) are input into the FrScat-
Net. The size of matrix Q is respectively 681 × 1000 × 18
and 391 × 1000 × 18 for FrameworkI and FrameworkII.
The classification results are depicted in Table. I. The best
classification performance is obtained when α1 = 1.00 and
α2 = 1.00, which means that the classification is better in
thewavelet scattering domain than the fractional wavelet scat-
tering domain. We display the scattering coefficients computed
by the FrameworkI in (Fig. 4(a5-h5, a6-h6). By comparing the
coefficients computed from the FrScatNet, it clearly appears
that the first and second order scattering coefficients of ScatNet
are different. Therefore, the classification performance is better
in the wavelet scattering domain.

In conclusion, the classification errors are minimum when
α1 = 1.00 and α2 = 0.40 for BD and MD, and α1 = 1.00 and
α2 = 1.00 for TSD. This shows that the proposed FrScatNet
based on different FRWT is able to represent images in the
fractional wavelet scattering domain and to provide the best
fractional order for classification.

B. Gland Segmentation in Colon Histology Images

We test the FrScatNet on the dataset provided in the
MICCAI challenge contest [30] aiming at gland segmentation.
The rules defining the training set and the test group are
followed as specified in the challenge.

1) Feature Detection: The test group is divided into Test
A and Test B as indicated in SectionII.A. Test A contains

33 histological images with benign glands and 27 images
with malignant glands. Test B includes 4 benign images and
16 malignant images. We estimate the best parameter on
the training subset. According to the experiments shown in
Table. I, the fractional orders (including 0.4 0.7 1.3 1.6) appear
as promising for classification. Here, the obtained fractional
orders are tested by cross validation to determine the best
classification parameter for the H&E images. According to
the results shown in Table. I, we select FrameworkI and PCA
classifier. The validation results are shown in Table. II. By
comparing the classification results in Table. I and II, we
see that the best classification is achieved when α1 = 1.00
and α2 = 0.40, Ratio = 0.50 for the benign images and
α1 = 1.00 and α2 = 0.40, Ratio = 0.80 for the malignant
images, which are used for the following gland segmentation.

For each of the test group images, we try to classify it
into two classes: the target (benign or malignant) region and
the background region. To achieve this goal, we firstly divide
the original pathological color images into sub-images of the
same size 32×32×3 in the training data. We apply a k-mean
based algorithm [39] to aggregate nearby pixels into super-
pixels of nearly uniform size. Their boundaries closely match
true target boundaries. Then, the original image is divided
into sub-images as described above. Each sub-image is entered
into the FrScatNet to get the feature matrix in the fractional
wavelet scattering domain including wavelet scattering domain
(α1 = 1.00 and α2 = 1.00) as comparing group. The PCA
classifier allows determining the class of super-pixels (the
background is labeled as 1 and the target is labeled as 2 and the
corresponding average approximation error for each instance
and class pair. We get a fully labeled color image and the
average approximation error for each class from this step.

2) Gland Segmentation: Some initially labelled images
have misclassified areas within the glands and need to be
corrected. In a first step, we use an erosion operator to reduce
these misclassifications and one dilation step to keep the gland
shape. The obtained result is regarded as the labelled image
shown in Fig. 5. The gland boundaries are better delineated in
this new labelled image but some areas of the central regions
are lost mainly. This happens because some regions within
the gland structures have similar features to the background
region. But the complex gland frames are detected due to the
fact that FrScatNet is mainly based on the texture information
but not shape feature. The epithelial cells are lined up around
a lumen to form glandular structures. Although the cancer
leads to morphological and structural deviations, the texture
information especially within the boundary regions is stable
and effective. Besides, very close or even touching glands
make also the segmentation difficult. The average error image
is used to handle these problems in this study. We use the graph
cut method [40] to classify the average approximation error
into two classes: the foreground region and the background
region. The initial glands shown in Fig. 5 are used to locate
the gland structures in the image. They are usually smaller
than the corresponding annotated structure. A region growing
algorithm, regarded as the fusion step in Fig. 5, is applied
to increase the gland area in order to better fit the true
gland regions and to keep touching glands separated. Then,
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Segmentation results of test cases (from left to right): benign, benign, malignant, malignant, benign, benign, malignant, malignant cases. (from top to
bottom): original images, ground truth, segmentation results by FrScatNet, and segmentation results by ScatNet (different colors individual gland objects).

a simple erosion operation is performed to delete isolated
points followed by a dilation operation for preserving the gland
shapes.

3) Evaluation: To visually evaluate the performance of the
method, some segmentation results on the testing dataset are
shown in Fig. 6. A comparison between FrScatNet and the
ScatNet is also provided. As it can be seen in the third and
the fourth rows, FrScatNet leads to a better segmentation in
both benign and malignant cases from test A and test B. In
the ScatNet based method, some touching glands cannot be
separated while they are with FrScatNet. Besides, some over-
or undersegmentation problems can be observed. This is not
surprising because the fractional transform makes it possible to
separate different signals by successive rotations and filtering
on the indicated side of the axes using some low or high-pass
filter [41]. In addition, the extra parameter obtained by rotating
angles in the fractional transform gives an additional degree of
freedom that can be used to optimize the performance of the
network. The correlation peak within a certain class of signals
can be made more prominent or sharper in an optimally chosen
fractional scattering domain [41], [42]. Last, the traditional
wavelet transform detects too many edge details in histology
image leading to unsmoothed boundaries and deviations from
the ground truth while the fractional wavelet transform offers
a better balance between these two issues.

However, these latter problems still remain when applying
our method. Non-smoothed boundaries are mainly caused by
the construction of the super-pixel regions. It is also challeng-
ing to recognize small background areas within a given target
region as shown in Fig. 6(h). It happens that the windows used
to detect the feature vectors contain several target regions and
the graph cut method classifies those little regions as target
regions.

To quantitatively assess the performance of our method,
we conduct comparisons with Fully Convolutional Network
(FCN) [43], dilated FCN (DFCN) [44], Deep Multichannel

Neural Networks (DMNN) [22], and some of the solutions
proposed in the MICCAI challenge such as CUMedVision1
(CUM1), CUMedVision2 (CUM2) [29], Frerburg1 (Fre1),
Frerburg2(Fre2) [31], ExB1, ExB2, ExB3 , CVIP Dundee
(Dund) and LIB [30]. All of them have used the datasets
provided by the MICCAI 2015 Gland Segmentation Challenge
Contest. The ground truth being known, the evaluation meth-
ods proposed in this competition include the accuracy of the
detection of individual glands, the volume-based accuracy of
the segmentation of individual glands and the boundary-based
similarity between glands and their corresponding segmenta-
tion [26], [30]. A metric for the gland detection is the F1-score,
defined by

F1score =
2 · P ·R
P +R

,P =
TP

TP + FP
,R =

TP

TP + FN
(12)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
The ground truth for each segmented glandular object is
the glandular object in the manual annotation that shares
maximum overlap with the segmented glandular object. A
segmented object is considered as a true positive if it has more
than 0.50 area overlap with its ground truth, or it is considered
as a false positive. An object of the ground truth is regarded
as a false negative if it has no corresponding prediction or has
less than 0.50 area overlap with its predicted glandular object.

Two sets of pixels are defined as G representing the ground
truth and S denoting the segmented objects. The Dice index
is used for the evaluation of the segmentation on the whole
image D(G,S) = 2(|G∩S|)/(|G|+|S|). An object-level Dice
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TABLE III
PERFORMANCE IN COMPARISON TO OTHER METHODS

Method
F1score Dobject Hobject

RS WRSPart A Part B Part A Part B Part A Part B
Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank

CUM1 0.868 9 0.769 4 0.867 12 0.800 4 74.596 12 153.646 9 50 29.00
CUM2 0.912 1 0.716 7 0.897 2 0.781 9 45.418 2 160.347 11 32 10.50
ExB1 0.891 6 0.703 9 0.882 6 0.786 7 57.413 9 145.575 5 42 21.00
ExB2 0.892 5 0.686 11 0.884 5 0.754 12 54.785 4 187.442 12 49 19.25
ExB3 0.896 3 0.719 6 0.886 4 0.765 10 57.350 8 159.873 10 41 17.75
Fre1 0.834 12 0.605 13 0.875 9 0.783 8 57.194 7 146.607 7 56 28.00
Fre2 0.870 8 0.695 10 0.876 8 0.765 10 57.093 6 148.463 8 50 23.50
Dund 0.863 10 0.633 12 0.870 11 0.715 13 58.339 10 209.048 14 70 33.00
LIB 0.797 13 0.306 14 0.801 14 0.617 14 101.167 14 190.447 13 82 41.00
FCN 0.788 14 0.764 5 0.813 13 0.796 5 95.054 13 146.248 6 56 34.00

DFCN 0.854 11 0.798 3 0.879 7 0.825 3 62.216 11 118.734 3 38 24.00
DMNN 0.893 4 0.843 2 0.908 1 0.833 2 44.129 1 116.821 1 11 5.75
ScatNet 0.874 7 0.710 8 0.875 9 0.833 6 56.593 6 126.339 4 40 21.00

FrScatNet 0.901 2 0.858 1 0.896 3 0.842 1 52.276 3 117.100 2 12 7.00

index can also be defined as:

Dobject(G,S) =
1

2

[ nS∑
i=1

ωiD(Gi, Si) +

nG∑
i=1

ω̂iD(Ĝi, Ŝi)

]
,

(13)

ωi = |Si|/
nS∑
j=1

|Sj |, ω̂i = |Ĝi|/
nG∑
j=1

|Ĝj |. (14)

where nG denotes the total number of ground truth objects
in image and nS the total number of segmented objects in
an image. Si is the ith segmented object in an image, and
Gi is the ground truth object that maximally overlaps Si. Ĝ
denotes the ith ground truth object in an image, and Ŝ denotes
a segmented object that maximally overlaps Ĝ in the image.

The Hausdorff distance between G and S is often used to
evaluate the shape similarity defined as

H(G,S) = max{sup
x∈G

inf
y∈S

f‖x−y‖, sup
y∈S

inf
x∈G

f‖x−y‖} (15)

We can also measure the shape similarity between all seg-
mented objects by using the object-level Hausdorff distance:

Hobject(G,S) =
1

2

[ nS∑
i=1

ωiH(Gi, Si) +

nG∑
i=1

ω̂iH(Ĝi, Ŝi)

]
,

(16)

ωi = |Si|/
nS∑
j=1

|Sj |, ω̂i = |Ĝi|/
nG∑
j=1

|Ĝj |. (17)

For the overall results, the final score is the summation of
all rankings (RS) from test set A and test set B based on
these three criteria. Smaller final ranking stands for a better
segmentation performance. Another index, the weighted rank
sum (WRS), is used based on the weighted average of three
evaluation criteria on the two test sets and is defined as [22]:

WeightedRS = 3/4
∑

testARank + 1/4
∑

testBRank
(18)

4) Results And Discussion: All the results are listed in
Table. III. For the gland detection evaluation, the results of
the F1 score are shown in the left columns in Table. III.
The CUMedVision2 (CUM2) with a contour-aware component
achieves the best results for test A but the performance of our
method remains high. FrScatNet behaves better than all other
methods on test B. For the gland segmentation evaluation, the
results of the object-level Dice index (Dobject in Table. III)

show that the Deep Multichannel Neural Networks (DMNN)
algorithm achieves the best performance on test A and our
method on test B. For the shape similarity evaluation (Hobject

column in Table. III), the DMNN algorithm is also ranked first
but the index value obtained with FrScatNet is very close.

The final ranking score (RS) and the weighted ranking score
(WRS), combining region, location and edge information,
show that the FrScatNet and the DMNN methods lead to
almost similar results and perform well better than all other
solutions. Several observations can be made on these results.
If FrScatNet is able to well detect the gland texture features,
to correctly locate the glands and to separate them when
they touch each other, it may have difficulties in capturing
their high variabilities. The deep convolution networks usually
have learning filters to take into account these unknown
variabilities [45]. The FrScatNet is only able to provide the
first two layers of such network and eliminate translation or
rotation variability. But the FrScatNet is learning-free due to
the fact that the wavelet bases are fixed. The second layer
fractional scattering coefficients provide important comple-
mentary information with a small computational and memory
cost. FrScatNet achieves a better performance than ScatNet,
the fractional scattering coefficients being more stable and
discriminative.

The performance of FrScatNet obtained on test B is encour-
aging because this set contains more cancerous glands with
more complicated shapes and size variabilities. For malignant
cases, cancer progresses may cause changes in the component
organization, and also lead to tissue deviations from their
normal appearances. Our method mainly utilizes texture in-
formation to detect the margin of glands and to overcome
the unclear boundary problem. The DMNN method and also
the CUMedVision1 and CUMedVision2 approaches integrate
edge information and location context to improve the results
on both test sets.

IV. CONCLUSION

In this paper, the FrScatNet has been proposed and im-
plemented. It extends the traditional ScatNet to the fractional
scattering domain and provides signal representation in the
time-fractional-frequency plan to improve the signal classifica-
tion and segmentation performance. An automated method for
gland segmentation in histological images was also proposed
based on the FrScatNet. The graph cut method was used to
process the average approximation error image and to locate
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the glands. We compared the proposed method with those
reported in the MICCAI 2015 Gland Segmentation Challenge.
Experimental analysis showed stable and comparable results.
Significantly better results for malignant objects were ob-
tained. They could be further improved by integrating edge
information. The proposed approach is flexible and generic
enough to be considered for organ/tissue segmentation in
multimodal medical image.
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