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ABSTRACT 

 We review progress, since publication of the book "Collisional effects on molecular 

spectra: Laboratory experiments and models, consequences for applications" (Elsevier, 

Amsterdam, 2008), on measuring, modeling and predicting the influence of pressure (ie of 

intermolecular collisions) on the spectra of gas molecules. We first introduce recently 

developed experimental techniques of high accuracy and sensitivity. We then complement the 

above mentioned book by presenting the theoretical approaches, results and data proposed 

(mostly) in the last decade on the topics of isolated line shapes, line-broadening and -shifting, 

line-mixing, the far wings and associated continua, and collision-induced absorption. 

Examples of recently demonstrated consequences of the progress in the description of spectral 

shapes for some practical applications (metrology, probing of gas media, climate predictions) 

are then given. Remaining issues and directions for future research are finally discussed.  

 

 

Key words: pressure effects on spectral shapes; experimental techniques; theories and 

models; available data; consequences for applications 
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1.  Introduction 
 In 2008, some authors of this paper completed a book [1] devoted to the effects of 

pressure (of intermolecular collisions) on the spectra of gas molecules. They reviewed the 

processes involved, the available theories, models and experimental results, and discussed the 

consequences for some practical applications. Considerable qualitative and quantitative 

progress has been made on all aspects of this subject that are discussed in this book since its 

publication a decade ago. The aim of the present review is to give the reader an overall view 

of these advances together with an update of the bibliography on the subject, including recent 

techniques for measurements of light absorption by gases. This rapidly growing field has 

many relevant publications, here we review those that we are aware of and that demonstrate 

new progress in one or more aspects of the research. 

 The remainder of this article is organized as follows: Section 2 is devoted to laboratory 

experimental techniques, a topic not treated in [1]. While it focuses mainly on recent 

developments based on the use of lasers and often of high finesse cavities, which enable 

measured absorption spectra with unprecedented high SNRs and accuracies, Fourier 

transform and terahertz techniques are also discussed. The new spectral-shape theories and 

models, as well as recently made comparisons between calculated and measured results are 

the subjects of Sec. 3. In the latter, the profiles of isolated lines, the pressure-broadening and -

shifting coefficients, line-mixing processes, the (far) line wings and continua, and collision-

induced absorption are successively considered (following chapters III-VI of [1]). Some 

recently made available spectral-shape parameters in these fields are presented in Sec. 4 

together with the evolutions and current statuses of spectroscopic databases. The effects of 

collisions on molecular spectra are important to many applications, as discussed in Chapt. VII 

of [1]. Section 5 is devoted to the impact of achievements on this topic in a variety of other 

fields. These include metrology, the probing of various media including atmospheres, and 

radiative transfer and climate. Remaining problems and possible directions for future research 

are finally discussed in Sec. 6. 

  

 

2.  Laboratory experimental techniques 
2.1 Introduction  
 Molecular spectra reveal collisional effects through changes in their shapes recorded 

along a frequency axis. To properly test the most advanced theories and models it is 

mandatory to minimize experimental biases, at least below the expected precision of the 

predictions. In addition, some applications (Sec. 5) require extremely reliable simulations or 

analysis of spectra. These constraints call for accuracy in both the frequency and absorption 

axes, which are intimately linked by the spectral profile, as well as for the accurate 

determination of the composition, temperature and pressure of the sample gas (Sec. 5.2.2). As 

an example, consider a direct absorption experiment in which a laser probes a gas and the 

transmission is recorded. Any uncontrolled laser-intensity noise would obviously convert into 

an effective absorption noise, impairing the fast and precise determination of a line contour. 

To some extent, this may be corrected for by stabilizing the instantaneous laser power that 

irradiates the gas sample, for example by using an acousto-optic modulator in a servo 

configuration [2]. However, while such a method can lead to baseline relative intensity noise 

levels approaching 10
-5

, going below this degree of intensity stabilization is practically 

impossible. In addition, fluctuations in the optical frequency of the probe laser that occur on 

time scales shorter than the characteristic data-acquisition rate are known as “frequency-jitter” 

and are manifest as noise in acquired spectra, particularly in regions of steep absorption. 

Worse, if the laser source, or the measurement of its optical frequency, slowly drifts during an 

experiment, the absorption spectrum is irreversibly deformed. Nevertheless, probe-laser jitter 
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can be substantially reduced by active stabilization methods that incorporate a reference 

oscillator. These remarks show that an optimized classical spectrometer for absorption 

measurements should use an optical source having low amplitude and frequency noises, with 

a stable emission frequency that must be accurately monitored and determined. 

 Nowadays, the most accurate and sensitive techniques for absorption measurements use 

CW lasers as the light source and resonant optical cavities surrounding the sample gas. When 

compared to classical incoherent sources and pulsed lasers, CW lasers provide relatively low 

intensity noise and narrow emission widths capable of probing individual cavity resonances 

(modes). Resonant optical cavities comprise two or more high-reflectivity dielectric mirrors 

that sustain standing-wave or traveling-wave intra-cavity fields. Using such a resonator to 

enclose the gas sample increases the sensitivity by enhancing the path length of the photons 

trapped inside the cavity. This enhancement increases with the mirror reflectivities, as 

explained later. Also, because of the relatively long photon lifetime () in the cavity and 

coherent nature of the excitation, these cavities are highly efficient frequency filters that can 

potentially overcome the effect of residual laser-frequency jitter. Indeed, the optical 

resonances manifest as a comb of sharp transmission features whose width ( and spacing 

(f) are typically in the ranges of kHz and 100 MHz, respectively. For instance, an optical 

cavity comprising two mirrors of reflectivity R=0.99999 separated by 1 m, corresponds to= 

333s = 477Hz and an effective path length of 100 km. This example illustrates the long 

photon lifetime, narrow mode width and extensive path length achievable with laboratory-

scale high-finesse cavities. 

 Optical cavities are most commonly used to interrogate molecular absorption in two 

different ways. One can measure either the steady-state transmission of incident light through 

the cavity or the photon lifetime, both of which are sensitive to light absorption by the cavity 

medium. In both cases, the highest spectral resolution is achieved using mode-by-mode cavity 

excitation to yield spectra sampled at well-defined frequency intervals. The first approach 

leads to cavity-enhanced absorption spectroscopy (CEAS, Sec. 2.2) and the second to cavity 

ring-down spectroscopy (CRDS, Sec. 2.3). Importantly, unlike CEAS, CRDS is immune to 

intensity noise in the light source and to absorption outside the cavity. There are advanced 

versions of CRDS in which the resonant frequencies are made immune to laser-frequency 

drift and/or external perturbations via active cavity or laser stabilization methods. These 

include the frequency-stabilized CRDS (FS-CRDS) technique [3,4] and optical feedback 

frequency-stabilized CRDS (OFFS-CRDS) [5,6]. Both approaches are insensitive to laser-

intensity and -frequency noises, and are based on precise and accurate observations of mode-

frequency intervals (x-axis) and time (y-axis). They can provide line profiles with minimal 

instrumental distortion and SNRs routinely ranging from 10
3
 to 2×10

4
 [7-10] with exceptional 

cases in the 2×10
5
 to 10

6
 range [5,11,12]. Other cavity-enhanced methods include (Sec. 2.5) 

cavity mode-width spectroscopy (CMWS) which measures absorption-dependent widths of 

individual cavity resonances, and one-dimensional cavity-mode dispersion spectroscopy (1D-

CMDS) [13] which measures frequency shifts of the cavity resonances to quantify gas-

induced dispersion. We note that CMWS is a high-resolution variant of CEAS that uses the 

mode width instead of the amplitude decrease to measure absorption and thus overcomes the 

need for spectrally broadband intensity normalization. The 1D-CMDS also shares this 

property and yields spectra where both axes are based upon measurements of the optical 

frequency. 

 Interestingly, optical cavities also can be simultaneously probed at several wavelengths 

in a multiplexed manner. For this, femto-second laser sources or electro-optic modulated CW 

lasers that consist of combs of phase-locked narrow emitters [14] can be efficiently coupled to 

an optical cavity. This can be achieved in a raw (cavity-enhanced optical frequency comb 

spectroscopy) [15-19], one-by-one (Vernier effect) [20,21], or in self- or multi-heterodyne 
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configurations [22] to yield both field amplitude and phase information quantifying complex-

valued line shapes. 

 

 In the remainder of Sec. 2.1 we provide a general description of light-matter interaction 

in an enhancement cavity. For simplicity, we consider a FP interferometer having two 

identical dielectric (absorption-free) mirrors with reflectivity R, and transmission T such that 

R=1-T. Neglecting intracavity-medium scattering or other losses, considering a single 

transverse mode and in the limit of a linear absorption process, the complex-valued 

transmittance ( )y   of the incident field at frequency  is given by the Airy formula: 

 
 

e

exp ( i ) / 2
( )

1 exp( i )

T l
y

R

   
 

  
 , (1) 

where all variables (except for l) on the right-hand-side depend upon . is the intensity-

based absorption coefficient,  is the resonator length, r2 t    is the phase shift 

corresponding to the round-trip time r 2 /t l c  (with c the speed of light), and 

e R exp( )R l   is the effective mirror reflectivity that incorporates the single-pass 

absorption loss of the medium. The resonant frequencies occur when   is a multiple of 2 

In the absence of absorption and dispersion effects, the modulus squared of the Airy formula 

reduces to a comb of equidistant peaks of unity transmission separated by the free spectral 

range (FSR) denoted by f . Absorption reduces the peak transmission and broadens the 

resonances, whereas dispersion in the medium shifts the positions of the resonances relative to 

the empty-cavity case (cf Sec. 2.5). 

 With the incorporation of models for absorption and dispersion, the preceding formulas 

can be used to calculate the cavity transmission (amplitude and phase) by summing over all 

relevant electromagnetic field components at one or more frequencies. Both heterodyne and 

intensity-based transmission measurements can be modeled. In the former case, the field 

transmitted by the cavity is combined with that of a local oscillator (generally either a single- 

or multi-frequency laser such as an OFC), which results in a complex-valued transmission 

signal at one or more heterodyne beat frequencies. Similarly, for intensity-based 

measurements at a given frequency, the real-valued transmission is obtained by squaring the 

modulus of Eq. (1).  

 Note that the complex Airy formula, which is a comb-like function of   representing a 

series of resonances, can be reduced to a complex Lorentzian profile near an individual 

resonance. This is a good approximation when the cavity finesse F, given by e e/ (1 )R R  , 

is large and when 1 . In this limit, we can write the complex field transmission for 

excitation of a single cavity mode as: 

 
e

exp( i / 2)
( )

1 1 i( / )

T
y

R F

 
  

   
 , (2) 

where f(2 ) /     and   is the frequency detuning of the light source about the local 

resonance. Furthermore, for measurements of photon lifetime of the resonator (eg, CRDS, Sec. 

2.3), the time-dependent ring-down decay signal s(t) is found by squaring the modulus of the 

Fourier transform of Eq. (2) which gives: 

 0s( ) exp( / )t s t    , (3) 

with a frequency-dependent time constant 

 
 

( )
1 exp( )

l

c R l
  

 
 . (4) 



l
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These results illustrate the simple correspondence between the frequency- and time-domain 

responses for excitation of a single cavity mode. Assuming high mirror reflectivity (R~1) and 

weak intra-cavity absorption ( 1l  ), Eq. (4) reduces to 01/[ ( )] ( ) 1/[ ( )]c c        , 

where 0( ) /[ (1 )]l c R     is the time constant in the absence of absorption. This relation 

indicates that the x and y axes of CRDS absorption spectra can be determined from 

measurements of frequency and time, respectively, without explicit determination of path 

length. The power transmitted by the cavity, Pt() as detected by a photodiode placed after the 

resonator and assuming perfect mode matching, is given by the square of the modulus of Eq. 

(1). Assuming on-resonant excitation (= 0), one has: 

 
 

2

t 0 2
( ) exp( )

1 exp( )

T
P P l

R l
  

 
 , (5) 

where all variables on the right-hand-side depend upon  and P0 is the incident power. For 

high mirror reflectivity and weak intra-cavity absorption, Eq. (5) can be expanded to first 

order in l, leading to: 

 eff 0( ) (1 )tP l P    , (6) 

with 

 eff 2 /(1 )l l R   . (7) 

Eq. (7) explicitly highlights the path length enhancement induced by the resonant cavity as 

mirror reflectivity and cavity finesse increase. This enhancement effect is referred to in the 

cavity-enhanced absorption spectroscopy (CEAS, Sec. 2.2) acronym.  

 Although the first mention of the use of a FP assembly to enhance intra-cavity 

absorption is by Jackson [23], O'Keefe and Deacon [24] were the first to use CRDS (cf Sec. 

2.3) to measure molecular absorption spectra. In general, the reader may refer to Chapt. 1 of 

[25] for a deeper understanding of the CEAS process and to [26] for CRDS. 

 Except for Secs. 2.9 and 2.10, the next sub-sections describe recent experimental efforts 

toward accurate spectroscopy, essentially disregarding low-resolution or large-apparatus-

function setups. We consider CW laser-based techniques with cavities to enhance sensitivity 

and/or resolution, which measure the cavity transmission (Sec. 2.2), the lifetime of photons 

trapped in the cavity (Sec. 2.3) or the cavity mode width (Sec. 2.5). The referencing of probe 

laser frequencies to an OFC for absolute calibration is also presented (Sec. 2.4). Laser-comb 

sources, which can be used with (Sec. 2.7) or without an enhancement cavity (Sec. 2.6), 

offering broadband coverage and/or multiplexed approaches also are discussed. Then, we 

evaluate (Sec. 2.8) the performance of dual-laser direct-absorption methods for high-precision 

line shape studies. Finally, the interests of Fourier transform spectroscopy and terahertz 

techniques for spectral-shape studies are discussed in Secs. 2.9 and 2.10, respectively. 

 Before discussing these various techniques, it is important to recall that obtaining 

spectra of very high quality is not the only criterion for accurate spectroscopic studies of 

pressure effects. Indeed, the reliability of the tests of theories and models as well as that of the 

spectral-shape parameters retrieved from fits of measurements also depend on the knowledge 

of the sample (composition, pressure, temperature, path length). Obviously, uncertainties on 

these experimental parameters can spoil many of the efforts made to improve the set-up and 

the quality of the data that it produces. While this rather technical and difficult issue is beyond 

the scope of this review, some discussions concerning the determination of the temperature 

can be found in some of the references cited in Sec. 5.2.1, the importance of knowing the gas 

composition being addressed in Sec. 5.2.2. 

 

2.2 Cavity Enhanced Absorption Spectroscopy (CEAS) 
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 An intuitive way to take advantage of the absorption-enhancement effect of a FP cavity 

consists in monitoring the frequency dependence of its on-resonance transmission as 

expressed in Eq. (5). This provides (within the limit of weak absorption) direct access to the 

absorption coefficient through a Beer-Lambert-like law that exhibits an enhanced path 

length [Eq. (7)]. Note that, for studies of narrow absorption lines and accurate determinations 

of their areas, the base length l and mirror properties must be accurately known because they 

govern the mode spacing and effective path length. Actually, the FP cavity length differs from 

a basic ruler-based measurement according to Gaussian mode theory [27,28] and may be 

determined from measurements of the local FSR (cf Sec. 2.5). The mirror reflectivity can be 

determined from a CRDS measurement (Sec. 2.3) or by a cavity-mode width measurement (cf 

Sec. 2.5). To address the problem of measuring absorption continua (Sec. 4.3), the mirror- and 

gas-dependent losses must also be independently characterized. Let us emphasize that the 

cavity mirrors’ properties are generally frequency dependent because of the present coating 

technology (dielectric films), but also because of the refractive nature of the intra-cavity 

probed medium. From [29], the magnitude of the absorption-induced mode shift is 0.3c(). 

Referring again to a one-meter long FP cavity with 99.999 % reflectivity mirrors (Sec. 2.1), a 

local absorption coefficient of 3.4×10
-7

cm
-1

 is sufficient to shift an FP resonance by its mode 

width. Furthermore, at wavelength of 1.6 µm for instance, a 1 nm variation of the cavity 

length (10
-9

 relative) shifts all the FP resonances by about 200 kHz, which is more than 100 

times the mode width. The use of high reflectivity mirrors therefore requires stable FP 

assemblies. On the other hand, typical tunable semiconductor lasers (eg telecommunications 

type) have line widths of the order of 1 MHz (jitter), obviously leading to extremely noisy 

cavity transmission under CW excitation. However, the optical cavity and laser noise sources 

are of different physical origin and act on different time scales. An optical cavity, as any 

mechanical assembly, exhibits a slow thermo-mechanical expansion (~1s scale) that sums 

with acoustic noise (<20 kHz) yielding time constants ranging from s to ms timescales, 

respectively. This makes it rather easy to control the cavity length, typically with piezoelectric 

transducers. Telecommunications semiconductor lasers typically exhibit white noise that 

extends over several MHz, making it difficult, but possible [30-32], to actively cancel the 

frequency noise on time scales comparable to the buildup time of the optical cavity. Note that 

external cavity diode lasers (ECDL) have narrower short-term line widths (< 500 kHz) than 

semiconductor lasers and are therefore better suited for electronic control loops that directly 

actuate laser current [33]. 

 Several strategies have been developed to overcome highly intermittent laser-to-cavity-

longitudinal mode overlap which occurs when the probe laser frequency and cavity resonance 

are not coupled. These methods include: (i) averaging a series of passages through resonance 

to reduce the intensity noise, known as Integrated Cavity Output Spectroscopy (ICOS) [34]. 

(ii) Off-axis injection of a FP cavity (OA-ICOS) [35] to induce the excitation of a series of 

higher-order transverse modes having various resonant frequencies. With an appropriate FP 

geometry, this results in quasi-continuous transmission, smoothing out the peaks of the Airy 

formula. Unfortunately, these two strategies are still limited in terms of SNR, essentially 

because of residual optical fringes, transverse-mode-dependent mirror losses and laser phase 

noise which manifests itself as fluctuations in the transmitted power. They are, therefore, not 

recommended for accurate line-profile determinations. (iii) Electronic or optical locking of 

the laser emission of an ECDL to a stable FP or other frequency reference is an efficient 

CEAS approach for accurate line-profile determination (Sec. 2.5). Several methods can serve 

this purpose, eg: PDH [36], tilt-lock [37] and NICE-OHMS [38]. An alternative attractive 

method consists in optical-feedback locking (OF-CEAS) [39]. Under certain conditions, the 

laser self-locks to the mode of the FP to which it is injected and remains locked even if one 

tries to detune it. This behavior results from counter-propagating cavity photons that seed the 
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laser with the proper optical phase. Such a condition is achieved by precise control of the 

laser-to-FP distance, which typically requires a piezoelectrically actuated steering mirror and 

simple electronics. A drastic reduction of the laser emission line width occurs, well below the 

FP mode width, leading to near-perfect mode injections and allowing the laser frequency to 

be hopped over successive longitudinal modes of the FP. This technique can be applied to 

virtually any single-frequency semiconductor laser including DFBLs [40], ECDLs [41], QCLs 

[42] and ICLs [43]. 

 For CEAS, the lowest limit of detection (1×10
-14

 cm
-1

 for 1 s of averaging) was obtained 

using the NICE-OHMS method [38]. It was calculated from the noise level observed in a 1 

MHz-wide saturation-dip structure having a peak absorbance of 4×10
-9 

and SNR equal 7700. 

For a broadband OF-CEAS spectrum spanning 30 GHz, 8×10
-11

 cm
-1

 was obtained based on 

the noise in the spectrum baseline [44]. 

 

 

2.3 Cavity Ring-Down Spectroscopy (CRDS) 

 In CRDS, the ring-down events [Eq. (3)] are insensitive to laser intensity fluctuation, 

enabling extremely high SNR spectra [6,11,12] and low detection limits [45] to be attained. 

However, laser jitter and/or cavity length fluctuation impair precise laser frequency 

determination and photon coupling into the cavity. The former affects the frequency axis, 

while the latter limits the data throughput and sets the ultimate reachable sensitivity, governed 

by photon shot noise. Consequently, the implementation of frequency locking mechanisms is 

mandatory for the acquisition of high fidelity absorption profiles. The first CRDS effort (with 

CW probe lasers) towards this goal involved a dual-laser scheme [3]. The length of the CRDS 

cell was actively locked to a frequency-stabilized reference laser, while a probe laser was 

brought into resonance, mode by mode, resulting in spectra having a precise optical detuning 

axis. This technique, called Frequency-Stabilized CRDS (FS-CRDS) was used in many line-

shape studies (eg [4,8,12,46]) and had sufficient spectral resolution to reveal MHz-wide 

saturation dips [46]. The acquisition rate of ring-down events was greatly improved by 

locking the laser to the cavity with PDH frequency locking schemes [47-50]. This approach 

was refined [51] using a dual-polarization configuration and EOM-based frequency shifting, 

leading to robust locking of the probe laser to the ring-down cavity with a 130 Hz relative line 

width, 5 kHz-level ring-down acquisition rates, minimal dead-time between cavity mode 

excitations and decay-time measurement precision better than 1 part in 10
4
. Alternatively, a 

dual-cavity approach was used [5] which transferred the stability of a reference cavity to the 

ring-down cavity. First, the source laser was locked to individual modes of the reference 

cavity by optical feedback [39], with capability for mode by mode scanning. This step 

stabilizes the probe laser frequency and renders its bandwidth narrow by comparison to that of 

the ring-down cavity mode. Second, continuous optical tuning is realized up to 20 GHz using 

a single-sideband optical modulator, transforming the stabilized single-frequency light source 

into an arbitrarily tunable probe laser [52]. Third, the ring-down cavity is locked to the probe 

laser allowing CRDS spectra to be acquired with fully adjustable resolution and high SNR. 

This approach has been used for applications to line metrology [5,6,53] and more recently to 


17

O isotopic ratio measurements in CO2 [54]. Here, 17 17 18O ln( O+1) ln( O+1)R R       , 

where 17O and 18  are the usual "" values for relative isotopic abundance and R  is the 

slope of a reference line R, which is used to quantify non-mass-dependent isotopic anomalies 

from an assumed mass-dependent fractionation law. An unprecedented precision of 10 parts-

per-million for 
17

O was demonstrated [54]. 

 The quality of the spectra retrieved by CRDS makes active frequency stabilization 

techniques perfectly adapted for ultra-precise line-shape recordings of weakly absorbing lines 
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with SNRs as high as 10
6
 [5,11,12]. In all these studies, the source laser optical frequency was 

measured against or locked to one tooth of an OFC for an absolute frequency determination as 

explained in the next section. 

 

2.4 Frequency-comb assisted methods  

 The highly coherent and broadband nature of OFCs makes these devices appealing as 

light sources for high resolution spectroscopic experiments that require rapid and wide 

spectral coverage with a well-defined frequency axis (cf Secs. 2.6 and 2.7). Typically, the 

OFC repetition rate and carrier-envelope offset frequency are stabilized relative to an absolute 

frequency standard (eg, Rb or Cs clock), thus providing a comb of known laser frequencies 

with stabilities at the sub-kHz level. However, unlike the extremely high stability of OFC 

frequencies, the intensity can vary substantially with time and from tooth-to-tooth, thus 

driving the limit of detection and often resulting in highly structured spectral baselines that 

alter the observed line shape. These effects can be reduced (but not completely eliminated) by 

signal averaging and intensity normalization.  

Another important use consists in referencing a probe laser to one tooth of a 

frequency-stabilized OFC. An early example includes CRDS line-shape measurements of the 

S(0) and S(1) transitions of deuterium near 3 m, where a Cs-clock-referenced OFC was used 

to provide absolute frequencies of the pump and signal beams in a difference-frequency 

generation probe laser [55]. These experiments yielded line positions and intensities with 

relative uncertainties of 6x10
-8

 and 1 %, respectively. In several other line shape experiments 

[7,30,53,54,56-59], the OFC was used as an optical frequency reference for a single-

frequency probe laser or for measuring the mode spacing of an optical resonator [60]. The 

OFC-assisted technique yields a much more accurate and precise (< 100 kHz) frequency axis 

than conventional techniques using a wavelength meter (> 1 MHz precision). Thus, this 

approach is especially attractive for measurements of absolute line positions and pressure-

shifting coefficients with levels of performance that are substantially improved by comparison 

to those achieved with traditional FTS instruments. 

 Another possibility consists in locking the probe laser to a tooth of the OFC that is 

slowly tuned by changing its repetition rate [30,61-63], for instance. 

 

2.5 Cavity mode-width and mode-dispersion spectroscopies 
 Progress in phase-locking CW lasers to high-finesse cavities has recently enabled the 

development of cavity-enhanced spectroscopic techniques based on high-precision 

measurements of the cavity mode widths and positions. As derived above, the exponentially 

decaying intensity measured in CRDS [Eqs. (3),(4)] is the time-domain equivalent of the 

cavity-mode width measured under CW excitation in the frequency domain, see Fig. 1. 

Specifically, the FWHM of a Lorentzian FP mode is given by (2)
-1

. This property is 

exploited in CMWS [64-66] where the absorption spectrum is retrieved from the widths of the 

cavity modes measured in transmission. Because the spectral interval probed is so narrow, 

this measurement is also relatively insensitive to the frequency-dependence of the probe laser 

intensity. The properties of CMWS make it complementary to CRDS (Sec. 2.3) in terms of 

achievable accuracies at various levels of intra-cavity absorption. For low absorption, where 

the ring-down time is long and the modes are narrow, a higher precision is expected with 

CRDS. For high absorption, the ring-down time is short while the modes are broad and the 

precision of CMWS tends to be higher. Considered together, the CRDS and CMWS methods 

provide a wider dynamic range of measurable absorption levels than those associated with 

either method considered alone. It is important to recall that, in the context of line-shape 

measurements, short ring-down times associated with strong absorption may lead to 

systematic errors caused by the finite bandwidth of the detection system. Therefore, CMWS 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 14 

potentially has a higher dynamic range than CRDS provided that the frequency axis of the 

cavity-mode spectrum is sufficiently accurate, as indicated in [64] and demonstrated in [67]. 

Experimental setups for CMWS require ultra-narrow probe laser line widths and sub-kHz 

resolutions of the frequency tuning to measure the kHz-level mode widths of high-finesse 

cavities. This can be achieved in a dual-beam configuration, where two orthogonal 

polarizations of the laser beam are used: the first for phase-locking the laser to the cavity 

mode and the second for scanning through the neighboring cavity-mode shapes [51,65,66]. 

This technique also eliminates the influence of the cavity acoustic noise on the mode 

spectrum.  

 

 

 

 

Fig. 1: (a) - transmission 

spectrum of the empty optical 

cavity (red) and cavity filled 

with a gas (blue) having an 

absorption line (green); (b) – 

principles of absorption 

spectroscopies in the time 

(CRDS) and frequency 

(CMWS) domains, and 

dispersion spectroscopy (1D-

CMDS) in the frequency 

domain. After [13]. 

 The measurement of dispersive mode shifts provides another interesting approach for 

quantitative spectroscopy because frequency is the physical observable that can be measured 

with the highest precision and lowest uncertainty. Furthermore, the determination of absolute 

or relative mode frequencies in the One-Dimensional Cavity Mode Dispersion Spectroscopy 

(1D-CMDS) [13] eliminates potential systematic errors in measured line-shapes caused by 

nonlinearities of the detection system. Contrary to "usual" spectra, which have absorption and 

frequency axes, in 1D-CMDS both axes of the dispersion or differential-dispersion spectrum 

are created from the same measurements of mode-center frequencies. They can thus be 

directly linked to primary frequency standards, as demonstrated in [67]. 

 Comparisons of spectra obtained with different cavity-enhanced techniques also enable 

the quantification of potential systematic instrumental errors at the sub-percent level of 

uncertainty. For example, simultaneous measurements of both absorption and dispersion 

spectra provide a precise method to check the self-consistency of experimental line shapes. In 

[68], the accuracy of FS-CRDS (in the limit of strong absorption) was studied by comparison 

with 1D-CMDS. The line-shape fits revealed sub-percent level inconsistency between 

absorption and dispersion for high absorption, which could not be detected and were not 

manifest in the residuals of the individual fits, see Fig. 2. The above-described frequency-

based cavity-enhanced techniques are thus particularly useful in applications (eg studies of 

self-broadened line-shapes over a wide pressure range) that require highly accurate 

measurements spanning a broad range of absorption. For applications that require extremely 

high accuracy and SI traceability of measurements (eg Sec. 5.2), the frequency-based 1D-

CMDS should be an attractive alternative to traditional absorption techniques. So far both 

CMWS and 1D-CMDS were used for measurements of the shapes and absolute positions of 
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CO lines with SNRs exceeding 10
4
 [67]. CMWS was also applied to low-pressure CO spectra 

[69] using a NICE-OHMS experimental setup. It was recently demonstrated [70,71] that the 

CMWS and 1D-CMDS methods also can be combined with optical frequency comb single-

tooth resolved spectroscopy [72]. In this case a broadband frequency-based absorption and 

dispersion spectrum can be measured with a kHz-level resolution (cf Sec. 2.7). 

 

 
Fig. 2: Complex spectra (absorption from FS-CRDS and differential dispersion from 1D-CMDS) of 

13
C

16
O (3 – 

0) band P3 line measured at two CO pressures p. Below residuals from the complex speed-dependent Nelkin-

Ghatak profile fits (red) reveal perfect agreement between FS-CRDS and 1D-CMDS at p = 20 Torr and 

considerable disagreement at p = 60 Torr. Residuals from the individual absorption or dispersion fits (blue) do 

not allow detection of this systematic line-shape distortion. After [73]. 
 

2.6 Direct frequency-comb spectroscopy 

 For OFCs, the extremely high stability of the frequency axis combined with their 

broadband spectrum makes them attractive light sources for absorption measurements. A 

review of various experimental schemes of direct OFC-based spectroscopy can be found in 

[74]. For line-shape investigations, single-tooth resolved methods, which provide a spectral 

resolution limited only by the OFC stability, are particularly attractive. Indeed, FTS combined 

with an OFC source is suitable to line-shape studies since it combines extremely high 

resolution with a broad spectral coverage. Two approaches to this experimental scheme were 

developed: dual comb and mechanical FTS comb spectroscopy. 

 - Dual Comb with two femto-second lasers: The idea of Dual Comb Spectroscopy (DCS) [75] 

is to interfere two OFCs having slightly different repetition rates, see Fig. 3. When both OFCs 

are combined and transmitted through a gas sample, the down-converted heterodyne beat 

spectrum of slightly detuned comb teeth provides an intensity absorption spectrum, similar to 

traditional FTS [76,77]. If only one OFC passes through the sample and the other serves as a 

local oscillator [78,79], both the absorption (amplitude) and dispersion (phase) spectra of the 

sample can be measured, analogous to dispersive FTS [80]. Note that for high SNR 

measurements using DCS, it is crucial to normalize the spectra for frequency- and time-

dependent variations in both OFC amplitudes [79,81]. Coherent signal averaging also requires 

that the relative line width between corresponding teeth of the two combs is not larger than 

the inverse of the averaging time, which in practice requires phase-locking of both combs to 

the same optical reference [81]. Several studies of molecular spectra with DCS have 

demonstrated its potential for line-shape investigations. For instance, absorption and 
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dispersion spectra of HCN with SNRs up to 4000 were measured [81]. DCS was also used to 

detect variations in atmospheric CO2, CH4 and H2O [82]. In this case, the high-resolution 

spectra enabled comparison of the fit results obtained using the VP and SDVP with line-

mixing for CO2 lines. Another example is given by [83] in which the positions of CH4 lines in 

the 3 band were accurately determined from absorption and dispersion spectra having SNRs 

up to 3500 and a spectral point spacing 4 times smaller than the OFC repetition frequency.  

 

 

 

Fig. 3: Principle of the DCS using multi-

heterodyne detection. Interference 

between two slightly detuned OFCs 

(having repetition frequencies frep and 

frep+Δ) creates a new comb down-

converted to RF, with frequencies equal 

to the differences between the optical 

comb teeth frequencies (nΔ). This new 

comb contains information on amplitude 

and phase change caused by molecular 

absorption of one OFC. After [77].

 

 

 - Dual Comb with mini-combs: An alternative approach to DCS uses frequency combs 

generated from a single continuous-wave laser radiation [14] by two electro-optic phase 

modulators with slightly different modulation frequencies. Such combs have a high relative 

coherence and enable over 2 hours of real-time signal averaging. The achieved 50 GHz span 

of the comb spectrum in the near infrared enabled simultaneous measurement of CO2, CO, 

H2O and HDO lines at atmospheric pressure [84]. When compared to the femto-second OFCs, 

this system has a low cost and easily adjustable comb spacing but a relatively narrow 

bandwidth. It can potentially provide higher SNR due to the extremely high coherence of the 

two combs and high power per tooth. These features make it suitable for accurate line-shape 

measurements. 

 - Comb-based FTS with sub-nominal resolution: As recently shown [72], Fourier-transform 

comb spectroscopy based on a single OFC and a Michelson interferometer can deliver the 

resolution of a comb-tooth, surpassing the natural limits of traditional FTS because of the 

unique properties of the OFC. When the travel length  of the Michelson interferometer 

moving mirror equals c/frep, where frep is the repetition frequency of the comb, crosstalk 

between frequency elements (the comb teeth) after Fourier transformation is completely 

eliminated (Fig. 4). Any spectral points between the comb teeth can be probed in consecutive 

scans with different frep and Δ. This technique enables the construction of relatively low-cost 

and compact FT spectrometers with a resolution limited only by the comb line width. Proof-of 

principle line-shape measurements were made in the fundamental band of CO and 3ν1+ν3 

band of CO2 with SNR of several hundred [72]. In the latter case, a high-finesse cavity locked 

to the comb was used to enhance the path length. This method was used recently to study non-

Voigt spectral shapes of CO2 lines [85]. With a SNR of about 250 the effects of the speed 

dependence of the broadening were clearly observed. 
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Fig. 4: Principle of the comb-based FT spectroscopy with sub-nominal resolution. When the length of the FT 

interferogram Δ equals c/frep the instrumental sinc function (red curve) of given transformed comb tooth crosses 

zero at multiples of frep which correspond to consecutive comb teeth (black curve). In this case FT instrumental 

function does not influence the measured spectrum. When Δ differs from c/frep , the corresponding sinc function 

(green dashed curve) has non-zero values at the comb teeth frequencies and influences the spectrum. After [72]. 

 

 

2.7 Cavity-enhanced direct frequency-comb spectroscopy 

 The use of a high-finesse cavity to improve the sensitivity of DCS is attractive. 

However, mirror- and gas-induced dispersions in the cavity affect the cavity-mode spacing 

and preclude the perfect matching with the equally spaced teeth of the OFC over a broad 

spectral range. Because this frequency mismatch affects the transmission spectrum, it must be 

properly modeled [86] so that dispersion must be accounted for when tightly locking a high-

finesse enhancement cavity to a broadband OFC [87]. The problem may be also solved, at the 

cost of lower transmitted power and effective enhancement, using a dither locking scheme 

[15-18] in which the cavity length oscillates around the resonance with the comb and the 

oscillation amplitude is larger than the dispersive mode shifts. 

Direct frequency comb based Fourier-transform spectroscopy methods described in 

the previous section were also used with enhancement cavities. A Michelson interferometer 

based FT was used to record CO2 line shapes with SNRs of several hundred [72] and cavity-

enhanced DCS for high-resolution spectroscopy was demonstrated in [14]. 

In comb-based Vernier spectroscopy [20,88] the cavity is used to filter the comb 

modes by setting the cavity FSR to a value slightly different than the comb-teeth spacing frep. 

Such a filtered comb contains a reduced number of teeth with increased distance between 

them. Every n
th

 tooth is transmitted through the cavity while all others are reflected. Here n 

must be large enough to enable single-tooth resolution by a dispersive grating or VIPA etalon. 

Their transmission may be measured simultaneously by a detector array, eg CCD. By 

precisely tuning the cavity length, an arbitrary set of filtered comb teeth can be selected in 

consecutive measurements. This method is competitive with the previously described direct 

FT-comb spectroscopies. This approach provides equally high resolution and a higher power-

per-spectral element, but lower spectral coverage of the parallel measurement. For 

quantitative absorption measurements, one must account for the mismatch between the cavity 

modes and the comb teeth caused by broadband and resonant dispersion in the cavity [86]. 

Examples of spectra with individual line shapes having SNR over 100 were presented for CO 

[86] and HCN [89]. In the latter case, both absorption and dispersion spectra were recorded. 

Broadband CMWS and 1D-CMDS measurements (Sec. 2.5) with an OFC as a light 

source were recently demonstrated. This experimental scheme significantly increases the 
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acquisition rate of broadband spectra (by comparison to CW-laser setups) by the parallel 

measurement of hundreds of the cavity mode widths and shifts. In these methods of 

absorption and dispersion spectroscopy achieving single comb tooth resolution is critical. 

Both subnominal-resolution FT [71] and optical Vernier with a VIPA etalon [90] schemes 

yielded sub-kHz precision of the cavity mode and position measurements. The two 

approaches are based solely on frequency measurements and the recorded spectra therefore 

are insensitive to OFC power variations. Note that these methods have uncertainties that are 

unaffected by dispersion in the enhancement cavity [86]. They are thus promising for high-

precision spectral line-shape measurements covering entire molecular bands. 

 

2.8 Dual-laser absorption spectroscopy 

 Recording a line with high precision necessitates a stable and narrow optical frequency 

reference to which the probe laser can be referenced. Rather than using the tooth of an 

expensive self-referenced frequency comb (Sec. 2.4), an alternative solution was proposed 

[91] in which a kHz-linewidth-master laser (ML) is locked to a saturated absorption feature 

[33,92]. The probe laser is then forced to maintain a precise frequency-offset, provided by a 

radiofrequency (RF) synthesizer which is phase locked to an ultra stable Rb oscillator, from 

the ML. By tuning the RF frequency, it is possible to perform continuous, highly linear and 

accurate frequency scans of the probe laser around a given center frequency [91]. This 

feature, in conjunction with the extremely high linearity of the detection electronics, makes it 

possible to avoid any instrumental distortion in measured absorption line shapes, reaching an 

experimental accuracy limited only by the shot noise. 

 This dual-laser method has been used to investigate the shape of H2
18

O lines in the 

Doppler regime [93], evidencing the influence of speed-dependences of the pressure-

broadening and shifting coefficients. Subsequently, the quality of the quadratic and 

hypergeometric models for these speed dependences was tested [94] (cf Sec. 3.2.4c). A recent 

improvement of the dual-laser technique involves a reference laser and the NICE-OHMS 

approach, making it possible to reduce the uncertainty associated with the frequency scale and 

allowing locking on weaker reference lines [95]. This technique was applied to measurements 

of spectroscopic parameters of C2H2 leading, in particular, to a determination of the 23+5 

band Pe(14) line strength with a combined uncertainty of 0.22 % [96]. Apart from molecular 

spectroscopy, the dual-laser technique has been successfully applied to the fields of Doppler 

thermometry and isotope research, as described in Secs. 5.2.1 and 5.2.2.  

 Finally note that the technique of offset-frequency locking of a pair of diode lasers is 

extensively used in atomic physics experiments, while it has been almost ignored in the field 

of molecular spectroscopy, until the work described in [97], in which the authors propose a 

dual laser method for water-vapor differential absorption sensing (cf also [98]). 

 

2.9 Fourier-transform spectroscopy (FTS) methods  

With the exception of direct frequency-comb-based methods (cf Sec. 2.6), the spectral 

resolution of most FT spectrometers is generally lower than that of laser-based systems. 

Nevertheless, these instruments typically provide more global spectral-shape information than 

can be obtained using relatively narrowband laser methods. Key attributes of FTS include the 

applicability to optically thick samples and the realization of accurate frequency axes with 

spectral coverage that is sufficient to investigate entire absorption bands. These attributes of 

FTS are most effectively exploited by carrying out physically constrained, multispectrum 

analyses [99] of several measured spectra that are acquired at known values of sample 

composition, pressure and temperature. In the last decade and before, such methods have 

provided a wealth of measured spectra for the test of theories and models, as well as for the 

determination of absorption-shape parameters from their fits. Given their broad spectral 
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coverage and high data throughput, they have been, and remain, the workhorse for populating 

line-by-line spectroscopic databases. Numerous references cited in Secs. 3 and 4 demonstrate 

the interest of FTS and, in many cases, its advantages. An example can be found in [100] 

where information on individual line shapes, on line mixing and on collision-induced 

absorption in the O2 A band has been simultaneously retrieved from FTS and CRDS spectra. 

This study shows the complementarity of these two experimental methods and the interest of 

investigating an extended spectral range that is analyzed through the simultaneous fit of 

spectra recorded at various pressures. The interest of such a method when the FTS is coupled 

to coolable cells (eg [101]) is further illustrated by [102], where multispectrum fits of 

broadband CH4 spectra recorded for various pressures and temperatures enabled the retrieval 

of information on line-broadening, -shifting and -mixing coefficients together, for some lines, 

with the speed dependence. In addition, FTS has brought a lot of experimental information on 

the broadband water vapor continuum and on collision-induced absorption spectra, as shown 

by many references cited in Secs. 4.3.1 and 4.4. Let us finally mention a study [103], which is 

to our knowledge the first in which FT spectra have enabled the investigation of the effects of 

temperature on the parameters of a very refined individual line-shape model. Indeed, the T 

dependences of not only the line-broadening and -mixing coefficients but also those of the 

speed dependence of the width and of the Dicke narrowing parameter have been determined 

from fits of measured spectra.  

 

2.10 Advances in coherent terahertz spectroscopy 

The measurement of light-matter interaction in the terahertz spectral region (roughly 

0.1-10 THz) is a fertile research area with numerous applications in spectroscopy. Although 

many materials that are opaque or absorb at infrared and visible wavelengths are transparent 

for THz (also known as mm-wave), there are species, such as water vapor, which have strong 

rotational absorption fingerprints there. Given the relatively small Doppler widths of 

transitions in this region, the line shapes are dominated by collisional effects at relatively low 

pressure.  

Coherent sources required for THz spectrometers can be produced by photomixing of 

infrared lasers, backward wave oscillators or by frequency multiplication of radiofrequency 

(RF) sources [104]. These types of sources typically provide output powers no greater than a 

few microwatts, which has hindered more widespread implementation of high-resolution 

spectroscopy in the THz region. Recently, compact quantum-cascade lasers (QCLs) are 

emerging as attractive sources with emission frequency down to 5 THz, output powers as high 

as 10 mW and line widths from 100 Hz to 500 kHz [105-108]. The first high-resolution 

absorption spectroscopic measurement with a THz QCL was in 2006 and involved 

measurement of CH3OH [105]. More recently, a frequency-comb-assisted THz QCL 

spectrometer resulted in an SNR of approximately 3000 and line centers measured with an 

uncertainty of 10 kHz [108]. These experiments clearly demonstrate the potential of QCL 

technology for realizing new high-precision line-shape studies in the THz region, although the 

stability of cryogenic detection schemes often remains a limiting factor in measurement 

precision. 

Numerous THz line-shape studies were carried out prior to the development of THz-

QCL sources. A spectrometer employing a custom-built coherent radiation source (based on 

photo mixing of two near-infrared lasers) provided temperature-dependent collisional width 

and shift coefficients of water vapor [109]. These measurements were made over the 

temperature range 263-340 K, yielding a spectral resolution of 15 MHz and relative 

uncertainty in the broadening coefficient from 1 to 3 %. In [110-112], a coherent source 

comprising a phase-locked, frequency-multiplied RF diode was developed to measure self-, 

nitrogen- and oxygen-broadened pure rotational lines of HNO3 and H2O. Absorption spectra 
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were acquired using intensity- and frequency-modulation methods with phase-sensitive 

detection, and various line shapes were fit to the data to yield pressure-broadening and -

shifting coefficients as well as speed-dependent broadening and collisional narrowing 

parameters. Recently, a coherent THz source based on frequency-multiplied RF synthesizer 

signals with a resolution of 5-10 MHz was used to measure absorption by water vapor within 

a multipass cell [113]. A global, multispectrum fit of 145 spectra yielded line positions, shift 

and broadening parameters as well as continuum coefficients for several line profiles.  

 An experiment using a phase-locked Gunn diode source [114] demonstrated the 

feasibility of CRDS measurements in the 75-100 GHz region. Subsequently, high-resolution 

determinations of N2 and O2 continua and H2O rotational lines in the THz region were made 

using a fast-scanning (30 GHz/s) BWO source with a tuning range of 170-260 GHz [115]. 

This experiment employed a 10-m-long cavity, with finesse of 1000, line width of 13 kHz and 

resulted in a spectrum baseline noise of 2×10
-7

 cm
-1

. Also using a FP resonator, cavity line 

width measurements straddling the microwave and THz regions were used to measure O2 and 

H2O absorption line shapes, with baseline noise levels of 4×10
-9

 cm
-1

 and spectrum SNRs 

approaching 1000. Recently, cavity-enhanced measurements of N2O near 0.1 THz were 

realized with a low-mass, CMOS-based instrument having a 3-cm-long resonator, finesse of 

200 and mode width of 20 MHz [116]. Fourier transforming the echo induced by the pulsed 

source yielded pressure-broadened N2O line shapes nominally 1 MHz wide and a detection 

limit of 5×10
11

 molec.cm
-3

. It is worth noting that although cavity-enhancement in these long 

wavelength regions increases measurement sensitivity compared to direct absorption methods, 

the maximum finesse of metallic-reflector-based resonators is typically diffraction limited and 

nominally two orders of magnitude lower than that achieved with the super-polished dielectric 

mirrors available for visible and near-infrared systems.  

 

3.  Theories, models, results 
3.1 Introduction and selection criteria 
 This section is devoted to theories, models and results concerning pressure effects on 

absorption spectra, which are to be understood as follows: "Theories" means theoretical 

approaches that enable direct predictions of some measured quantities (spectra, line widths, 

etc). Within this topic we limit ourselves to those proposed since [1], ie 2007. "Models" refers 

to those assumptions and resulting equations that enable the description of experimental 

results based on parameters that are fitted to measured data. Here again, we focus on those 

proposed in the last decade. "Results" must be understood in the sense of comparisons 

between the predictions of "theories" and experiments, or tests of the ability of "models" to 

represent measurements. We consider those results obtained since 2007, regardless of when 

the theory or model used was published. 

 The remainder of Sec. 3 is divided into five parts in which we try to update the 

information given in chapters III-VI of [1]. Section 3.2 focuses on "isolated lines" that are not 

affected by neighboring transitions but are influenced by various effects leading to non-Voigt 

profiles. The calculations of "pressure-broadening and -shifting coefficients", primary 

ingredients of their shapes, are discussed in Sec. 3.3. "Line-mixing", through which the 

transfer of population between rotational levels has spectral consequences not too far from 

line centers, is the subject of Sec. 3.4. Section 3.5 then focuses on the spectral regions of the 

"far wings and associated continua" to which many processes, including the finite duration of 

collisions, contribute in a complex manner. Finally, "collision-induced absorption", when the 

interaction of molecules with light results from the dipole that only exists during 

intermolecular collisions, is considered in Sec. 3.6.  

 Note that most of the studies discussed in this section have been made at or near room 

temperature. In the following, we will thus generally give information on the temperature-
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range investigated only when the latter is broad enough to enable a significant test of the 

ability of a theory or model to describe the T dependence. 

 

 

3.2 Isolated line shapes 

 As in Chapt. III of [1], we consider here "isolated transitions", ie those sufficiently 

distant from others for their core region not to be influenced by their neighbors under the 

considered gas conditions. Describing their shapes requires simultaneously accounting for the 

Doppler effect, the collision-induced velocity changes of the radiating molecule, and the 

pressure-induced speed-dependent line broadening and spectral shifting. With regard to this 

topic, the last decade has witnessed several advances, largely based on the high quality of 

spectra recorded with laser techniques (Sec. 2). Various phenomenological line-shape models 

have been proposed and/or tested, while theories for predictions of the line shape were 

developed. In the first part of this section, we present a new approach for the direct 

calculation of isolated line profiles (Sec. 3.2.1). Other approaches evaluating the spectral 

shapes by using a kinetic equation describing the time evolution of the dipole auto-correlation 

function (ACF) are presented in Sec. 3.2.2. Models and methods developed or used to 

compute the velocity collision kernels involved in this equation are also reviewed in Sec. 

3.2.2. Approaches proposed that account for relativistic and dispersion effects on the line 

shape are the subjects of Sec. 3.2.3. Finally, recent advances concerning phenomenological 

line-profile models are reviewed in Sec 3.2.4. 

 

 3.2.1 Direct and empirically corrected predictions from Molecular Dynamics 

Simulations 

 A new theory for the direct prediction of isolated line shapes of linear molecules was 

proposed in [117]. It uses classical dynamics and an assumed intermolecular potential to 

compute the translational and rotational evolutions of a large number of molecules. These 

Classical Molecular Dynamics Simulations (CMDS) provide the center-of-mass position 

( )mq t  and velocity, as well as the axis orientation ( )mu t  and rotational angular momentum, 

of each molecule m at all times t. For the linear species considered, the dipole moment lies 

along the molecular axis and its ACF is proportional to the average (0). ( )u u t . The Doppler 

effect is introduced through the relative displacement  ( ) (0) .m mq t q z  along the radiation-

propagation direction z . The Laplace-Fourier transform of this ACF (ie multiplying the ACF 

by exp( )i t  and integrating from t=0 to  ) then yields the absorption spectrum. However, 

because CMDS lead to a continuous distribution of rotational speeds, this spectrum shows no 

line structure. In order to solve this problem, a requantization procedure was proposed [117]. 

As first demonstrated for pure CO2 [117,118] and confirmed for other systems [119,120], 

these requantized CMDS (rCMDS) closely predict the observed relative deviations of line 

shapes from the VP without adjusting parameters. Note that an alternative requantization was 

proposed in [121], which is more suitable for light rotors and was successfully applied to HCl 

[121] and CH4 [122] lines. It also enables one to constrain the positions and intensities of the 

lines in the calculated spectrum to literature values (taken from a database, for instance), a 

possibility that was used in [123,124]. 

 While rCMDS accurately predict the relative deviations of line shapes from the best VP 

fits, the line shapes themselves are not as well described because the line widths in rCMDS-

calculated spectra may deviate from measured values by several percent (eg [117,120,121]). 

An approach to empirically correct for these discrepancies was proposed in [125] and 

successfully tested for some CO lines. The idea is to multiply the rCMDS-calculated dipole 

ACF for line  at pressure P by the correction factor exp( 2 )c Pt   . Here,   is the 
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difference between the pressure-broadening coefficients obtained from fits, with the same line 

shape, of a measured spectrum of line  at a single pressure P0 and of that obtained from 

uncorrected rCMDS for the exact same conditions. With this simple correction, differences 

with experiments may become as small as a few times 0.1 % of the peak absorption over a 

broad range of P. This is illustrated by Fig. 5 which also shows the large errors obtained when 

the VP is used. Note that the results in this figure are for room temperature and that the ability 

of the proposed approach to accurately represent spectra at various temperatures remains to be 

proven. However, since the model offers the possibility to introduce an ad hoc temperature-

dependent correction ( )T  we expect it to lead to results of similar quality below and 

above room temperature. 

 

 

 

Fig. 5: Peak-to-peak amplitudes 

(relative to the absorption peak 

values) of the residuals of 

multispectrum Voigt-fits of measured 

spectra of the P(17) line of the 3-0 

band of CO at room temperature (full 

symbols) and relative deviations 

between measured and corrected-

rCMDS spectra (open symbols) for 

CO diluted in He (squares), Ar 

(triangles) and Kr (circles). After 

[125]. 

 3.2.2 Using a kinetic equation  

 An alternative approach to direct rCMDS is to use a set of (vectorial) kinetic equations 

that drive the time evolution of the dipole ACF ([126-129] and Sec. II.5 of [1]). A general 

review on this topic can be found in [130]. In a purely theoretical study, using the 1/r
n
 

potential form, [131] solved these kinetic equations and showed the influence of the 

interaction potential (ie of n) on the calculated spectral shape. Within the "isolated-line 

approximation" (no transfer of intensity between the various transitions) this set of kinetic 

equations becomes diagonal in the line space with one independent differential equation for 

each transition. The latter involves, besides the Doppler contribution, a collision kernel for the 

changes of the radiator velocity together with a collisional width (and shift) that depends on 

the radiator speed. It is also possible to introduce [126] a parameter describing the correlation 

between the collision-induced changes of the molecular translational and rotational motions. 

While the speed-dependent pressure-broadening and -shifting coefficients can be obtained 

from calculations (Sec. 3.3), several approaches have been proposed for the velocity collision 

kernels. The latter have been modeled in recent studies by using the Keilson-Storer (Sec. 

3.2.2a) and the billiard-ball (Sec. 3.2.2b) models, as well as directly calculated using CMDS 

(Sec. 3.2.2c). Note that, with the exception of the billiard-ball model which was tested (for 

H2) in a wide temperature range, all other recent results discussed in this section are limited to 

room temperature. This stresses the need for further tests of the models described below over 

extended temperature conditions. 

 3.2.2a The Keilson-Storer model for the velocity collision kernel 

 The Keilson-Storer (KS) model [132] was used for the first time in [133] to describe the 

effects of collision-induced velocity changes on line shapes (of H2 in Ar). The KS kernels are 

based on two parameters [132,133]: The velocity-changing collision frequency VC, and 
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which parameterizes the efficiency with which collisions change the velocity. The latter 

quantity takes on values between 0 and 1, which correspond to two physical limits. For , 

there is no correlation between the velocities before and after collision. This is the hard 

collision model [126,134] for which the molecular velocity is completely thermalized after 

each collision. For =1, the velocities before and after a collision are completely correlated 

and this is equivalent to the soft collision model [135]. The KS kernel is thus more general 

than these two extreme cases. Because collisions may change the velocity modulus and 

orientation with different efficiencies, a more general version was proposed [136] based on 

two distinct m and o parameters. In [137], it was shown that the three parameters of this 

extended KS approach can be determined by using CMDS. The resulting line-shape model, 

built from the corresponding collision kernels and completed by speed-dependent widths and 

shifts deduced from experiments, was successfully compared to measured Raman lines of H2 

in N2 and Ar [136,138,139]. The same approach was then applied to pure H2O and H2O in N2 

[140-142]. For these systems, where the decay times of the auto-correlation functions of the 

velocity modulus and orientation are close to each other [140,141], a single parameter was 

used. Its value and that of VC were deduced from CMDS. These calculations also enabled 

[140,141], for the first time, quantification of a parameter that describes the correlation 

between collision-induced changes of the translational and rotational motions. The speed-

dependent widths and shifts, other components of the kinetic equation, were calculated 

[140,141] using the RB formalism (Sec. 3.3.4). The resulting line shapes are in excellent 

agreement with those measured for many transitions of pure H2O and H2O in N2, under 

various pressure conditions [140-143]. It was in particular shown, using an empirical 

correction procedure similar to that applied to the CMDS predictions of CO line-shapes (cf 

[125] and Sec. 3.2.1), that this approach leads to absolute predictions of the profiles of H2O 

lines broadened by N2 [143] wthin better than 0.5%. For completeness, recall that the (mono-

parametric) KS model was used to describe the collision kernel of pure H2 in [144]. In this 

study, a purely numerical solution [145] of the kinetic equation was implemented for the first 

time and satisfactory agreement with measured spectra was obtained over a broad pressure 

range.  

 3.2.2b The billiard-ball (BB) approximation for the velocity collision kernel 

 The billiard-ball (BB) model was derived assuming a hard-sphere interaction potential 

[146,147] and the associated velocity collision kernels are given in analytical form [148]. In 

an analysis of O2 spectra measured via FS-CRDS [149], it was shown that the use of the BB 

model for the description of velocity changes yielded the highest quality-of-fit (as defined in 

Ref. [11]) ever reached for a molecular line. The speed-dependent billiard-ball (SDBB, [150]) 

profile was used to quantify the ability of various line-shape models to reproduce a 

benchmark theoretical profile [151]. It also enabled to estimate possible systematic errors on 

Doppler width measurements [149] for the spectroscopic determination of the Boltzmann 

constant (cf also Sec. 5.2.1) and to determine the frequencies of unperturbed rovibrational 

transitions [152]. This profile was also used [153] to rescale the narrowing parameter of the 

HC model and improve the treatment of velocity-changing collisions in the Hartmann-Tran 

profile (Sec. 3.2.4a). Note that the large discrepancy between quantum computations of the 

line widths and those measured for H2 perturbed by Ar obtained in [154] was solved [155] by 

using the SDBB profile which properly handled velocity- and speed-changing collisions (cf 

Fig. 6). Using the SDBB model for lines of H2 perturbed by He, it was shown [156] that 

comparisons of measured and calculated full line shapes enable to discriminate various PESs 

while considering only pressure-broadening and -shifting coefficients is not sufficient.  
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Fig. 6: Apparent width (HWHM) and shift of 

the isotropic Raman Q(1) transition of the 

fundamental band of H2 perturbed by Ar for 

various temperature and density conditions. 

The solid lines represent the results of 

calculations using the SDBBP, while the 

points correspond to the experimental values 

[157,158]. The dashed and dotted lines were 

obtained from calculations in which the 

velocity changing-collision model was the 

phenomenological soft and hard-collision 

models, respectively. After [155]. 

 

 

 3.2.2c Velocity collision kernel calculated from CMDS  

 CMDS were used to obtain the velocity collision kernel for pure H2 in [144]. As 

mentioned in Sec. 3.2.1, these calculations provide the time evolution of the center-of-mass 

velocity of each molecule. It is thus possible to follow the number of molecules, among those 

having a given velocity at time t, which have changed to another velocity at time t'. This gives 

detailed information on the velocity changes from which the associated kernels can be 

deduced [144]. The latter were compared with those calculated using the KS model (Sec. 

3.3.2a) showing that this last approach does not well describe velocity-to-velocity changes 

(Fig. 7) although it leads to (practically) the same averaged correlation function of the 

molecular velocity [144]. Comparisons between measured line shapes of Raman and 

quadrupole lines of pure H2 and those calculated using the KS and CMDS collision kernels 

showed that the latter lead to better and very satisfactory agreement with measurements [144].  

 Figure 7 shows a comparison between velocity collision kernels computed for H2-H2 

interactions using CMDS, the BB and KS models. As demonstrated in [159] and shown by 

this plot, for H2-H2 (and also H2-Ar), the kernels calculated with the BB model are in 

excellent agreement with those predicted by CMDS, while the KS function leads to values 

which are independent of the relative orientation change between the velocities before and 

after the collision.  
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Fig. 7: Velocity collision kernels for H2-H2 

calculated by CMDS (symbols), by the BB 

approach (solid lines) and using the KS 

model (dash line) at 296 K and 1 amagat. 

The results, for the initial speed vi=1563 

m/s, are plotted vs the final speeds vj. 

Magenta, red and blue results correspond 

to angles between the initial and final 

velocities of 36, 90 and 144°, respectively. 

The same value (dashed black line) for the 

three angles is obtained with the KS 

model). After [159]. 

 

3.2.3 Relativistic and dispersion correction to line-shape models 

 Models have been proposed recently to account for some refined effects that affect the 

line shapes. The proposed corrections, discussed below, will likely be crucial for ultra-precise 

Doppler thermometry (cf Sec. 5.2.1) and molecular spectroscopy for fundamental studies. 

Although these effects have not yet been experimentally verified, it may become possible in 

the future to observe them through measurements capable of detecting relative changes of the 

line shape at the typical 10
-6

 level (see below).  

 The relativistic formula for the Gaussian profile was given in [160] and an extension to 

the VP was derived in [161]. It was demonstrated that relativistic effects lead to a line 

asymmetry and can modify the profile at the 10
-6

 level [161] at room temperature (with 

modifications that increase with temperature). Equivalent formulas for more advanced (non-

Voigt) relativistic profiles have not been proposed so far. 

 The dependence of the Doppler shift on frequency, caused by dispersion [162,163] and 

by light frequency variation over the spectral line shape, is another refined effect that needs 

experimental demonstration. A model taking this into account was derived for a Gaussian line 

shape [163], showing that it leads to a line asymmetry, affects the line shape at the level of 10
-

5
 and may influence line-position measurements at the kHz level. Again, for future 

applications, dispersion corrections are needed for profiles also influenced by collisional 

effects. 

 

 3.2.4 Phenomenological line-shape models  

 Models that explicitly express the line shape analytically as a parameterized function 

with a few (adjustable) parameters are very useful. They can be fitted to measured spectra 

(Sec. 4.1), providing parameters which can be archived in databases (Sec. 4.5), opening the 

route for use in practical applications (Sec. 5). In this section, we review some recent 

advances and results obtained with various phenomenological profiles used to represent the 

shape of isolated lines. 

 The simplest line shapes are the Doppler and Lorentz profiles. They depend on the 

Doppler width and on the “usual” pressure-broadening and -shifting coefficients, respectively. 

The convolution of these two profiles results in the Voigt (V) profile, which captures the 

inhomogeneous collision-induced line broadening that encompasses all velocity classes. It is 

then possible to account for the collision-induced changes of the radiating-molecule velocity 

by assuming Soft (SC) or Hard (HC) Collisions. These assumptions lead to the Galatry [135] 

and Rautian [126,134] line-shapes, respectively. Concerning the Speed Dependences (SD) of 
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the collisional width and shift, they are usually modeled using a quadratic (q) [164,165] or a 

hypergeometric (h) [166,167] law. Then, models for velocity-changes and speed-dependences 

can be combined, leading to a large variety of models such as (using the acronyms introduced 

above) the qSDVP, the qSDHC and the hSDSC profiles, for instance. Note that it is also 

possible to introduce a partial Correlation (pC) [126] between the collision-induced changes 

of the radiator velocity and those of its rotational (speed and phase) state. Figure 8 (see also 

that in Sec. 5.2.2) shows examples of fits of measured spectra with a variety of 

phenomenological lines-shape models (in which LM has been included). As can be seen, the 

VP leads to large, but not atypical, residuals. Furthermore, Fig. 8 shows that not only the 

speed-dependence but also the velocity changes and the correlation must be taken into 

account in order to obtain the best fit of the high quality observed line-profiles. 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Top panel: Peak-normalized absorption 

spectra of the 3-0 P(1) lines of 
12

C
16

O broadened by 

Kr measured at room temperature and various total 

pressures. Bottom panels: Residuals (in % of the 

peak absorption) obtained from multispectrum fits 

[99] of the measured spectra with various line-

shape models. Note that different vertical scales are 

used for the various residuals. After [168]. 

  

 Many models can be found in Table III.6 and Sec. III.3 of [1] and in Table 1 of [169] 

with detailed descriptions in the references therein. All of these approaches have existed for 

awhile, but the most sophisticated ones were seldom used until recently only because they 

involve numerous parameters. Indeed, since measurements carry noise, the solutions to make 

the retrieval of all the model parameters as unambiguous as possible are [169]: to use spectra 

of the best quality achievable, to record them over a pressure range as broad as possible 

(ideally from the practically purely Doppler to the almost purely collisional behavior of the 

line shape), and to treat them using a multispectrum fitting procedure [99,170]. 

 3.2.4a The Hartmann-Tran profile  

 Starting from the partially-correlated speed-dependent hard-collision model [171], 

Hartmann, Tran and co-workers combined it [169] with quadratic speed dependences 

[164,165] for the line width and shift. The resulting pCqSDHC profile accounts for the 

Doppler effect, the influence of velocity changes caused by collisions, the speed dependences 

of the line width and shift and the correlation between velocity- and internal-state changes. 

Using ab initio calculated line shapes of various molecular systems as references, [169] 

showed that the pCqSDHC can reproduce most of them over a wide pressure range with a 

precision better than ≈0.1 %. Furthermore, [169] demonstrated that this line profile can be 

written as a combination of complex error functions for which many computer-efficient 

routines are available (eg [172-177]). Therefore, the pCqSDHCP can be easily and quickly 

computed [178], contrary to most of the other sophisticated line shapes, which enables the use 
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of this profile for computationally intensive calculations required for radiative transfer and 

remote sensing applications. In addition, by setting some parameters to zero, the pCqSDHC 

profile reduces to several simpler line shapes [169], including the widely used qSDVP and the 

HC model. Because of its numerous useful attributes, the pCqSDHCP profile was 

recommended by an IUPAC task group as the reference line shape to be used in high-

resolution spectroscopy [179]. Now known as the "Hartmann-Tran" profile (HTP), it is 

increasingly used (Sec. 4.1) and the HITRAN database now enables the storage of its 

parameters (Sec. 4.5.1). 

 3.2.4b Temperature dependence of the line-shape parameters 

 Relatively little has been done on the temperature dependences of the line-shape 

parameters other than the usual broadening and shifting coefficients associated with the VP 

(as confirmed by the table in Sec. 4.1). 

 Concerning the speed-dependence, a relation between the temperature dependence of 

the collisional broadening and that of the parameter describing its quadratic speed dependence 

was given in [180]. It was obtained assuming that the dependence on the relative speed of the 

collisional broadening is also quadratic. In this particular case, it was shown [181] that the 

ratio of the broadening speed-dependence parameter to the pressure-broadening coefficient 

should be independent of T. This result was experimentally confirmed to within a few percent 

for variable-temperature measurements of CO2 line shapes in the 1.6 m region [181]. 

However, some other experimental studies [103,182-184] have shown that the temperature 

dependences of the line broadening and of its quadratic speed-dependent component are 

significantly different. For the Dicke-narrowing parameter (generally denoted by VC), a 

power law for its temperature dependence was used in a few studies (eg [103,182,185,186]) 

that have investigated this issue. The corresponding experimental results show that the 

temperature dependence exponent of VC can be significantly different from that of the line 

broadening (eg 1.2 versus 0.75 on average in [103]). Finally, to the best of our knowledge, 

there is no experimental or theoretical result available for the temperature dependences of the 

speed dependence of the pressure shift and of the correlation parameter. 

 This sub-section shows that the influence of temperature on the collisional parameters of 

refined isolated line profiles (beyond the VP) remains poorly known. New (very careful) 

experimental investigations are needed to clarify this important issue to which the theoretical 

approach of Secs. 3.2.1, 3.2.2 and 3.3 may also bring interesting information. 

 3.2.4c Quadratic versus hypergeometric speed dependences 

 The quadratic speed-dependence (qSD) [164,165] is different from the hypergeometric 

(hSD) model [166,167]. The latter is more physically based since it results from an 

assumption directly concerning the intermolecular potential. Using high quality spectra of O2 

lines at low pressure, it was shown [187] that the pChSDHC model leads to slightly better fits 

of the observed line-shapes than the HTP (ie pCqSDHCP). Similarly, in situations involving 

large speed-dependence effects, such as a high rotational quantum number line and/or a light 

active molecule interacting with a heavy perturber, the hypergeometric model also better 

reproduces the measured spectra than does the quadratic model [188]. A detailed comparison 

between the pChSDHC and the pChSDHC profiles was also made in [189] using high quality 

spectra of H2O lines in the Dicke-narrowed regime. The same fit qualities were obtained with 

the two models. For the retrieved parameters, while the integrated absorbances and speed-

averaged pressure-broadening and -shifting coefficients are very consistent, the other 

parameters are quite different [189]. With respect to the hypergeometric model, the line 

narrowing due to the speed dependence is underestimated by the quadratic approximation 

whereas the velocity-changing frequency is overestimated [189]. In other measurements of 

self-broadened H2O lines, it was shown that HC profiles with the quadratic and 
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hypergeometric speed dependences gave nearly identical results, reproducing the spectra with 

residuals at the 0.01 % level [8]. 

 3.2.4d Kochanov’s approach  

 In [190] and references therein, a new line-profile model was proposed. It is based on 

quantum mechanical collision-integral kernels calculated for an intermolecular interaction 

potential proportional to 1/r
n
, with r the intermolecular distance (thus much simpler that those 

that can be implemented in the codes, such as MOLSCAT [191], discussed in Sec. 3.3.1). 

Specifically, the collisional kernels were modeled and then fitted to the quantum-mechanical 

calculated kernels. This model accounts for the Dicke narrowing, the effects of small- and 

large-angle scattering collisions [192], and the speed dependences of the collisional relaxation 

rates. The resulting profile involves a plethora of parameters likely to be fitted to experiments 

but, to the best of our knowledge, its ability to accurately describe measurements has not been 

proven so far. 

 

3.3 Pressure-broadening and -shifting coefficients 

 The pressure-broadening () and -shifting () coefficients are the first quantities to be 

known for calculations of spectra when the Doppler effect is not dominant. Thus, for decades, 

efforts have been made to determine these parameters and subsequently populate databases. 

Until relatively recently, the VP was mostly used and knowledge of the values <> and <> 

averaged over the velocity distribution was sufficient. With the increase of precision 

requirements and the now well-recognized fact that speed-dependence effects are important, 

these two parameters have become insufficient to capture the pressure dependence of line 

shapes. One then needs to know the dependences of  and  on the absorbing-molecule speed, 

which are ingredients of a variety of refined line-shape models (Sec. 3.2 above and III.4 of 

[1]). We focus here on their calculation for which we review recent theories and results, while 

available experimental determinations are presented in Sec. 4.1.  

 When an intermolecular potential is available, many formalisms exist for calculations of 

r( )v  and r( )v , where rv  denotes the relative speed. They are adapted to systems of various 

complexity, in terms of the symmetry of the molecules, of the number and nature of the 

significantly populated levels and of the parameterization of the intermolecular potential. For 

instance, while fully quantum computations are tractable for He-broadened rotational lines of 

CO at 10 K, they cannot be made for transitions of high overtones of pure H2O at 2000 K, a 

case that can be treated with (much simpler and approximate) semi-classical models. The 

resulting dependences on the absorbing-molecule speed are then obtained by averaging r( )v  

and r( )v  over the perturber velocity [167]. Until recently, limitations in computing power 

have restricted the use of fully quantum approaches to very simple collisional pairs, a 

constraint progressively relaxed as shown in the next section. For more complex systems, 

progress has been made thanks to improvements of the RB theory brought by the inclusion of 

line-coupling, as discussed in Sec. 3.3.2. At the same time, Gordon's fully classical method 

was resurrected by S. Ivanov and enabled calculations of pressure-broadening coefficients for 

linear molecules (Sec. 3.3.3). Finally, for (very complex) molecular pairs for which other 

methods are inapplicable or too costly, the “usual” RB approach remains useful as shown in 

Sec. 3.3.4. Note that, while the refined RB approach has been tested only at room temperature, 

it is not the case of the other theories discussed below. For instance, the broadening of C2H2 

and N2 lines by H2 was studied from 77 K to 2000 K [193,194] while broadening of pure N2 

and of CO2 in Ar was investigated [195,196] in the 77-2400 K and 77-765 K ranges, 

respectively. In these references, quantum, fully classical and the usual RB semi-classical 

approaches were used for comparisons with measured values. Agreement within experimental 

uncertainties was obtained in most cases except with the RB formalism. However, if some 
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intermolecular-potential parameters are tuned, the latter provides a satisfactory description of 

the temperature dependence. This may explain why this computationally cheap method 

remains so popular from a pragmatic point of view (cf Sec. 3.3.4). 

 

 

 3.3.1 Quantal approaches 

 The approaches, such as the close-coupling (CC) method, in which all degrees of 

freedom (translation, rotation, etc) are treated quantum mechanically provide the most reliable 

predictions of r( )v  and r( )v  if an accurate intermolecular potential is used. A description 

of the CC method and of various decoupling approximations, such as the coupled states (CS), 

the decoupled l-dominant and the effective potential methods, as well as the infinite-order 

sudden (IOS) approximation, can be found in [197] and Sec. IV.3.5 of [1]. Several computer 

codes have been developed (eg MOLSCAT and PMP MOLSCAT [191], MOLCOL [198], 

HIBRIDON [199]) to calculate the matrix elements of scattering operators at various levels of 

accuracy. MOLSCAT and its parallelized version PMP MOLSCAT treat collisions between 

closed-shell species ranging from rigid diatom-atom to rigid diatom-asymmetric top. 

HIBRIDON and MOLCOL solve the close-coupled equations for both closed- and open-shell 

systems. From the scattering-matrix elements provided by such codes, built-in functions or 

post-processor programs generate relative kinetic-energy-dependent pressure-broadening and 

-shifting generalized cross sections for the considered type of spectroscopy. They can then be 

transformed [167] into values that depend on the speed of the radiating molecule. In addition, 

the averaged broadening and shifting coefficients at various temperatures can be obtained 

assuming a Maxwell-Boltzmann distribution. 

 Because of its computational cost, the CC formalism was mainly applied to simple 

systems [diatom-atom or (light) diatom-(light) diatom] while more approximate methods, like 

the CS or IOS, were used for more complicated cases (symmetric top-atom or asymmetric 

top-atom). The increase in computer speed, the use of clusters, of parallelization, of job arrays, 

etc, in conjunction with the availability of more accurate full-dimensional potential-energy 

surfaces (PES) now permit more rigorous treatments of all kinds of systems. For instance, 

these advanced computational capabilities have enabled, for H2-He, consideration of the 

effects of the centrifugal distortion of the PES or of rovibrational potential coupling terms 

[156,200]. PESs for the active molecule in the ground state or in an excited electronic state 

also have enabled calculations of pressure-broadening and -shifting coefficients for rotational, 

rovibrational and rovibronic lines [201,202]. Furthermore, CC predictions for asymmetric-top 

molecules in a bath of diatomics are nowadays feasible. Good examples are calculations for 

H2CO and H2O in H2 [203-206], systems that were never investigated at this level of accuracy 

before. Let us mention in particular the CC pressure-broadening and -shifting (which are more 

difficult to converge) coefficients of pure rotational lines of H2O in H2 calculated over a wide 

temperature range [204]. The next challenge would be to repeat such calculations for 

rovibrational lines while taking the centrifugal distortion of the potential into account. Finally 

note a recent work [207] in which the broadening and shifting coefficients as well as the real 

and imaginary parts of the Dicke narrowing parameter have been calculated for H2 in He. This 

opens the route to refined simulations of isolated lines shapes following [208,209]. Table 1 

regroups references in which various types of quantum calculations are presented. In some of 

these studies, both measurements and calculations were made, while the others compare 

theoretical results with previously published experimental data. The temperature dependences 

are also investigated in a few of them [156,193,194,210-212]. Generally speaking, when the 

calculations are performed using an accurate ab initio PES, the CC values for the widths and 

the shifts are accurate, to within about 1%, at all temperatures except for very low ones. 

Indeed, there is an unexplained significant overestimation of the broadening by predictions in 
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the very low temperature domain (below ~ 10 K), as shown in [213] and further discussed in 

Sec. IV.3.5b of [1]. Finally, an example of the quality of predictions in the case of N2-

broadened C2H2 lines is given in Sec.3.3.3. 
 

System
 

Refs. Method Details 

C2H2-Ne [210#] CC/CS (*) PBC for infrared R lines. 77 and 1000 K. 

C2H2-H2 [214#] CC/CS (*) PBC for infrared R lines. 77-2000 K. 

C2H2-( H2,D2) [211#] CC (*) PBC for the R(j=0-20) IR lines. 173, 195 and 295 K 

C2H2-H2 [215] CC (*) PBC for isotropic Raman lines at 143 K and IR lines 

at 173 and 295 K 

C2H2-H2 [193] FC/SC/CC/CS (*) PBC for isotropic Raman lines. 77-2000 K. 

C2H2-N2 [216] FC/SC/CC/CS (*) PBC for IR and Raman lines. 150 and 300 K 

C2H2-(Ar,Kr,Xe) [217#] CC (*) PBC for IR lines. 77-400K 

CO-H2 [205#] CC (+RPA) 30 CO lines between 115 and 3500 GHz 200-3000 K 
13

CO2-He [212#] CC/CS (*) PBC for the R(10) and P(2) IR lines. 85-300 K. 

DCO
+
-He [218] CC PBXS & PSXS for the j=2←1 to 7←6 hyperfine 

rotational transitions. 

H2O-H2 [203] CC PBC for the 111←000 and 110←101 rotational lines. 65-

220 K 

H2O-H2 [204#] CC PBC & PSC for the 111←000, 110←101 and 111←202 

rotational lines. 20-250 K 

H2O-H2 

 
[205#] CC (+RPA) PBC for 228 H2O transitions between 10 and 20000 

GHz. 200-3000 K 

H2O-He [219] CC (+RPA) PBC for 21 transitions between the eight lowest 

rotational levels of ortho and para H2O. 20-120 K 

HCN-He [213#] CC PBC & PSC for hyperfine components of the j=1←0 

and 2←1 rotational lines. 1.3-20 K 

H2CO-H2 [206] CC/CS PBC for the 313←212 rotational transition. 10 -25 K 

HCO
+
-He [220#] CC PBC & PSC for the j=1←0 to 6←5 rotational lines. 

88 K 

H2-Ar [154] 

[155] 

CC Speed dependence of the PBS & PSC of the isotropic 

Raman Q(1) line 

(H2,D2)-He [156] CC  PBC and PSC for the S0(0) line of H2 and v=1←0 

Q(1) line of H2 and D2. 10-3000 K. 

H2-He [207] CC PBC & PSC and narrowing parameters for v=0→(1 to 

5) and Q(j=0 to 5) lines. 10-2000 K 

N2-H2 [221#] CC/CS (*) PBC for isotropic Raman Q lines. 77-580 K. 

N2-H2 [194] FC/SC/CC/CS (*) PBC for isotropic Raman lines. 77-2000 K. 

N2-N2 [222#] CC/CS (*) PBC for isotropic Raman lines. 77-298 K. 

N2-N2 [195] FC/SC/CC/CS (*) PBC for isotropic Raman lines. 77-2400 K. 

N2H
+
-He [223#] CC PBC & PSC for the j=3←2 to 6←5 hyperfine 

rotational transitions. 88 K 

OH-Ar [202] CC PBC & PSC for rotational, vibrational and electronic 

transitions. PESs for X
2
 and A

2


+
 states 296 K 

O2-He [201#] CC (Hund case b). PBC & PSC for transitions of the oxygen A-band. 

Different PESs in the ground and excited states. 296 

K 

Table 1: Bibliography in which quantal calculations of pressure-broadening (PB) and/or -

shifting (PS) coefficients (C) or cross-sections (XS) are presented. In column three FC stands 

for fully classical (Sect. 3.3.3.), SC for the semi-classical RB formalisms (Sect. 3.3.2 and 

3.3.4), CC for close-coupling and CS for coupled states. (*) in column 3 denotes calculations 

with no vibrational dependence of the potential energy surface and thus no PSC. The 

references marked with a hash (eg [210#]) are those in which both measurements and 

calculations have been made. 
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 3.3.2 Refined semi-classical Robert-Bonamy (RB) formalism 

 The RB formalism (Sec. 3.3.4) is the most widely used method for calculating 

collisional widths and shifts of isolated lines for complex molecules. However, although the 

non-diagonality of the Liouville scattering operator within the line space was known for years, 

the “usual” RB formalism ignores this property. As a first consequence, it significantly 

overestimates the line widths when compared with quantum calculations using the same 

intermolecular potential [193-195]. In addition, it does not enable prediction of the line 

couplings that result from the abovementioned non-diagonality. One of the most important 

contributions toward a refined formalism was presented in [224]. The proposed theory was 

applied to pure NH3 [225] and to NH3 diluted in Ar and He [226]. In both cases, the 

refinement of the RB formalism leads to a large decrease of the calculated widths. At the 

same time, a slightly different approach was proposed [227], based on the coordinate 

representation. It was first applied to isotropic Raman transitions of pure N2 [227,228] for 

which a comparison with benchmark quantum results [195,229] was possible. This analysis 

showed that accounting for the line coupling reduces the line widths by about 15 % with a 

much better agreement with the quantum results. However, discrepancies remain, because of 

the semi-classical assumption which ignores exchanges between translational and internal 

degrees of freedom. Similar results were obtained for other linear molecules [230]. Finally, 

the case of symmetric tops with inversion symmetry, previously studied in [225,226] with a 

different model, was investigated recently using the coordinate representation approach 

[231,232], with applications to parallel and perpendicular bands of pure NH3. Again, the 

improvement of the RB formalism leads to significant decreases (up to 30 % in some cases) 

of the calculated widths and to much better agreement with experimental results [231,232], as 

shown in Fig. 9 (and 10 for a linear molecule). 
 

Fig. 9: Relative differences 

between measured pressure-

broadening coefficients of the 
s
Q(j,k=j) lines of the 1  band 

of pure NH3 [233] and those 

calculated with (red) and 

without (black) taking into 

account the non-diagonality of 

the scattering operator(ie the 

line-coupling terms). After 

[231]. 

 

 3.3.3 Fully classical approach 

 A series of papers [193-196,234-238] has resurrected the purely classical approach 

proposed by R.G. Gordon fifty years ago [239,240]. For several linear molecules, the 

resulting line-width predictions compare well with both experimental and quantum-calculated 

values, in much better agreement than the “usual” RB approach described in Sec. 3.3.4, as 

illustrated by Fig. 10. Another application of classical trajectories deserves to be mentioned: 

the demonstration of the influence of classically allowed quasi-bound complexes on the 

calculation of the widths and shifts for several molecular systems [241]. 
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Fig. 10: Comparison of measured N2-

broadening coefficients for isotropic Raman 

Q(j1) lines of C2H2 at 298 K with calculated 

values obtained using: full (Gordon’s) classical 

method (FC), close coupling and coupled states 

method (CC/CS, Sec. 3.3.1), the refined RB 

semi-classical method (rSC, Sec. 3.3.2) and the 

"standard" RB semi-classical method as used 

in [242] (sSC, Sec. 3.3.4). After [216]. 

. 

 

 3.3.4 Some recent applications of the “usual” Robert-Bonamy (RB) formalism 
 The "usual" RB formalism, being based on the isolated-line approximation, only enables 

calculations of the widths and shifts. Despite its weaknesses (Sec. 3.3.2), this theory remains 

widely used because it can treat (very) complex molecular pairs, yielding reasonably good 

agreement with measurements at the price, in most cases, of some ad hoc adjustments of the 

intermolecular potential. Since its first version for linear molecules [243], extensions to other 

types of molecules and improvements (of the trajectory model and of the potential expansion) 

have been made, as reviewed in [244]. The bibliography on “RB pressure-broadened widths 

and shifts” is too vast to be exhaustively reported here, but Table 2 points to some recent or 

representative studies. For more information, the reader is invited to follow the 

bibliographical paths indicated in these studies, as well as those in [244] and Sec. IV.3.4e of 

[1]. 

 
      Radiator → 

↓ Perturber 

Linear
 

Symmetric-top Asymmetric- top Spherical-

top 

Atom [196,236] --- [261-267] --- 

Linear [193-195,245-252] [257-259] [268-282] [288-291] 

Symmetric-top --- [260] --- --- 

Asymmetric-top [253-256] --- [142,282-286] --- 

Spherical-top --- --- [287] --- 

Table 2: Some applications of the "usual" RB formalism to the calculation of pressure-

broadening and -shifting coefficients.  

 

3.4 Line mixing 

 We consider here, as in [292] and Chapt. IV of [1], the line-mixing (LM) process (also 

sometimes denoted as line coupling) in which exchanges of intensity between the lines result 

from the collision-induced transfers of populations between rotational levels. Except for 

recently proposed approaches in which the spectrum itself is directly computed (Sec. 3.4.1) or 

predicted based on some adjustable parameters (Secs. 3.4.7 and 3.4.8), all others rely on 

calculation of the so-called relaxation matrix W (which is constructed in the line space and 

whose off-diagonal elements describe the LM process) from which the spectrum can be 

obtained (Sec. IV.2.1 of [1]). For this purpose, all available methods were proposed a while 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 33 

ago, except for the one presented in Sec. 3.4.3. It is important to recall that, except for that of 

Sec. 3.4.1, all the other approaches assume the “impact approximation” and are thus limited to 

calculation of LM effects not too far from line centers. In addition, and again with the 

exception of those presented in 3.4.1, all calculations disregard the effects of the speed 

dependence and of the collision-induced changes of the radiator velocity which have been 

investigated for isolated lines only (Sec. 3.2). The remainder of this section is organized as 

follows. We first present approaches that enable a direct prediction of the spectrum (Sec 

3.4.1) or of the relaxation matrix W (Secs. 3.4.2-3.4.4) from knowledge of the intermolecular 

potential. We then consider those with which W elements can be computed using some 

parameters that are deduced from fits of measured data (Secs. 3.4.5 and 3.4.6). Finally, other 

semi-empirical and less commonly used models are presented in the last two sections.  

 The remainder of this section shows that significant advances have been made in the last 

decade for the development of new theories and models as well as for the further test of 

existing ones. However, except for the approaches discussed in Secs. 3.4.1 and 3.4.5, all 

others have been recently tested by comparisons with experiments at room temperature only. 

Quantifying the ability of the promising refined Robert-Bonamy and fully classical models to 

describe the effects of temperature is thus of interest for future studies.  

 

 3.4.1 Requantized Classical Molecular Dynamics Simulations 

 The requantized CMDS proposed in [117] (Sec. 3.2.1) for calculations of isolated-line 

shapes were extended in [123] to enable direct prediction of the absorption over an entire 

band. For this, the direction of molecular rotation is considered to discriminate between P- 

and R-branch lines, and corrections are introduced so that the line positions and intensities 

match some chosen (true) values. The resulting model, limited to linear absorbing molecules, 

was tested [123] by comparison with measured spectra of CO2 at elevated pressures, for some 

infrared bands from 296 K to 480 K and for an isotropic Raman Q branch from room 

temperature up to 700 K. In most cases, the predictions agree with measurements within 5%, 

regardless of temperature, as illustrated by Fig. 11. 

 

 

 

 

Fig. 11: Area-normalized intensities (in 

arbitrary units) in the 22 isotropic Raman 

Q branch of pure CO2 at: (a) 295 K and 

0.5 amagat and (b) 700 K and 1.0 amagat. 

Red symbols are measured values from 

[293], while the lines are calculated 

results obtained with the rCMDS model 

(blue) and neglecting LM (black). After 

[123]. 

  

 3.4.2 Quantal approaches 

 As discussed in Sec. 3.3.1, computer codes have been developed for quantum 

calculations of matrix elements of the scattering operators at various levels of accuracy. Post-

processing programs then provide the diagonal and off-diagonal elements of the relaxation 

matrix W, depending on the type of spectroscopy (isotropic Raman diffusion, absorption, etc). 

While these tools have long existed, constructing a full W matrix for molecular pairs using 
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refined quantal approaches was intractable until recently. Thanks to the advances in 

computing power, this has progressively become feasible. A fully quantum calculation for the 

isotropic Raman spectrum of N2 at room temperature was made in [229] where it was shown 

that, for moderate values of the rotational quantum number, the convergence of CC/CS off-

diagonal W elements could be achieved, in good agreement with experimental data, therefore 

providing benchmark results for the test of more approximate formalisms (Secs. 3.4.3 and 

3.4.4). Note that the case of isotropic Raman Q branches of linear molecules is “simple” when 

vibrational effects are neglected, because the real off-diagonal elements of W are then simply 

the negative of the usual inelastic state-to-state collisional transfer rates. The oxygen A-band 

perturbed by helium was studied theoretically and experimentally in [201]. For the first time 

for an electronic transition, the relaxation matrix was obtained from a fully quantum 

mechanical approach, leading to good agreement with measurements. This is a significant and 

difficult step since it requires computations using (very complex) wave functions taking into 

account the rotational, vibrational and electronic degrees of freedom. The above-mentioned 

computations are thus close to the current limit of feasibility, which explains the rarity of 

applications of fully quantal approaches to LM processes.  

 

 3.4.3 Refined semi-classical Robert-Bonamy formalism 

 As discussed in Sec. 3.3.2, refinements of the “usual” RB formalism have been 

proposed, which do not neglect the non-diagonality of the Liouville scattering operator. This 

leads to better line-width predictions (Sec. 3.3.2), but also enables the calculation of the off-

diagonal elements of the relaxation matrix W. Cherkasov investigated the case of molecules 

exhibiting hyperfine structure caused by the nuclear quadrupole interaction, by using his 

semi-classical theory, with applications to CH3I [294] and CH3Cl [295]. In most cases LM 

effects are weak. He later published a new version of his theory [224] which was successfully 

applied to the 
q
Q(j,k) doublets in the 1 band of pure NH3 [225] and to the calculation of W 

elements for NH3 in Ar and He [226]. A slightly different approach, based on the use of the 

coordinate representation and choosing the orientations of pairs of molecules as a basis set in 

the Hilbert space (ie that of the states), was proposed in [227] in order to construct W in the 

Liouville space (ie that of the lines). It was first applied to isotropic Raman spectra of pure N2 

[228] with successful comparisons with benchmark quantum calculations of the W matrix 

[229] (see figure in Sec. 3.4.4). Note that, as a consequence of the semi-classical assumption, 

a "sum rule" (eg [296] and Sec. 4.2.1 of [1]) that should be verified by the columns of the W 

matrix is not satisfied. In order to correct this discrepancy, a "renormalization procedure" was 

proposed [296], in which the off-diagonal elements of W are multiplied by factors determined 

from knowledge of the line-broadening coefficients. When this is done, the refined RB 

predictions compares well with quantum calculations, as mentioned above. However, without 

introducing this renormalization, the refined RB formalism can still provide semi-quantitative 

information on LM for complex systems. This approach was then extended to infrared spectra 

of linear molecules [230] with applications to parallel and perpendicular bands of CO2 in N2 

[297]. By properly accounting for the influence of the vibrational angular momentum, the 

formalism leads to predictions of LM effects in good agreement with both measurements and 

ECS (Sec. 3.4.5) predictions for different types ( , , etc) of bands. The further 

extension to asymmetric tops has allowed the analysis of line couplings within H2O 

vibrational bands [298] and quantitative tools have been developed to determine the relative 

importance of the off-diagonal elements of W. This showed that most of the H2O lines in the 

pure rotational band are practically uncoupled while a few lines exhibit small but significant 

couplings. The case of symmetric tops with inversion symmetry, previously studied in 

[225,226] with a different model, was investigated recently using the coordinate 

representation approach, with applications to parallel and perpendicular bands of pure NH3. 
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The results show that this theory reproduces well the LM signatures (eg Fig. 12) and W 

elements observed in some spectral regions of the 1 and 4 bands [299,300], as well as the 

influence of the vibrationally dependent inversion splitting [232].  

 

 
Fig. 12: LM signatures in the self-broadened R(3,k) manifold of the 1 band of pure NH3 at 50 Torr. 

The upper curve is the calculated transmittance. The bottom red (resp. blue) curve is five times the 

difference between the measured (resp. calculated) transmission and that fitted (resp. calculated) 

without the inclusion of LM. After [299]. 
 

 3.4.4 Fully classical formalism 
 The classical approach proposed by R.G. Gordon fifty years ago [239,240,301] not only 

enables calculations of the pressure-broadening and -shifting coefficients (Sec. 3.3.3) but also 

of the off-diagonal elements of the relaxation matrix. This possibility has been used recently 

for predictions of LM effects in isotropic Raman spectra of pure N2 [237]. For this system, 

good agreement was obtained (Fig. 13) with results of a benchmark quantum calculation 

[229], thus opening the route to the treatment of more complex molecular pairs. 

 

 

 

 

Fig. 13: Computed relaxation-matrix elements 

W(j'←j=6) between the Q(6) lines and various Q(j') 

for N2-N2 at 298 K. CC/CS denote the quantum 

results from [229], cRB the corrected-RB predictions 

from [228] and C3D(db) the results of classical 

calculations. After [237]. 

 

 3.4.5 Dynamically based scaling laws 

 The Infinite-Order Sudden (IOS) approximation and the more refined Energy-Corrected 

Sudden (ECS) scaling law have been used for the modeling of LM effects within various 

spectral features and for many molecular systems (Sec. IV.3.3 and Table IV.9 of [1]). These 

approaches construct the real-valued elements of the relaxation matrix W from a limited set of 

parameters whose values can be calculated but are generally deduced from fits of measured 

line-broadening data.  
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 The quality of the ECS approach was further tested in studies devoted to a few linear 

molecules. For CO2, the models described in [296] and [302,303] were used for quite 

successful further comparisons with measurements in the central regions of many bands over 

wide ranges of temperature and pressure [304-315]. A successful application was also made 

to some bands of OCS in He at elevated pressures [316]. For O2, which requires accounting 

for the spin-orbit interaction effect, an ECS approach was proposed for the pure Hund's case b 

in [317]. It was then empirically improved (by using other ECS parameters and a modified 

sum rule) and applied to the A-band in [318]. Good agreements with high pressure laboratory 

spectra and measured atmospheric transmissions were obtained. The same approach enabled 

an accurate description of LM effects in the O2 rotational band around 60 GHz [319], a region 

also modeled using the memory function formalism [320]. Many of the abovementioned 

studies present comparisons between measured and computed spectra at various temperatures, 

roughly between 200 K and 300 K. These show that the quality of predictions is generally 

within 5% or less and does not significantly change with temperature. 

 In addition to these applications of previously published theories, a new approach has 

been proposed for LM between M components. In other words, line-mixing was considered 

among lines not only defined by the total rotational quantum number J only, but by both the 

value of J and that of M (magnetic quantum number) that quantifies the projection of J  on 

the space-fixed axis. As it is well known, the lines associated with the same J but different M 

values can be spectrally separated by an electric field and the Stark effect. Starting from [321], 

an adapted IOS model was developed in [322] and applied to spectra of CH3F with lines 

separated through the Stark effect. This revealed, with good agreement with measured spectra, 

the overly simplified approximation made in [323] where discrepancies between 

measurements and calculations were obtained. Similarly, a model based on the IOS 

approximation and the developments in [324] was proposed [325] and successfully applied to 

line-broadening and -mixing within nuclear spin hyperfine components of He-broadened lines 

of HI at room temperature. From a purely theoretical point of view, Buffa and Tarrini have 

corrected [218,326] an error in the method elaborated in [324] which rendered it self-

inconsistent. However, as stated in [326], this correction does not change the predicted LM 

effects and "the equations used by Flaud et al. [325] yield the same line shape as our 

equations." 

 

 3.4.6 Energy-gap fitting laws and state-to-state cross sections 

 Empirical approaches are obviously of interest when more physically based models are 

not available or too costly to implement. Here, the central idea is to express a given off-

diagonal real-valued element of the relaxation matrix in terms of the state-to-state inelastic 

cross-section connecting the lower (and/or upper) levels of the two interfering lines. This 

requires switching from the two-dimensional (the two connected states) space of the state-to-

state rates to the four-dimensional (the two lower states of the lines and the branches to which 

the lines belong) space of the absorption lines, an operation achieved by introducing a (P, Q, 

R) branch-dependent empirical scaling factor. Considering the state-to-state rates, they are 

often modeled using energy-gap fitting laws (IV.3.2 of [1] and [327]) based on a few 

parameters that are generally deduced from fits of line-broadening data. New applications of 

this type of approach to LM effects for a variety of molecules can be found in 

[238,245,272,304-308,315,328-332]. Note that there is a rarely used alternative solution. 

Indeed, several computer codes exist, from semi-classical up to CC, to calculate these state-

to-state rates, which can therefore be directly introduced to the LM model (or compared to the 

fitted ones). Examples are given in IV.3.4f of [1] and [333,334]. This remark also applies to 

the ECS model where the so-called basic rates can be calculated (eg [335,336]) instead of 

being modeled with parameters obtained by fits to measured data. 
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 3.4.7 The ovoid sphere and hard collision models 

 Despite the simplicity of the classical ovoid sphere model ([337] and Sec. IV.3.1b of 

[1]), this approach, in which an effective collision frequency is empirically adjusted for 

agreement with measured line widths, provided an accurate description (comparable with the 

results obtained with the ECS model) of LM in spectra of OCS diluted in He at elevated 

pressures [316]. It was also applied to the A band of O2 in [338,339]. Similar remarks can be 

made for the application of the extended strong collision model ([340] and IV.3.1a of [1]) to 

the 23 isotropic Raman band and depolarized Raman spectra of CO2 [341,342]. 

 

 3.4.8 Kochanov’s approach 

 A line-profile model was recently developed by Kochanov, allowing comparison of the 

influences of the collisional and Doppler broadenings, Dicke narrowing, velocity dependence 

of the widths and shifts as well as of the LM process [190,343]. The latter appears through a 

speed-independent first-order LM coefficient [344]. The resulting model involves many 

parameters likely to be fitted to experiments but, to the best of our knowledge, its ability to 

accurately describe measurements has not been proven so far.  

  

3.5 Far wings and associated continua 
 We consider here, as in Chapt. V of [1], the spectral regions significantly far from line 

centers where the absorption manifests as a continuum. We here restrict ourselves to those to 

which the far wings of monomer lines make a significant contribution, the continua caused by 

the transient dipole induced during collisions being considered in Sec. 3.6. As noted in [1], 

first-principles calculations of the contributions of the far wings of allowed (meaning due to 

the molecule intrinsic dipole) transitions is an extremely difficult problem because many 

processes must simultaneously be taken into account: the speed dependent line-broadening 

and -mixing, the finite duration of collisions and initial correlations. The so-called impact 

approximation breaks down and models such as those described in the preceding sections 

cannot be used. Recall (cf Sec. II.3.4 of [1]) that this approximation assumes that the 

differences fi| |  between the photon frequency and those of the optical transitions of the 

molecule which make the dominant local contribution to the spectrum are much smaller than 

the inverse of the duration ( c ) of efficient collisions (ie fi c| | 1   ). In this case, 

intermolecular collisions can be considered as instantaneous (impact) and the spectrum is not 

sensitive to details of what happens during collisions but only to the difference between the 

molecular state before and after a collision. This simplification can thus be used not to far 

away from line centers.Various approaches have been proposed, those published before 2007 

being described in Chapt. V of [1]. From the theoretical point of view, little progress has been 

made since that time, with the exception of the approach described in Sec. 3.5.1. For the 

empirical models that rely on adjustments to measured spectra, the main advances concern the 

H2O continuum (Sec. 3.5.4). 

 

 3.5.1 Direct predictions from Classical Molecular Dynamics Simulations 

 In [345], CMDS were carried for pure CO2. These provide (cf Secs. 3.2.1 and 3.4.1) the 

center-of-mass positions and orientations of many (rigid) linear molecules interacting though 

an input anisotropic potential. For parallel bands, the allowed-dipole vector 
A  is along the 

molecule axis. Its auto-correlation function (ACF) is thus directly calculated from the CMDS, 

after a proper spectroscopic scaling factor [345] and the choice of time t=0 in the calculations. 

The spectrum is then obtained from the Fourier-Laplace transform of the ACF (ie multiplying 

the ACF by exp( )i t  and integrating from t=0 to  ). A comparison was made [322] 
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between the resulting predictions, free of any scaling factor deduced from experiments, and 

measurements in the wings of the 3  band of CO2 at 200 K and 296 K. A good (in the log 

scale used for the comparison) agreement was obtained at 296 K that degrades slightly at 

lower temperature. Errors locally reach a factor of two but on a quantity that varies over 

almost four orders of magnitude (cf Fig. 14). Shortly thereafter, the contribution of the 

collision-induced dipole I  was introduced [346] (calculated as in [347], cf Sec. 3.6.4) and 

the ACF of the full dipole (including the allowed and induced components) was computed. 

The results agree quite well with measurements, as illustrated by Fig. 14, and demonstrate 

that the cross-term (0). ( ) (0). ( )A I I At t     in the ACF makes a significant contribution. 

Note that similar results were very recently obtained in the same region of CO2 absorption but 

in the case of collisions with water vapor [348]. Finally, the approach was also applied to the 

wing of the depolarized Rayleigh roto-translational spectrum of pure CO2 in [346].  
 

 

 

 

 

 

 

Fig. 14: Squared-density normalized 

absorption in the wings of the pure CO2 

3 band. The symbols are experimental 

values, the blue line is the result of a 

purely Lorentzian calculation, and the 

red line represents the CMDS results. 

After [346]. 

 

 The same type of approach, limited to the contribution of the allowed dipole but 

improved through a requantization of the CMDS ([121] and Sec. 3.2.1) was applied [124] to 

spectra of HCl in Ar at room temperature. These direct calculations of the entire spectrum 

show that the absorption in the troughs between lines is super-Lorentzian in the central part of 

the bands and becomes sub-Lorentzian when going toward the bands wings. Super- (resp. 

sub-) Lorentzian here mean that the absorption is greater (resp. lower) than that calculated by 

summing the contributions of all lines with a Lorentz profile. Their analysis demonstrates that 

this behavior is intimately connected to the evolution of the dipole ACF at very short times 

(finite duration of collisions) and to the increasing contribution of LM when going away from 

the band center. Note that the computed values of the relative deviation from the purely 

Lorentzian behavior agree, within experimental uncertainties, with those deduced from 

measurements, and that this is achieved without use of any adjustment. 

 
 3.5.2 Non Markovian Energy-Corrected Sudden approach 

 A non-Markovian extension of the Energy-Corrected Sudden model for the construction 

of the relaxation matrix was proposed in [302,349] (see also V.5 of [1]). It goes beyond the 

impact (Markovian) approximation by taking into account the fact that, in the wings, the 

energy defect associated with the difference between the frequency of the photon and those of 

the resonant molecular transitions cannot be neglected. As discussed therein, it enables, in 

principle, a better description of the far wings than the “usual” ECS model (Sec. 3.4.5) which 

fails because the impact approximation breaks down. This approach was recently applied to 
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CO2 anisotropic Raman scattering spectra [350], showing a good agreement with 

measurements in the central regions of the bands but a significant underestimation in the 

wings which is consistent with the previous studies. 

 

 3.5.3 Asymptotic line shape and -factor empirical models 

 An asymptotic approach for the description of the far line wings was proposed in [351] 

and applied to CO2 [352] and to the water-vapor continuum in several spectral regions 

[351,353,354]. Good agreement with measurements was obtained at various temperatures, but 

this required the ad hoc adjustment of some parameters. The proposed model thus has limited 

predictive capabilities and it should be considered as empirical, as the -factor approach of 

[311,355,356] (see also V.2 of [1]) and the MT_CKD continuum discussed below. 
 

 3.5.4 The MT_CKD water-vapor continuum 

 The absorption spectrum of water vapor contains not only narrow rovibrational lines 

whose spectroscopic parameters are tabulated in databases but also a relatively weak 

underlying broadband continuum with a slow frequency dependence. In the Earth’s 

atmosphere, this continuum (see also Sec. 4.3.1, [357] and appendix V.A of [1]) can be 

decomposed into a “self” component due to water-water intermolecular interactions and a 

“foreign” component due to water-nitrogen and water-oxygen interactions. According to the 

usual definition, these continua are obtained after subtraction, from the total absorption 

coefficient, of the contribution of the H2O lines calculated using Voigt profiles truncated at 

±25 cm
-1

 from their centers [358]. For a binary mixture of water vapor and nitrogen, for 

instance, the quantity obtained after this exercise has a component that increases quadratically 

with the water partial pressure and another one proportional to the product of the H2O and N2 

partial pressures. These are the so-called self- and foreign-continuum contributions ( C

S and 
C

F ) to the total absorption coefficient C

T , respectively. The latter can thus be written in 

terms of the associated normalized absorption cross sections Cs(T) and Cf(T) (often expressed 

in cm
2
 molecule

-1
 atm

-1 
) through: 

C C C 2

T 2 2 S 2 2 F 2 2 S 2 F 2 2

1
( , , , ) ( , , , ) ( , , , ) ( , ) ( , )H O N H O N H O N H O H O N

B

T P P T P P T P P C T P C T P P
k T

            
, 

where kB is the Boltzmann constant.  

 The default description of the normalized continua CS(T) an CF(T) of the preceding 

equation has generally been the pragmatic approach of Clough-Kneizys-Davies (CKD) [358] 

and its successor Mlawer-Tobin-CKD (MT_CKD) [359,360]). It is a semi-empirical 

formulation based on ad hoc (line-profile) parameters adjusted to measured spectra. The latter 

consist mainly of laboratory (eg [361-364], see [357]) and field (eg [365]) measurements in 

spectral regions that have [366,367] the strongest impact on the radiative fluxes in the Earth 

atmosphere. The 10 µm window has been studied for decades (eg [357,362,368-370]) and a 

strong constraint of the MT_CKD self continuum (ie pure H2O) in this region comes from 

field measurements (eg [371]). In the mid- and near-infrared regions, the MT_CKD 

continuum is mostly an extrapolation, which up to recently was lacking experimental 

validation. In recent years, considerable experimental efforts have been devoted to this issue 

as discussed in Sec. 4.3.1. The recent changes made to the MT_CKD continua are described 

in [359,360] and the current versions for both the self (H2O-H2O) and foreign (H2O-air) 

contributions can be downloaded at [372] where more information on the continua is given. A 

comparison between several sets of measurements of the self-continuum and the last version 

(V3.0) of the MT_CKD model is plotted in Fig. 15. If one excludes the FTS experiments from 

CAVIAR and Tomsk [373-375], which are in striking disagreement (as further discussed in 

Sec. 4.3.1a), the MT_CKD3.0 general evolution is well supported by recent CRDS and OF-
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CEAS measurements [376-381], with very good agreement in the 1.6 µm and 1.25 µm 

windows but significant deviations at the center of the 2.1 µm and 4.0 µm windows. 

 
Fig. 15: Comparison between the MT_CKD(v3.0) self-continuum cross section Cs of H2O at room temperature 

(line) and measurements with grating spectrograph [362] (light blue circles) ; by calorimetric interferometry 

[382] (full and open blue diamonds) [383] (green star) ; by FTS from [373] (blue squares), [384] (orange open 

squares), [374] and [375] (open grey and light green circles) ; by CRDS and OF-CEAS from [376-381] (open 

red circles). 

 

 The origin of the temperature dependence of the water continuum in the MT_CKD 

model is detailed in [359]. In particular, it is indicated that the MT_CKD temperature 

dependence of the self continuum relies on the measurements by Burch et al. in the 700-1200 

cm
−1

 and 2400-2800 cm
−1

 windows [361-363, 385]. To the best of our knowledge, the much 

more recent results of [384] were not taken into account to adjust the MT_CKD model. For 

the foreign continuum, the MT_CKD values are practically independent of temperature in the 

infrared, consistently with what was experimentally found [386-388]. 

 

 3.6 Collision-induced absorption (CIA) 
 We consider here CIA where it is the transient dipole created during the interaction of 

molecular pairs that leads to light-matter interaction and produces a spectrum, as discussed in 

[389,390] and Chapt. VI of [1]. Note that the terms interaction-induced, or supermolecular 

absorption may also be used, and it is sometimes more appropriate since dimers may also 

contribute to the absorption. A discussion on the definition of CIA in the context of the water 

vapor continuum can be found in [391]. We focus below on theoretical treatments of CIA 

involving molecules, ie not rare-gas mixtures, and in general disregard collision-induced light 

scattering. We begin with the state-of-the-art coupled quantum scattering treatments in Sec. 

3.6.1. After that comes a brief presentation of new findings in intra-collisional interference, a 

phenomenon where a coupled scattering-treatment is needed (Sec. 3.6.2). The “standard” 

binary-collision treatment, which normally entails one-dimensional quantum scattering, and 

sometimes classical two-body collision calculations, is covered in Sec. 3.6.3. Progress in 

classical many-body treatments, so-called molecular dynamics simulations, is described in 

Sec. 3.6.4. Finally, integrated spectra, or spectral moments, are discussed in Sec. 3.6.5. 

 

 3.6.1 Quantum scattering advances 
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 Refined quantum-dynamical calculations, based on the CC method and including the 

full anisotropic potential, were made in [392] for CIA spectra of H2. The free-free dipole 

matrix elements are obtained on-the-fly, which gives this new method an advantage by 

comparison to a previous study [393] that also included the anisotropy of the interaction 

potential in CIA calculations. The more challenging case of nitrogen [394] was then 

considered and, since the N2-N2 pair potential supports many bound (dimer) states, the dimer 

contribution to the absorption was also taken into account. This enabled quantification of the 

various contributions to the spectrum, as illustrated by Fig. 16. Full CC calculations of N2 

CIA, with an anisotropic potential, are barely feasible. Nevertheless, the authors performed 

one such benchmark calculation, at low energy and for one representative photon frequency, 

which was compared with CS calculations. They concluded that the latter capture most of the 

effect from the anisotropy of the potential, and thus the CS approximation was applied in the 

final calculations of absorption coefficients. The studies [392] and [394] both include 

comparisons with measurements at temperatures ranging from 77 K to 300 K. While excellent 

agreement is obtained above ~150 K, the calculations increasingly underestimate the peak 

absorption with decreasing temperature (by about 20% at 78 K [394]).  

 

 
 

 

Fig. 16: Different contributions to the 

squared-density normalized CIA in the roto-

translational band of pure N2 at T=78 K 

computed using the full anisotropic 

potential in the CS approximation. The full 

line denotes the (smoothed for clarity) total 

absorption obtained in the isotropic 

approximation. Courtesy of T. Karman, 

after [394]. 

 

 From the same group as the works described above come remarkable studies of the spin-

forbidden A-band transition in O2, induced by collisions with a second oxygen [395] or a 

nitrogen [396] molecule. For the former work, new dipole and potential energy surfaces were 

computed [397]. In the comparison of O2 and N2 as a collisional partner the authors conclude 

that there are large differences between the two, in agreement with measurements, but 

contrary to what has previously been believed [389]. The reason is that an exchange 

mechanism, which is allowed for O2-O2 but not for N2-O2, is responsible for much of the 

absorption in pure oxygen. In a comparison of the computed and measured absorption spectra 

the absolute absorptions agree within an order of magnitude and, through scaling of the 

various contributions, good agreements between for both the magnitudes and shapes of 

measured and calculated spectra are obtained. 

 

 3.6.2 Intra-collisional interference effects  

 CIA provides a convenient case for the study of intra-collisional effects, a phenomenon 

reviewed in [398]. In systems like HD, which has a rather small dipole moment, interference 

can be observed between the permanent and the interaction-induced dipoles (cf VI.6.2 of [1] 

and references therein). An equivalent mechanism, the interference of Raman-allowed S-lines 
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and the collision-induced light scattering, has been studied in pure H2 [399] and in a H2-Xe 

mixture [400]. 

 

 3.6.3 Standard binary-collision treatments 

 Frommhold and co-workers have made several computational studies of CIA in 

hydrogen-containing gases, at temperatures from hundreds to thousands of K. These works 

are of importance for further studies of some stellar atmospheres where the level of ionization 

is low, such as those of cool white dwarfs. Their method is usually quantum mechanical, but 

ignores anisotropic components of the intermolecular potential ("isotropic approximation"). 

Investigations were made for pure H2 [401-403] and for H2 with He [404], with corresponding 

studies for deuterium and tritium in [405-407]. Most of those studies include comparisons 

with laboratory measurements at several different temperatures, and they are done using 

recent ab initio potential and dipole data. The agreement with measurements is generally 

considered as very good, at least in the log-scales used for comparisons of absorption 

coefficients which vary by several orders of magnitude throughout the considered spectral 

range. El-Kader and coworkers pursued studies at a similar level of theory for H2-(Ar,He) 

[408,409], CF4-He mixtures [410], pure methane [411], pure N2 [412], and pure O2 [413]. A 

classical trajectory study of CIA in CO2-(Ar,Xe) mixtures can be found in [414]. 

 

 3.6.4 Direct predictions from Classical Molecular Dynamics Simulations  

 The CMDS proposed in [415] for the far infrared CIA by CO2 was revisited in [347] 

which demonstrated the importance of vibrational and back-induction contributions. Taking 

these effects into account largely obviated the need for the ad hoc short-range overlap 

contributions empirically introduced in [415]. Subsequently, this approach enabled the first 

analysis [346] of the respective contributions of allowed and induced dipoles, and the so-

called intra-collisional interference, in the wings of the CO2 3 band (Sec. 3.5.1). The 

predictions of the far infrared roto-translational CIA band of N2 [416] were, at the time, the 

first in which the spectral effects of the intermolecular anisotropy and of (ab initio) short-

range dipole components were studied for N2. Since then, much more refined computations 

have been made [394] (Sec. 3.6.1). CMDS also enabled the modeling of CIA in the region of 

the first overtone of N2 with the analysis (Fig. 17) of the spectral contributions of the single 

and double (or simultaneous) transitions [417]. The comparisons with measurements made in 

[417] also show that, while the CMDS slightly overestimate absorption at room temperature, 

they strongly underestimate (~40 %) it around 90 K. Note that CMDS were very recently 

made for the fundamental band of N2 colliding with H2O [348]. Agreement within the 

uncertainties of measurements [418] was obtained and the calculations confirm the 

considerable enhancement of the peak value and width of the CIA spectrum for N2-H2O 

collisions with respect to those for pure N2. 
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Fig. 17: CIA in the region of the first 

overtone band of pure N2 at room 

temperature. The blue circles are 

measured values [419] while the blue 

and black lines are the raw CMDS 

calculated values for the double 

(twice 1-0) and single (2-0) 

transitions, respectively. The red and 

magenta lines are the calculated full 

CIA before and after correction by a 

factor of 0.9. After [417]. 

 

 3.6.5 Integrated CIA intensities 

 CIA may be studied theoretically without computing spectra, but rather integrated 

spectra or so-called spectral moments. These can in general be calculated with less effort 

using sum formulas [389], and may be used in combination with line-shape models (eg 

[420,421]) to provide spectra. Recent studies of spectral moments include those in the N2 

fundamental for pure N2 [422] and water-nitrogen [418], pure methane [423], methane-argon 

mixtures [424] and CO2 (pure and with rare gases) [425]. In all those studies, new potential 

and/or dipole data were also developed. Predictions generally agree with measurements 

within typically 10% and correctly describe the influence of temperature (eg [422,425]). 

Spectral moments for CO2 have been computed in [426] where formulas including the 

anisotropy of the potential are given and the importance of the vibrational dependence of the 

polarizability is established. In a study of water vapor [427], spectral moments were 

computed and used in combination with the line shape of [420] to produce CIA spectra. 

Finally, expressions for spectral moments which can be used to separate bound-state 

contributions from the free-to-free component have been derived [424,428]. 

 

4.  Available data 
 This section proposes a number of references in which data are provided (either directly 

or on request from the authors) that can be used in order to calculate absorption spectra. The 

associated experimental or calculated results enable simulations of isolated-line shapes (Sec. 

4.1), of line-mixing effects (Sec. 4.2), of the far wings and associated continua (Sec. 4.3), and 

of collision-induced absorption (Sec. 4.4). Although the tables in these sections may not be 

exhaustive, they give numerous starting points for bibliographical searches, while data and 

other references are also given in [1,244,429-433]. Finally, the recent evolution of 

spectroscopic databases is discussed in Sec. 4.5. 

 For the extraction of spectral-shape parameters from measured spectra, several 

sophisticated fitting programs have been developed (eg [99,170,434]. It here is important to 

recall the importance, when the model involves many parameters, of using least-squares fitting 

methods where parameters are simultaneously adjusted to fit multiple spectra. Good examples in 

which multispectrum fitting methods have been used to retrieve many spectral parameters can be 

found in [9,100,168,435-437] for instance. Furthermore, when (over)simplified fitting profiles 

and/or noisy experiments are used, one should very carefully consider the overall uncertainty 

on the retrieved parameters, including those due to both the model approximations and the 
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measurement errors and noise. Otherwise hasty conclusions may be drawn, as shown in [438] 

for instance. 

 

4.1 Isolated lines 

 The bibliography providing isolated-line shape parameters deduced from laboratory 

measurements is much too vast to be exhaustively reviewed, even when restricted to the 

publications of the decade. We have thus decided to only retain, in Table 3, those in which 

line profiles more refined than the VP were used. Readers searching for pressure-broadening 

and -shifting coefficients adapted to the VP can consult the broad bibliography provided with 

spectroscopic databases [430,431,439]. It is important to note that most of the studies cited 

below are limited to room temperature. Furthermore, many of those in which various 

temperatures were investigated used fits with “simple” non-Voigt profiles such as the SC, HC 

and qSDV. Only a few pioneers [103,153,181,440] have tested sophisticated line-shape 

models including the HTP. 

 
Molec Region Perturber Model Refs. 

 

 

 

 

 

 

 

 

 

 

 

H2O 

0.81-0.83 m H2O,air HC,qSDV [284] 
 

0.93 m 
N2,air 
H2O,N2 
N2,SF6 

SC,HC,qSDV 
SC 
HT 

[441] 
[442] 
[188] 

1.28 m H2O SC,HC,qSDV,qSDHC,HT,pChSDHC [8] 
 

1.39 m 
H2O 
H2O 
N2 

pChSDHC,HT 
SC,hSDV,hSDSC 
SC,qSDV,qSDHC 

[189] 
[93] 
[435] 

 

 

1.4 m 

H2O,Ar 
H2O,N2 
H2O,N2 
H2O,N2,He 
He 

SC 
SC,HC,qSDV 
SC,qSDHC 
SC,qSDV 
SC 

[185*] 
[182*] 
[443] 
[444] 
[445] 

1.39-1.47 m H2O HC,qSDV [446*] 
1.6 m H2O HT [188] 
2.5 m H2O,CO2,N2 SC [186*] 

2.6 m N2 HT [143,188] 
2.5-2.9 m air qSDV [282*] 
2.5-5.4 m H2O,air qSDHC [440*] 
2.5-5.4 m H2O SDV [447] 

2.7, 6.25 m H2O HC [448] 
22 GHz H2O,air SDV [449] 

HDO 2.7 m 
3.6 m 
7.4 m 

CO2,HDO 
CO2,HDO 
CO2 

  
qSDV 

[286*] 
[285*] 
[281*] 

HCl 3.5 m N2,He,Ar,Xe 
Ar 

SC,HC,RG 
qSDHC 

[450] 
[121] 

 

 

 

CH4 

 

7.7 m  
  

Ar,He,N2,O2 
Air,N2,O2 
CO2 

SC,HC,qSDV,qSDHC,HT 
SC,HC 

SC,HC 

[451] 
[452] 
[453] 

3.3 m Ar,He,H2,N2,CO2,O2 SC [454] 
1.7 m CH4,air 

air 
qSDV 

HT 
[102*,455*] 

[9] 
2.2 m CH4,air qSDV [456] 

 

 

 

 

 

 

 

 

1.6 m 

CO2,air 
CO2 
Air 
Air 
Air 

qSDV 
HC,qSDV,qSDHC,HT 
SC,HC,qSDV,qSDHC 
qSDV,qSDHC 
HT 

[457] 
[458] 
[459] 
[181*] 
[12,460] 
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CO2 O2 
CO2 
CO2 

qSDV 
SC 
qSDV 

[461*] 
[462] 
[463] 

 

2.0 m 
CO2 

CO2 

Air 
Air,CO2 

SC,HC,cSC,cHC,hSDV 

HT 

SC,HC,qSDV,qSDHC,HT 
qSDV 

[464] 

[60] 

[465] 
[466*] 

3.0 m CO2 HC,qSDV [313] 
4.3 m N2 qSDHC [103*] 

10.0 m CO2 HC [467] 
NH3 9.1 m N2,O2,CO2,H2O SC [468] 

10 m NH3 SC,HC,hSDV [469] 
N2O 4.5 m air qSDV [470] 
H2 0.8, 1.3, 2.1 m H2 HT [153*] 

CH3Br 6.9 μm CH3Br,N2,O2 SC [471] 
CH3Cl  

100-800 GHz 
CO2 
O2 
He,Ar,Kr 

SC,qSDV 
SC,qSDV 
SC,qSDV,qSDSC 

[472] 
[280] 
[473] 

CH2CHF 8.7 m  CH2CHF HC [434] 
 

 

 

 

 

CO 

Rotational CO qSDV [474] 
4.6 m He 

Xe 
HC,qSDV,qSDHC 
HC,SC,qSDSC,hSDHC 

[475] 
[476] 

 

2.3 m 
CO,air 
Air 
CO2 
CO,H2 

qSDV 
qSDV 
qSDV,HC 
HC,qSDV,qSDHC 

[477*] 
[478*] 
[332] 
[238] 

 

 

1.57 m 

He,Ar,Kr,SF6 
CO 
Ar 
 

He 

HC,SC,qSDV,qSDHC,HT  
SC,qSDV 
SC,HC,qSDV,qSDSC,pCqSDSC, 

qSDHC,HT 
qSDHC 

[168] 
[479] 
 

[480] 
[10] 

PH3 4–5 μm PH3 qSDV [481] 
CN 0.9 m Ar SC,qSDV [482] 

 

 

 

 

C2H2 

 

7.5 m 
N2 
N2,Ar,He,C2H2 
O2 

HC,SC,SDHC 
HC,SC 
HC,SC,qSDV 

[483] 
[484] 
[485] 

 

 

1.5 m 

N2 
N2 
C2H2,N2 
C2H2 
C2H2,N2 

HC 
HC,SC,RG,hSDV,hSDHC,ChSDHC 
hSDV,qSDV 
HC,RG,hSDV 
HC,qSDV,HT 

[235*,252*] 
[486] 
[183*] 
[487] 
[184*] 

1.5 m C2H2 SDV [330*] 
1.4 m C2H2 HT [96] 

 

 

 

 

 

O2 

118 GHz O2 qSDV [488] 
 

 

 

0.69 m 

O2 
  
  
  
  
  
  
O2,N2 

SC,HC,qSDV,hSDV,qSDHC,hSDHC, 

HT,pChSDHC 
qSDV 
SC,HC,qSDV,qSDSC,qSDHC 
SC,HC,qSDV 
SC,HC,hSDV,hSDSC,hSDHC,hSDBB, 

hSDB 
SC,HC,qSDV,hSDV,qSDSC,hSDSC, 

qSDHC,hSDHC 

 

[187] 

[437]  
[11,489,490] 
[491] 
 

[149] 
  
[492] 

 

0.76 m 
O2 
N2 
O2,air 

SC,SDV,SDHC 
qSDV 
SC 

[306] 
[245] 
[493-496] 

Table 3: Bibliography providing data from fits of measured isolated line shapes using various 

profiles more refined than the usual Voigt or Lorentz ones. Acronyms: “SC”: Soft Collisions ; 
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“BB”: Billiard Ball ; “B”: Blackmore, “RG”: Rautian-Galatry ;“V”: Voigt ;“SD”: Speed 

Dependent ;“q”: quadratic ;“h”: hypergeometric ;“pC”: partially Correlated ; “HT”: 

Hartmann-Tran. The references marked with an asterisk (eg [415*]) are those in which the 

temperature dependence of line-shape parameters other that the usual broadening (and 

shifting) were investigated. 

 

4.2 Line mixing 

 Table 4 completes tables IV.5 and IV.6 of [1] by giving a list of recent references 

providing data that enable the inclusion of LM effects in spectra calculations. The available 

parameters, which can be used as explained in Sec. IV.2 of [1], consist either of relaxation-

matrix elements or first-order LM coefficients within the so-called "Rosenkranz 

approximation" [344]. 

 
Molec Region Techn Refs. 

C2H2 1.5 m Exp & Calc 

Exp 

[330*] 

[486] 

CH3D 7.66 m Exp [259*] 

 

 

CH4 

1.6 m 

 

m 

m 

m

m 

Exp 

Calc 

Exp 

Exp  

Exp 

Exp 

[9,102*,455*,497,498] 

[333] 

[456*,499*] 

[500*,501] 

[502] 

[503*,504*,505*] 

CO 2.3 m 

 

1.6 m 

Exp & Calc 

Exp 

Exp 

[238,332*] 

[477*,478*] 

[10] 

 

 

 

CO2 

All in HITRAN 

3 m 

1.6 m 

 

2.05 m  

2.3 m 

4.3 m 

Calc 

Exp & Calc 

Exp 

Calc 

Exp 

Exp & Calc 

Exp 

[309*,311*,314*] 

[313*] 

[304,305,308*,457*,460,506,507] 

[304,305,307*,308*] 

[508,466*] 

[315] 

[103*] 

N2O 4.5 m Exp [470] 

HCN 14 m Exp [509] 

 

HDO 

 

2.7 m 

3.6 m 

7.4 m 

Exp 

Exp 

Exp 

[286*] 

[285*] 

[281*] 

H2O Some doublets 

2.5-2.9 m 

2.5-5.4 m 

Exp 

Exp 

Exp 

[510*,511] 

[282*] 

[440*,447] 

NH3 3 m Calc [231,299,300] 

N2 Iso Raman Calc [228,229,237]. 

O2 0.76 m 

 

118 GHz 

Calc 

Exp 

Exp 

[318*,306,245] 

[100*,494,245,306] 

[512*,488] 

PH3 4.5 m Exp [481] 

Table 4: Bibliography providing data in order to describe line-mixing effects. The references 

marked with an asterisk (eg [254*]) are those in which LM parameters were investigated at 

various temperatures. 

 

4.3 Far wings and associated continua 

 This section reviews the data available for the modeling of the continuum-like 

absorptions to which the far line wings make a significant contribution (the CIA continua due 
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to the dipole induced during collisions are the subject of Sec. 4.4). It completes the 

information given in Tables IV.5 and IV.6, as well as in Appendix V.A of [1], by providing 

references of studies for H2O and CO2 (which are, to our knowledge, the only species for 

which new values have been made available in the last decade).  

 

 4.3.1 The water-vapor continua 

 More than one century after its discovery (cf [513,514] and the review in [357]), the 

strength and physical origin of the absorption continua of water vapor remain an open 

question. In particular, the question of the respective contributions of the monomer line wings, 

of the stable and metastable dimers and of collision-induced absorption is not yet settled, as 

discussed in appendix V.A of [1] and in [391,427,515-521]. On this issue, note that water 

dimers have been recently found to contribute to the continuum in the 14-35 cm
-1

 wave 

number region [522]. Partly resolved absorption features due to water dimers have also been 

identified in room-temperature spectra in the millimeter-wave range [523], the water dimer 

relative abundance being on the order of 10
-3

 at room temperature and 1.7 kPa.  

 A better characterization of the amplitude and temperature-dependence of the continuum 

is needed because of its contribution to the radiative budget of the Earth and thus to climate 

change through feedback effects [524-528] as well as its influence on the estimated 

extensions of the habitable zone of stars [529-531] (see also Sec. 5.3). Before describing 

recent results on the water-vapor continua, recall that they are generally divided into the so-

called self-continuum for pure H2O and the foreign continuum when H2O is mixed with 

another gas (generally N2 or air). 

 4.3.1a The self-continuum 

 Table 5 presents a review of (recent) measurements of the self-continuum, which is 

believed to be mostly exhaustive above (and including) the 10 m window (readers are 

invited to consult [357,370] for longer wavelengths). Recall that, because of the weakness of 

the broadband absorptions to be measured, high sensitivity methods and/or long paths must be 

used. We have thus separated, in Table 5, the studies using long (multipass) cells and 

covering large spectral intervals mostly with FTS instruments from laser-based methods 

probing narrow spectral intervals. The main recent FTS studies were carried out by the 

CAVIAR consortium [373,532] with a 512.7 m path length at 293 K in England, with a 612 m 

path length at room temperature in Russia (Tomsk) and with a 100 m path length (T= 311 K 

to 363 K) in the USA (NIST). Concerning laser-based methods, they have been used in the 

water-vapor transparency windows because of their inherent higher sensitivity. They include 

calorimetric-interferometry and cavity-enhanced methods (cf Sec. 2) such as CRDS and OF-

CEAS. 

 

Long path cell methods 
Spectral range  

(cm
-1

) 

Technique Path length (m) T (K) Refs. 

10-90  

 

Interferometric 

spectrometer 
23.3 293-333 [533] 

14-200 FTS 151.75 296 [522] 

800-1250 FTS 68-116 326, 339, 352, 363 [370] 

800-1250 FTS 100 311, 326, 352 [387] 

2400-2640 Spectrograph 707 296-428 [363] 

1900-3500 FTS 100 311-363 [384] 

1900-2600  

and 3900-4600 

Spectrograph 0.0529 500-875 [534] 

1200-8000 FTS 128 and 512 296-351 [518,535] 

2500-10000 FTS 512.7 

17.7 

293 

350-472 

[373] 
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1300-8000 FTS 612 289.5 and 318 [374]  

2000-8000 FTS 1065.5 287 [375]  

Laser-based methods 
Measurement 

points (cm
-1

) 
Technique Laser source T (K) Refs. 

931, 944, 969 CRDS CO2 294-297 [364] 

944 CRDS CO2 270-315 [369] 

2283 OF-CEAS QCL 296, 301, 312 [380] 

2491 OF-CEAS ICL 297, 312, 325 [381] 

4249-4257  CRDS DFBL 298 [379] 

4301 OF-CEAS DFBL 297-323 [378] 

4341-4367 CRDS VECSEL 297 [380] 

4427-4441  CRDS DFBL 296.2 [381] 

4516-4532 CRDS DFBL 297 [380] 

4605 
Calorimetric 

interferometry in air 

Raman-shifted 

alexandrite  
298 [382] 

4723 OF-CEAS DFBL 298-323 [378] 

5875-6665 (10 pts) CRDS DFBL 302-340 [376,377] 

6112-6165 
Calorimetric 

interferometry in air 

Raman-shifted 

alexandrite 
298 [382] 

7500-7920 CRDS DFBL 297  [380] 

7920-8300 CRDS ECDL 297 [380] 

9466  
Calorimetric 

interferometry in N2 
Nd:glass 303 [383] 

11495 
Pulsed CRDS 

(upper limit in air) 
Dye laser 295 [536] 

Table 5: Summary of recent laboratory measurements of the self-continuum of water vapor. 

QCL:Quantum Cascade Laser, DFBL: Distributed Feed Back diode laser, VECSEL: Vertical 

External Cavity Surface Emitting Laser, ECDL: External Cavity Diode Laser, ICL: Interband 

Cascade Laser. 

 

 The measured values of the self-continuum absorption cross-sections between wave 

numbers of 1500 cm
-1

 and 10500 cm
-1

 are compared to the last version (V3.0) of the 

MT_CKD model in Fig. 15 (Sec. 3.5.4). A striking fact is the strong disagreement (up to two 

orders of magnitude near 6200 cm
-1

) between the FTS and laser-based methods in the 

transparency windows. Furthermore, the Tomsk and CAVIAR values are almost constant 

throughout the 1.6 µm, 2.1 µm and 4.0 µm wavelength regions, with a value (about 4×10
-23 

cm
2
 molec

-1
 atm

-1
) largely above the MT_CKD predictions. Conversely, the OF-CEAS and 

CRDS measurements follow the general MT_CKD3.0 evolution with frequency, exhibiting 

very good agreement in the 1.6 µm and 1.25 µm windows but deviations by factors from 2 to 

5 at the center of the 2.1 µm and 4.0 µm windows. Detailed discussion of this puzzling 

situation can be found in [380,537]. Note that during the derivation of the absorption cross 

section from OF-CEAS and CRDS spectra, the pressure-squared dependence of the self-

continuum was systematically checked to insure the gas phase origin of the measured losses. 

Except for [384], all other FTS determinations near room temperature rely on spectra 

recorded for a single pressure. 

 The evolution of the self continuum near and below room temperature is obviously an 

important issue in studies of the atmosphere of the Earth, but it is difficult to measure because 

of the limitation imposed by the saturation pressure. Thus, the use of high temperatures makes 

the determinations easier. From this point of view, the most complete studies (cf Table 5) 

were performed at NIST between 311 K and 363 K [370,384,387] and by the CAVIAR 

consortium [373] in the 350 K to 472 K range. Interestingly, in the 4.0 µm and 2.1 µm 

wavelength windows, these high temperature measurements are consistent with room 

temperature results by OF-CEAS and CRDS [380,381], as shown in Fig. 18. In addition, as 
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noted in [378,381], the measured values, including the earlier results of [363] (up to 428 K) 

and of [534] (up to 875 K), nicely follow a  0exp /( )BD k T  law with a D0 value close to the 

dissociation energy of the water dimer (1100 cm
-1

 [538]). However, as discussed in [378], the 

interpretation of this experimental result as an evidence of the dimer origin of the water 

continuum in the considered windows, seems hazardous in absence of a theoretical support. 

Indeed, theoretical calculations based on the far wings theory yield a D0 value of 1800 K near 

944 cm
-1

 [516], which is close to that of 1842 K retrieved from measurements between 270 K 

to 315 K [369] and to those of 1870 K, 1705 K, and 1680 K obtained with three CO2-laser 

lines between 276 K and 366 K [368]. More generally, as mentioned at the very beginning of 

Sec. 4.3.1, the relative contribution of dimers and far wings of the monomer lines to the 

continuum is still an opened question. Finally note that Fig. 18 shows that the MT_CKD 

model predicts stronger temperature dependences, and that [373] provides other comparisons 

of this model with measurements at various temperatures. 

 
Fig. 18: Temperature dependence of the water vapor self-continuum cross-sections near 2490 and 4301 cm

-1
 

obtained by FTS (green squares from [373]; orange diamonds from [384]; black star and squares from [374] 

and [375], respectively), using a grating spectrograph (blue diamonds from [385] and [362], red full stars from 

[534]) and OF-CEAS (open red stars from [379] and open red squares from [378]). The MT_CKD3.0 values 

(grey line) which are normalized to the number density at 1 atm and 296 K have been multiplied by the factor 

296/T. The D0 slope (black line) corresponds to an 0 Bexp( / )D k T , D0 ≈ 1100 cm
-1

 being the dissociation 

energy of the water dimer molecule [538]. 

 

 

 4.3.1b The foreign-continua 

 In our atmosphere, the air-continuum contribution to the absorption can be of the same 

order as the self-continuum contribution [379] and it represents a major source of uncertainty 

in Earth atmospheric radiative transfer models [386]. The analysis of atmospheric spectra thus 

provides valuable constraints to validate the continuum amplitude and its temperature 

dependence, in particular for the infrared and microwave regions. Nevertheless, the retrieval 

of water-vapor continuum absorption from atmospheric spectra is challenging due to the 

difficulty in discriminating it from aerosol scattering and absorption. Recent atmospheric 

validation in the infrared can be found in [539-543]. 

 Table 6 regroups the few recent laboratory studies of the foreign continuum associated 

with mixtures of H2O with N2 (or air). The concordant experimental results obtained at NIST 
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[387,388], by the CAVIAR consortium [386] and by CRDS in the 2.1 µm window [379] have 

led to a significant increase of the MT_CKD foreign-continuum model in the transparency 

windows. Note that the foreign-continuum has been found to be mostly independent of 

temperature in the broad-band CAVIAR FTS measurements between 350 K and 430 K [386]. 

Similar results were reported in the infrared between 296 K and 363 K [387,388]. Finally, the 

review of [544] concludes that the laboratory and field measurements of the continuum 

absorption coefficients at 183 GHz, do not exhibit a temperature dependence in the 260-360 

K range. 

 
 

Long path cell methods 
Spectral range 

(cm
-1

) 

Technique Path length 

(m) 

Foreign gas T (K) Refs. 

1000-2500 FTS 100 N2 296, 326 [387] 

2000-3230 FTS 100 N2 326, 339, 352, 

363 

[388] 

2000-10000 FTS 17.7 air 350,372, 

402,431 

[386] 

Laser-based methods 
3.5-4.7 BWO 0.35-0.7 N2 261-328 [545] 

4249-4257  CRDS DFBL air 298 [379] 

10611 and 

10685 

CRDS ECDL N2 278 and 296 [546] 

14397-14401 Photoacoustic single-pulse 

ruby laser 

N2 295 [547] 

Table 6: Recent laboratory studies of the foreign-continuum measurements of water vapor in 

N2 or air. BWO: Backward Wave Oscillator, QCL:Quantum Cascade Laser, DFBL: 

Distributed Feed Back diode laser, VECSEL: Vertical External Cavity Surface Emitting Laser, 

ECDL: External Cavity Diode Laser. 

 

 4.3.2 The CO2 far-wings continua 
 As for the H2O continua, the far wings continua of CO2 play a major role in radiative 

transfer exchanges in planetary atmospheres (eg Sec. 5.3.3). In Table 7 are given several 

mostly recent studies in which the far-wings continua of CO2 have been determined from 

experiments. These involve different spectral regions and temperatures and were carried for 

pure CO2 and/or various mixtures including N2 and H2O. Note that some of the references 

also provide empirical models. 

 
Spectral 

range (cm
-1

) 
Technique 

P range 

(atm) 

T range 

(K) 

Path length 

(m) 
Refs. 

800-30000 FTS 0-200 296-650 0.02 [548] 

750-6000 FTS 3-57 298-550 2.00-2.15 [311] 

2380-2460 FTS 1 230-296 20 [355] 

2400-2600 FTS 1-3 295-339 100 [549] 

2500-2600 FTS 0-1 325-366 7.2 [356] 

3900-4600 FTS 1-22 297 120 

[550] 
3900-4600 grating 15-20 290-293 32-482 

3750-3900 FTS 10-40 299-301 3 

3750-3850 grating 10-60 292 0.07 

4320-4380 CRDS 0.3-1 296  [551] 

5850-5960 CRDS 0-8.4 296  [552] 

5693–5795 CRDS 0-10 296  [553] 

8449-8482 CRDS 0-40 293  [554] 

Table 7: Recent laboratory studies of far wings continua of CO2. 
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4.4 Collision-induced absorption 

 Several relatively recent references, in which CIA data obtained from measurements 

and/or calculations are presented, are regrouped in Table 8. In addition to those given below, 

other older studies can be found by consulting [389,432,433] and Sec. 3.6. 

 
System Region T (K) Techn Refs. 

CH4-CH4 0-700 cm
-1

 126-295 Calc [411] 

CO2-CO2 3000 cm
-1

  300 

300-650 

Meas [309,555] 

[548,556] 

CO2-CO2 Fermi diad 300-650 Meas [548,556] 

CO2-CO2 Fermi triad 300 Meas [557] 

CO2-(Ar,Xe) 0-250 cm
-1

 241-351 Calc [414] 

CF4-He 0-400 cm
-1

 213 Calc [410] 

D2-D2 0-7000 cm
-1

 200-600 Calc [405] 

D2-He 0-20000 cm
-1

 150-9000 Calc [406,407] 

D2-Kr Fundamental 298 Meas [558] 

HD-HD 2.3 m 297.5 Meas [559] 

H2-H2 1800-2400 cm
-1

 77.5, 297 Calc [401] 

H2-H2 0-1000 cm
-1

 77-292 Calc [392] 

H2-H2 First overtone 296 Meas [560] 

H2-H2 Second overtone 77 Meas [561] 

H2-H2 0-15000 cm
-1

 300-3000 Calc [402,403] 

H2-He 0-20000 cm
-1

 300-9000 Calc [404,407] 

H2O-H2O 0-500 cm
-1

 240-330 Calc [427] 

N2-N2 0-300 cm
-1

 78-300 Calc [394] 

N2-N2 0-300 cm
-1

 228 Calc [412] 

N2-N2 2-0 band 200-300 Meas/Calc [417] 

N2-H2O N2 fundamental 326 363 Meas/Calc [418] 

O2-O2 0-400 cm
-1

 300 Calc [413] 

O2-O2 

 

O2-N2 

 

O2-air 

O2-CO2 

 

 

 

760 nm 

200-300 

300 

200-300 

300 

300 

300 

 

 

Meas 

[317]  

[338] 

[317] 

[339] 

[100,494]  

[562]  

O2-N2 760 nm 300 Calc [396] 

O2-N2 1270 nm 300 Calc [396] 

O2-O2 B band (670 nm) 300 Meas [563] 

O2-(O2,N2) 922 nm 200-300 Meas [564] 

O2-O2 340-630 nm 203-295 Meas [565] 

O2-O2 20400-21500 cm
-1

 184-294 Meas [566] 

O2-N2 1400-1900 cm
-1

 89 Meas [567] 

O2-Ar 1400-1900 cm
-1

 89 Meas [567] 

T2-He 0-20000 cm
-1

 150-9000 Calc [407] 

Table 8: Recent bibliography providing data on collision-induced absorption. 

 

4.5 Spectroscopic databases 

 Since their creation almost fifty years ago, the (most) widely used spectroscopic 

databases HITRAN [430] and GEISA [431] have evolved constantly. However, until 

relatively recently, the provided line-shape information was quite limited and suitable only for 

calculations using the VP. As discussed below, significant advances have been made in the 

last decade to provide data for calculations under more general conditions. 

 

 4.5.1 The HITRAN database 
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 For many decades, the HITRAN spectroscopic database [430] included only the air- and 

self-broadening coefficients at 296 K. The temperature dependences of air-broadened half-

widths and the air pressure-induced shifts (at 296 K) were added later. It was not until the 

2012 edition [429] that some non-Voigt profile parameters were tabulated (SDVP parameters 

for the first overtone of CO and GP parameters for HF, HCl and the O2 A-band). A 

breakthrough in the ability to seamlessly provide non-Voigt line-shape parameters, as well as 

LM (so far in the first-order parameterization [344]) and pressure-broadening and -shifting 

coefficients by planetary gases, came with changing the database from static ASCII files to a 

relational database [568]. The structure of interconnected tables (corresponding to every 

parameter and set of quantum numbers) enables the introduction of unlimited numbers of 

parameters and to query these quantities in a user-defined fashion and order. In order to ease 

this querying process, an online interface, called HITRANonline [439], was recently 

developed [569]. 

 Since the HTP (cf Sec. 3.2.4a) was recommended [179] as a reference line-shape that is 

more and more frequently used in fits of measured spectra, an effort is underway to store its 

parameters (and thus also those of more simple profiles which are particular cases of the 

HTP) in HITRAN. A detailed description of how this is done is given in [153] where the H2 

molecule was taken as a test case. Thanks to numerous measurements of the electric 

quadrupole lines of pure hydrogen, a complete dataset was obtained for every transition. Not 

only were all the HTP parameters accommodated but they were divided into different 

temperature domains. It is important to note that although the HTP can be reduced to several 

other models [169], it cannot replace all the profiles (eg GP) that already exist in the database. 

In addition, because every line in HITRAN retains a Lorentzian pressure-broadening 

coefficient which is traditionally determined and used with the VP, these parameters remain 

available. This result is important to remember since the half-widths values generally differ 

when extracted from measurements by fits with different line profiles (see below). Indeed, 

because it will take a long time before all radiative transfer codes are upgraded to use non-

Voigt profiles, there is a danger of errors being introduced by applying the widths determined 

with a sophisticated line shape to the VP. 

 The top panel of Fig. 19 exemplifies the output format created to retrieve air-broadened 

SDVP parameters together with first-order LM coefficients (along with the line positions, 

and ”usual” Lorentz-broadening coefficient derived with the VP). Here a tab-delimited output 

was chosen (for better visualization) and the available possibility to display the uncertainties 

was not used. The bottom panel of Fig. 19 shows the corresponding output for the first 

overtone of 
12

C
16

O [477,478]. One can see that the air-broadening coefficients (at 296 K) for 

the VP ( Vair ) are available for every line, unlike the SDVP parameters ( 0

SDVair  and 2

SDVair ). 

It is also clear that the values ( Vair and 0

SDVair ) determined with different line-shapes (here 

VP and SDVP) are not identical.  
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Fig. 19. Example of creating custom output formats and corresponding outputs. 

 

 In order to aid users in applications of non-Voigt line shapes, special libraries for the 

HITRAN Application Programming Interface (HAPI) [570] were created. As explained in 

[570], HAPI can download data from HITRANonline [439] with the option of retrieving all 

line-shape parameters, specific ones, or bundles of parameters (eg all those corresponding to a 

specific line shape). One can also employ the provided functions to calculate absorption 

cross-sections using any line-profile data available in the database. It is also possible to use a 

priority scheme whereby the program will first check whether the HTP parameters are 

available, then for the SDVP, and finally for the VP parameters. In this manner, one can run a 

calculation in which the best available profile is selected for every transition. 

 As detailed in [430], the HITRAN2016 edition provides parameters of the HTP for 

some transitions of H2O, N2O, O2 (B-band) and H2, of the SDVP for CO and O2 (A-band), 

and of the GP for HF, HCl and O2 (A-band). First-order line-mixing data at different 

temperatures have also been added in the database for some transitions of several molecules 

including H2O, N2O, CO and O2. The full line-mixing (relaxation matrix approach) is 

provided for CO2 through auxiliary program from [314] adjusted to work with the 

HITRAN2016 data. Another important recent development is that VP parameters caused by 

collisions with CO2, H2 and He were introduced for CO, SO2, NH3, HF, HCl, OCS and C2H2 
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[571]. This was done for applications to planetary atmospheres and these parameters can be 

easily retrieved from HITRANonline [439] and through HAPI. Note that HAPI also enables 

calculations of the absorption cross-sections for mixtures of perturbing gases. Finally recall 

that, in 2012, a new section providing CIA data was added to the HITRAN database [432], 

now being updated [433]. 

 

 4.5.2 The GEISA database and 4A/OP code 

 As with the HITRAN database described above, GEISA [431] has included for many 

decades air- and self-broadening coefficients at 296 K, while the air-pressure shift and the 

temperature dependences of air-broadened half-widths were introduced later. Since the 2011 

edition, the statistical uncertainty (precision) of these parameters has been added. Contrary to 

HITRAN, GEISA still only provides parameters for the VP, even in its 2015 edition [431]. 

This is because the choice was made to let radiative transfer codes account for other line 

profiles, LM and CIA. This is the case, for example, of the spectrum calculation code that 

builds the look-up tables feeding the 4A/OP radiative-transfer algorithm [572-574] which is 

developed by the research group in charge of GEISA. Using the link between GEISA and 

4A/OP, a quasi-automatic chain has been developed for the validation not only of the 

radiative-transfer calculation but also of the spectroscopic parameters including those for the 

line shape [575]. This enables to carry comparisons between computed and measured spectra 

and to eventually point out discrepancies due to improper spectroscopic data. When it is the 

case, the values of the relevant parameters are, when possible, improved and changed in the 

database. 

 The current GEISA and 4A/OP package includes numerous spectrum-computation 

possibilities going beyond the VP. The latter have been selected for their importance in the 

treatment of the observations of several satellite-based instruments in which the group in 

charge of these tools is/was deeply involved (eg IASI [576], MicroCarb [577] and MERLIN 

[578]). They are the following: (i) LM and SDVP for CO2 lines (including the effects of 

collisions with dry air and water vapor), as described in [314] but starting from the GEISA 

line list. (ii) LM in the O2 A band following [318]. (iii) LM and HTP for the R(6) manifold of 

the 23 band of CH4 from [9]. (iv) CIA by O2 in the 0.76 m [318], 1.27 m [579] and 6.3 m 

[580] regions. (v) CIA in the fundamental band of N2 built from an improved version [581] of 

the tools proposed in [582]. Note that the currently implemented LM models for CO2 and O2 

have been recently completed by the possibility to use parameters from other sources 

[100,466,506,507] for some bands. For CH4, the implementation of LM for the 4, 3 and 23 

bands is currently under progress, based on updates of [333,583]. Finally, for water vapor, the 

VP is used up to 300 cm
-1

 away in the line wings. As a consequence, the corresponding 

4A/OP water vapor continuum is not the “MT_CKD” (which uses a 25 cm
-1

 cut-off distance 

and is described in Sec. 3.5.4) but something that has been refitted based on the validation 

tools described in [575]. 

 

 

5.  Consequences for applications 
 The fact that the information contained in molecular spectra can be used to probe gases 

has been used for decades. The associated remote-sensing studies investigate (Sec. 5.1) a 

large variety of media, including planetary atmospheres and combustion environments, 

involving very diverse pressure and temperature conditions. In addition to these applications, 

advances in both experimental techniques and line-shape models have opened the possibility 

of using spectroscopy for some metrology purposes which require extreme accuracies (Sec. 

5.2), such as the determination of the Boltzmann constant from precise measurements of the 

Doppler width. The success of such studies, which often requires extreme precision and 
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accuracy, relies on the quality of the description of the spectral shapes and constitutes a great 

challenge to this research field. Finally, gases participate in radiative heat exchange in various 

systems at different spatial scales (Sec. 5.3). It is the case in combustion engines, for instance, 

where gaseous emission and absorption influence the hydrodynamics and the energy fluxes to 

bounding solid surfaces. At much larger spatial scales, they contribute to the greenhouse 

effect, for instance, and the accuracy of models involving absorption by atmospheric gases 

affects the reliability of climate predictions. These examples show that a description of the 

effects of pressure, temperature and composition on molecular-gas spectra is required in a 

variety of other research fields tackling diverse issues. The latter being too numerous to be all 

considered here, we have limited ourselves to some illustrative examples (as in Chapt. VII of 

[1]) highlighting the practical advances achieved because of recent spectral-shape studies. 

 

5.1 Remote sensing 

 5.1.1 Probing atmospheres 

 5.1.1a The Earth 
 A striking recent evolution of some Earth-observation satellite-based experiments is the 

considerably increased retrieval accuracy that is required for their success. This is the case, 

for instance, of current or upcoming missions for the study of greenhouse gases [577,578,584-

587]. Indeed, reliable and scientifically worthwhile inversions of sources and sinks of CO2 

and CH4 determined from atmospheric column amounts require spatially resolved 

measurement biases less than 0.1 % and 0.2 %, respectively. Enabled by highly precise 

forward models for O2 and CO2 absorption, the OCO-2 mission recently reported an 

unprecedented precision in the measured CO2 VMR of 0.1 %, sufficient to reveal previously 

unobserved regional and temporal trends in the global carbon cycle [588]. We now discuss 

how recent progress in the spectral-shape description (including isolated lines, LM, far wings 

and associated continua as well as CIA) has improved various optical soundings of the Earth 

atmosphere. Some general comments on the spectral-shape issue in atmospheric retrievals are 

made at the end of this section. 

 - Isolated line shapes: While it is obvious that errors in the input pressure-broadening 

and -shifting coefficients can generate large atmospheric-spectra fit residuals and subsequent 

errors in the targeted retrieved quantity, there are relatively few demonstrations of the need to 

go beyond the VP. The reasons for this are likely that non-Voigt effects (Sec. 3.2) are 

generally small and/or masked by the noise and limited spectral resolution of many 

observations and/or smaller than residuals caused by the incorrect accounting of other effects 

(such as line-mixing). Furthermore, in some retrieval methods, the molecular amount-of-

substance information depends mainly on the line area, so that refined line-shape effects are 

generally small. This was first shown by in situ measurements of atmospheric H2O using a 

balloon-borne diode-laser spectrometer [589]. A RP (hard collisions), which accounts for 

Dicke narrowing, gave significantly better fits to the spectra, but the change in the retrieved 

H2O VMR was only 0.15 %. More recently, the effect of the SDVP on water vapor profiles 

retrieved from ground-based FTIR solar-absorption spectra was investigated [590]. A better 

agreement with in situ sonde profiles was obtained than when using a purely VP. The effects 

of the speed-dependence of the pressure broadening was also investigated (theoretically) in 

the case of O3 retrievals [591] from limb occultation, limb emission, and ground-based 

observations. The conclusion of this study is that the effect is minor (<1 %) in all three cases. 

Following [592], who pointed out the effects of Dicke narrowing in retrievals of HCl and HF 

from ground-based solar absorption FTIR spectra, a similar study was made [593] for HF 

only. It showed that use of the GP, rather than the VP, results in a substantial improvement in 

the HF fitting residuals, with smoother retrieved HF VMR profiles between 25-40 km, but 

differences in the total column abundances of only ~1 %. Finally, TCCON (Total Carbon 
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Column Observatory Network, see [594]) retrievals of atmospheric CO2 VMR, which rely on 

column-integrated observations of the O2 
1
-band at 1.27 m, showed reduced airmass 

dependence and bias with a forward model for O2 absorption that used the SDVP instead of 

the VP [595] (the airmass being defined as the ratio of the total number of molecules within 

the considered line of sight to that for a vertical column). Empirical corrections for these two 

effects were reduced by factors of 6 and 2.6, respectively. 

 - Line-mixing: The fact that taking LM effects into account may improve calculations 

and analyses of atmospheric spectra has been discussed in Sec. VII.4 of [1] and references 

therein. This has since been confirmed in the spectral regions used by several satellite missions 

for the retrieval of column amounts of CO2 and CH4 and the determination of surface pressure 

from O2 absorption, as discussed below. 

For the P- and R-branch manifolds of the 2ν3 band of CH4 used for satellite monitoring 

[578,584], LM effects were investigated using laboratory spectra in [333]. This study also 

showed that taking LM into account leads to improved fits of TCCON atmospheric 

transmission spectra and to a reduced airmass dependence of the retrieved column amounts. 

Earlier, large fitting residuals, and retrieved CH4 column abundances at noon that are 6 % 

larger than those at high airmasses (in the early morning and late afternoon), were obtained 

[596] and explained by the use of wrong line widths. Fits of laboratory spectra in the 2ν3 band 

using the VP were then performed [597], leading to "effective" pressure-broadening and -

shifting coefficients. Although this is a crude way [333] to take LM into account, it is more 

convenient and can still lead to accurate column abundances, at least for pressures of 101 kPa 

(1 atm) and below [333]. For the SCIAMACHY satellite instrument, the changes in the 

widths and shifts implied a latitudinal and seasonally varying bias of 1 % in the total CH4 

column when using the HITRAN 2004 line list [597]. Very recent results on CH4 retrievals 

using the 23 band can be found in [598] where LM and SDVP derived from laboratory 

spectra are used, showing that the former is the major player in the observed improvements. 

Note that atmospheric CH4 measurements were also made using a balloon-borne diode-laser 

spectrometer centered on the R(6) manifold of the 3 band [500]. It was shown that use of LM 

together with a RP gave improved fits to the atmospheric spectra and caused 3 % to 7 % 

decreases in the retrieved CH4 at 8 km to 18 km altitude (in better agreement with the in situ 

cryo-sampler on board the same gondola), relative to a VP without LM (but, contrary to what 

was done in [596], here using the “true” broadening parameters). The relative contributions of 

the RP versus LM to the CH4 changes were not discussed. For completeness, recall a 

somehow similar study for the P(9) manifold of the 3 band [599]. 

For CO2, the importance of LM in the bands commonly used for observations from space 

[577,584-586] was first demonstrated in [600]. This study showed that including LM in the 

forward model leads to a significant reduction of the residuals in the 2.1 µm band (from up to 

2% down to typically 0.5%). It also reduces the dependence of the retrieved CO2 on the 

airmass and improves the consistency between values obtained independently from spectra in 

the 1.6 µm and 2.1 µm bands. That study, in which calculated LM coefficients were used, was 

subsequently improved by taking the speed dependence into account and using LM data 

obtained from fitting laboratory spectra [436,601]. [436] confirmed that, by using LM and a 

SDVP, the CO2 spectral fitting residuals in ground-based TCCON spectra are improved and 

the airmass dependences of the retrieved CO2 total columns are substantially reduced (from a 

few % down to a few 0.1%). As for the case of CH4 discussed above and in [598], LM is the 

main factor in these improvements. Indirect consequences of LM in CO2 have also been 

pointed out in the ground-based observations of CCl4. Indeed, the total columns of this 

species retrieved from its 3 band signature at 794 cm
-1

 depend on the quality of the modeling 

of the nearby (791 cm
-1

) CO2 Q-branch and are on average 15 % higher when the influence of 

LM on the CO2 absorption is disregarded in the forward model [602]. Finally, the importance 
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of LM for the determination of CO2 amounts using the LIDAR instrument CO2LAS is 

discussed in [508]. 

For O2, the importance of LM (and CIA, see below) in the A band used for the determination 

of surface pressure from space [577,584-586], was first demonstrated in [318] using TCCON 

spectra. As for CH4 and CO2 (see above), both the fitting residuals and the airmass 

dependence of retrieved O2 were reduced. This study, in which calculated LM coefficients 

were used, was subsequently improved by taking the speed dependence into account and 

using LM and CIA data obtained from theory and by fitting laboratory (CRDS and FTS) as 

well as atmospheric (TCCON) spectra [100]. 

Finally, the effects of LM on atmospheric O3 retrievals were investigated [603] through 

simulations done for solar transmission and nadir emission. The results show that LM effects 

lead to systematic signatures in the fit residuals of typically ~2 % whose magnitude depend on 

the spectral resolution of the observation. The consequences for the retrieved total column 

ozone amount are quite modest, with errors of 2% in the worst situation, a result explained by 

the fact that O3 is primarily a stratospheric gas. 

 - Far wings and associated continua: We have found no paper discussing the influence 

of far wings and associated continua on retrievals from atmospheric absorption spectra. The 

reason is likely that, in this case, the former only appear as a constant (that is adjusted) 

multiplying the transmission over the relatively narrow spectral intervals selected for the 

retrieval. This is not the case in atmospheric emission in which a precise modeling of the 

broad-band contribution to the absorption/emission in the various atmospheric layers is 

required even though only a narrow interval is used for analysis. This issue, which is relevant 

for the H2O and CO2 continua only, is discussed from several remote sensing points of view 

in [544,604-608] and references therein. 

 - Collision-induced absorption: Concerning the importance of the correct modeling of 

CIA in remote sensing studies of the Earth atmosphere, there have been relatively few studies 

in the last decade. However, the need to include CIA in the O2 A band for accurate retrievals 

of surface pressure from space was demonstrated in [318,609]. Recently, a model for the CIA 

in the weak 2-0 band of N2 was proposed and validated using ground-based atmospheric 

transmission measurements [417]. It was there shown that disregarding the CIA leads to 

errors in the retrieved amounts of several trace gases. A quite original use of the N2 CIA in 

the fundamental band was proposed in [610] for the determination of the pointing in limb-

viewing measurements. This enables [610,611], once the pointing is known, an independent 

determination of the CO2 vertical profile.  

 - Some general comments on the spectral-shape issue in atmospheric retrievals: The 

ACOS OCO-2 retrieval algorithm [601,612,613] for the treatment of OCO-2 [585] spectra 

uses a full-physics forward model that includes LM and a SDVP. This is despite the fact that 

the OCO-2 resolution (0.25 cm
-1

 at 6200 cm
-1

; 0.7 cm
-1

 at 13100 cm
-1

) is insufficient to see 

any difference in the residuals obtained with the VP and SDVP. However, because many of 

the observed CO2 and O2 lines are saturated, the non-Voigt line shape does change the 

equivalent widths of the lines, which is reflected in the retrieved column amounts. In contrast, 

the official TCCON retrievals [594] are performed with a VP and no LM, despite having a 

spectral resolution of 0.02 cm
-1

 and a SNR of 600 sufficient to discern the subsequent 

degradation in the residuals [436,598]. The resulting airmass dependence of the column 

amounts is corrected post-retrieval by exploiting the fact that the retrieval error in the TCCON 

windows caused by the neglect of LM (along with other factors that also cause airmass-

dependent artifacts) is linear for small airmasses and consistent between summer and winter, 

as illustrated in Fig. 20.  
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Fig. 20: Relative differences between the CO2 mole fractions retrieved from TCCON obtained when line-mixing 

is taken into account (XCO2
LM

) and disregarded (XCO2) in the forward model for the strong CO2 band centered 

at 4853 cm
-1

 (top panels) and the weak CO2 band centered at 6220 cm
-1

 (lower panels). The results for summer 

(orange) and winter (blue) are plotted versus local time (left), solar zenith angle (middle), and airmass (ie the 

ratio of the total number of molecules within the considered line of sight to that for a vertical column, right).  
 

Recurrent themes in the above literature survey is that line-width errors and neglect of LM 

lead to significant residuals in the spectral fits and errors in retrievals gases (eg CO2, CH4) 

requiring high precision. In retrievals that try to exploit the line shape to derive a vertical 

VMR profile (eg HCl, HF, H2O), the assumed line shape is also important, but less so if the 

total vertical column suffices. The effects of speed dependence are more subtle than those of 

width errors or LM and harder to discern among the other confounding factors that can affect 

the shapes of atmospheric open-path absorption lines (eg, the assumed T/P/VMR profiles, the 

field of view, the instrument line shape, zero-level offsets). Their effect on the retrieved gas 

amounts cannot be easily generalized since it depends on the measurement technique and 

analysis method. Consider a simple case of a DIAL LIDAR measuring at narrow and discrete 

wavelengths on and off the absorption line of interest. The inferred gas amount will obviously 

be sensitive to the values of the assumed line shape at the spectral points sounded. Even when 

measurements cover the entire line profile (eg FTS spectra, newer LIDARs (eg [614]) they 

can be analyzed in different ways. With analyses that use only the areas of the absorption 

lines, the inferred gas amounts are less sensitive to the line-shape details, especially when the 

lines are unsaturated. On the other hand, techniques that try to retrieve a vertical VMR profile 

from the shape of the spectral lines tend to be much more sensitive to the assumed line 

profiles. 

 Let us finally recall that, since the atmosphere on Earth involves temperatures as low as 

about 190 K, forward models should include a precise description of the effects of 

temperature on all spectral features used for retrievals. However, testing the needed 

information brought by theory and laboratory experiments (Sec. 4) by comparisons between 

computed and measured atmospheric spectra is not so easy. Indeed, except when collected in 

situ, the latter involve contributions from numerous atmospheric layers that are at different 

temperatures. This problem can be partly solved by using limb recordings for various viewing 

angles, since the tangent layer makes a large contribution. But this approach has its limits 

since, as the temperature goes down with increasing tangent height, so does the pressure and 

the resulting collisional effects. For ground-based measurements, in which the lower layers 
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generally make the largest contributions to the total absorption, a solution is to use spectra 

measured on warm and cold days, as in the example of Fig. 20.  

 5.1.1b Other planets 

 Spectroscopic databases such as HITRAN [430] or GEISA [431] still provide, for many 

absorbing molecules and lines, only the self- and air-broadened half widths (but an effort is 

underway [571] to complete HITRAN with parameters for other collision partners, cf Sec. 

4.5). However, these parameters are rarely relevant to planetary atmospheres that involve 

different major gases (eg CO2 for Venus and Mars, H2 for gas giants) and/or temperature and 

pressure conditions that are more extreme than on Earth. Nevertheless, there has been much 

experimental and theoretical effort in the past decade to derive parameters appropriate to 

various planetary environments, resulting in significant and accessible datasets. This is 

particularly the case for the pressure-broadening and -shifting coefficients induced by 

collisions with CO2 (relevant for Mars and Venus) of various molecules including (not 

exhaustively) CO [615], H2O [268], HDO [278,616], HCl and DCl [617] (see also Tables 2 

and 3). These data are now routinely used in the analysis of visible and infrared observations 

to derive the VMRs of these species and/or isotopic ratios in the atmospheres of Mars (eg 

[618-620]) and Venus (eg [621-623]). In particular, [624] discusses the sensitivity of the 1.38-

µm absorption band of water (and the subsequent retrieved water vapor content in the 

atmosphere of Mars) to spectroscopic databases and CO2-broadening coefficients.  

 Another hot topic is the detection (and retrieval) of CH4 in the atmosphere of Mars, 

which has consequences for its current biological or geological activity. This molecule might 

be present at the parts-per-billion level and detecting it requires highly sensitive observations 

at high spectral resolution together with very accurate spectroscopic parameters. This has 

motivated several studies to derive CO2-broadening line widths and LM effects in CH4 to 

prepare for upcoming observations (eg [453,454,501]). Despite the low surface pressure on 

Mars (600 Pa on average), LM effects are visible in CH4 spectra at the spectral resolution of 

the NOMAD spectrometer (0.1 cm
-1

) onboard ExoMars Trace Gas Orbiter [453] and they will 

be taken into account. Finally, since temperatures on Mars span the 150-290 K range, correct 

modeling of the effects of collisions with CO2 on individual lines and manifolds of all 

relevant absorbing species is needed below room temperature. 

 Regarding the lower atmosphere of Venus, where the pressure reaches 9 MPa and the 

temperature 730 K, experimental and theoretical efforts are still needed to correctly describe 

absorption in the far wings of CO2. Indeed, [625] evaluated several line-shape models 

(including a LM approach in the strong-collision approximation) that all failed to reproduce 

the observed CO2 absorption in the 1.10 and 1.18 µm atmospheric windows. The authors thus 

derived their own empirical -factor for the sub-Lorentzian CO2 line wings from fitting the 

spectra collected by the Spectroscopy for Investigation of Characteristics of the Atmosphere 

of Venus Infrared Red instrument (SPICAV_IR) (Fig. 21). In addition, to fit the observations, 

[625] and [626] also had to add an ad hoc continuum opacity, which probably results from 

collision-induced processes. Several recent high-pressure (but room temperature) CRDS 

experiments have been built to evaluate this continuum opacity and measure binary 

absorption coefficients in several transparency windows relevant to the atmosphere of Venus 

[551-554] (see also Sec. 4.4.2). In these experiments, there was also evidence of LM effects, 

which would have to be accounted for in future studies. As outlined in a recent review [627], 

additional theoretical models, predictions and experiments at high pressures but also high 

temperatures are needed to improve the existing databases of spectroscopic parameters for 

Venus conditions. 
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Fig. 21: The SPICAV-IR 

measured Venus emission 

spectrum (blue circles) and 

synthetic spectra calculated 

with different CO2 line 

shapes: fully Lorentzian with 

a cut-off at 250 cm
-1

 from 

line center(green line), 

Lorentzian corrected using a 

 factor derived in the 2.3 

m region [550] (black line), 

sub-Lorentzian profile 

proposed in [625] (red line). 

Courtesy of B. Bézard, after 

[625].

 

 Titan, Saturn's largest satellite, has a nitrogen-dominated atmosphere (with ~5 % of 

CH4 and ~0.1 % of H2) with a surface pressure of 0.15 MPa. Many spectroscopic studies 

performed for the Earth's atmosphere are thus valid, provided that the spectral shape 

parameters are known (or can be extrapolated) down to below 100 K. In the near-infrared, 

Titan's spectrum is dominated by methane absorption (and aerosol extinction). With accurate 

spectroscopic methane data, it is possible to see through the veil of Titan's opaque atmosphere 

in several spectroscopic windows and derive properties of Titan's surface albedo [628]. Given 

the importance of methane, a lot of work has been made (eg [629] in the past decade to 

complement the existing databases with line parameters. However, the analysis of ground- or 

space-based observations in the near-infrared is hampered by the (sub-Lorentzian) behavior of 

the methane line wings, which remains poorly known and plays an important role. Further 

work on methane line wings is clearly needed. 

 Regarding the atmospheres of giant planets, recent experiments have focused on 

measuring absorption properties of ammonia and water vapor under Jovian conditions that are 

found in its deep troposphere, ie in a hydrogen-helium atmosphere, up to 10 MPa and 500 K 

(eg [630,631]) or even 600K [632], in support of a microwave remote sensing instrument 

onboard the Juno spacecraft. Such experiments are crucial to derive microwave absorption 

coefficients that are then used to retrieve the abundances of these species in Jupiter's deep 

troposphere [633,634]. Experiments have also been conducted to characterize the effects of 

collisions with H2, He as well as H2O [630] and CH4 [632] on the ammonia opacity in the 5 

cm to 20 cm wavelength region. Based on these measurements, new models for pressure-

broadened line shapes have been developed. These laboratory data and models show that 

broadening by water vapor has a measurable effect on the opacity of ammonia under Jovian 

conditions [630]. The broadening by CH4 is found to be considerably larger than those by H2 

and He, but its effect on the microwave spectrum which will be observed by Juno is expected 

to be minimal, owing to methane’s relatively low abundance on Jupiter (∼0.2 % by volume) 

[632]. However, the influence of methane broadening on the ammonia absorption spectrum is 

expected to be more important on Uranus and Neptune where CH4 is of greater abundance 

(∼2 % to 4 % by volume). 

 Even more extreme environments can be found in the atmospheres of exoplanets or sub-

stellar objects such as brown dwarfs. Exoplanets observed with ground-based or space-based 

telescopes and for which molecular signatures can be detected in their atmospheres with 

1120 1140 1160 1180 1200 1220 1240

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
R

a
d

ia
n

c
e

 (
W

 s
r-1

 m
-1
/

m
)

Wave length (nm)



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 61 

current techniques are mainly “hot Jupiters” or “mini-Neptunes”, with H2-rich atmospheres 

and temperatures in the range 500 K to 3000 K. To adapt to such high temperatures, several 

molecular line lists have been developed in recent years, including the HITEMP [635] and the 

ExoMol [636,637] databases. Both these databases provide a compilation of high-temperature 

line lists and line-broadening parameters for molecules such as H2O, CO, CO2, CH4 and NH3. 

However, the H2 pressure-broadening data are insufficient despite being critical to correctly 

model infrared spectra of brown dwarves, hot-Jupiter or mini-Neptune planets [638]. In [638], 

water vapor in a H2-rich exoplanetary atmosphere was used as a case study and synthetic 

transmittance spectra of water were computed at various spectral resolutions (from 10
2
 to 10

5
) 

and temperatures (500 K to 3000 K). The authors showed that neglecting pressure-broadening 

effects induces errors of up to 40 % in calculated spectra at the medium resolution (R = 3000) 

representative of the future James Webb Space Telescope capabilities, with even higher errors 

(greater than 100 %) obtained at high spectral resolution. There is thus a strong need for 

accurate pressure-broadening data in the case of collisions with H2 up to very high 

temperatures. This is the topic of many recent theoretical studies. A comprehensive 

compilation of existing data can be found in a recent update of the ExoMol database, which to 

this date includes H2-, He-, air- and self-broadening parameters relevant to eight molecules 

and high temperature (cf [637,639] and references therein). 

 

 5.1.2 Probing combustion gases 

 Laser techniques have been used for decades for the probing of combustion gases. A 

variety of gas-phase systems, which involve wide ranges of pressure, temperature and 

composition, have been probed for steady-state and time-resolved determinations of 

temperature, pressure, velocity, relative amounts of molecular species, etc. In most cases the 

accuracy of the retrieved results highly depends on the quality of the spectroscopic data and 

spectral shapes used. On this topic, the reader is invited to consult several recent reviews 

[640-642] and the references contained therein.  

 

 5.1.3 Probing confined gases 

 It was predicted many years ago that the (tight) confinement of molecular gases inside 

enclosures where they are free to move (and not adsorbed) induces a modification of the 

shapes of absorption lines through the increased contribution of molecule-surface collisions 

[643,644]. However, not until around 2010 did measurements clearly demonstrate these 

confinement effects [645-647]. These experiments showed that lines of H2O vapor inside an 

aerogel sample [645] and of O2 gas inside ceramics [647] are significantly broader than those 

observed for the same pressures and species under unconfined conditions. This is also shown 

in [648,649] and Fig. 22, where the broad feature caused by the confinement of CO gas in an 

aerogel sample, is more than 30 times broader than the narrow peak which is its counterpart in 

the free gas phase.  
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Fig. 22: Transmission spectra 

around the R(6) line of the 

fundamental band of CO at P=117 

hPa for a path including a porous 

xerogel sample and space between 

the edges of this sample and the cell 

windows. The symbols (●, not all 

plotted) are measured values with 

blue and green colors indicating the 

contributions of the confined and 

free gas, respectively. The red and 

blue lines are the fitted transmission 

and the (shifted by -0.05) meas-fit 

residuals. After [649] 

.

 

These findings led to the conclusion that the observed line widths of confined gases can be 

used to measure the size of microscopic pores [650]. The relation between broadening and 

confinement [644] was then confirmed by both CMDS [119,651] and experiments under well-

controlled confinement conditions [652]. This established the applicability of line-width 

measurements to porosimetry. Indeed, it was recently shown that infrared absorption by gases 

within the pores of several samples gives reliable information on the percentage and 

dimensions of open pores [649,653]. Spectroscopy thus appears [649] as an interesting tool 

complementary to more commonly-used techniques such as mercury intrusion/extrusion or N2 

sorption/desorption isotherms. Note that, besides line-broadening, spectra of molecular gases 

within porous samples have also been analyzed from other points-of-view, including the 

effects of molecule-surface collisions on LM effects [334] and induced absorption [654,655]. 

Finally, let us mention studies [656,657] in which the absorption in the 3 band of CO2 was 

used to probe nano-bubbles of this gas formed at the interface between water and a 

hydrophobic solid. 
 

5.2 Metrology 

 5.2.1 Doppler thermometry 

 In the last decade, significant efforts have been devoted worldwide to the determination 

of the Boltzmann constant (kB) with the aim of redefining the Kelvin unit [658]. Indeed, the 

new SI and its implementation will be formally adopted by the end of 2018. This includes the 

Kelvin which will be redefined as the change of thermodynamic temperature T resulting in a 

change of thermal energy by kBT, thus implying that the Boltzmann constant should be 

known as accurately as possible. For this reason, several primary thermometry methods, 

based upon the measurement of a thermodynamic property of a macroscopic system at the 

temperature of the triple point of water, have been improved enormously in the last few years 

[659], yielding relative uncertainties in kB at the parts-per-million level. Doppler broadening 

thermometry (DBT) was proposed as an optical technique [660] to determine kB from 

measurement of the Doppler width D of an absorption line of a gas. Indeed, kB and D are 

related by D 0 B( / ) 2ln2 /c k T M   , where 0 is the central frequency of the line, M is the 

absorber (atomic or molecular) mass and T is the temperature. Inverting this equation thus 

leads to the determination of the thermal energy and, consequently, of either the gas 

temperature or the Boltzmann constant. 
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 After the first successful experiment [661], the international community of fundamental 

metrology widely recognized the importance of developing an optical method that links the 

thermodynamic temperature to an optical frequency, to obtain an independent confirmation of 

the results provided by more established methods. So far, the most accurate implementation 

of DBT has been performed on a line of H2
18

O vapor at 1.39 m [662]. Using the dual-laser 

spectrometer described in Sec. 2.8 and a sophisticated spectral analysis procedure, kB was 

determined with a combined uncertainty of 24 parts-per million (ppm) [663].  

 While the current status and new frontiers of research of DBT have been reviewed in 

[162], it is noteworthy that, in addition to the quality of the detection system, the line-shape 

model used for the spectral analysis and retrieval of D from measured spectra is a key issue, 

as discussed in [664]. In the first determinations, the spectral analysis was performed by using 

either a Gaussian or a Voigt profile [62,661,665]. Subsequently, improvements of the 

experimental setups have been accompanied by using increasingly refined line shapes. Great 

attention has been paid to the roles of velocity-changing collisions and speed-dependence of 

relaxation rates [469,666-668]. Both effects have been accounted for in [662], in which a 

partially correlated speed-dependent hard-collision model [171] was used. In order to go 

further, a global (or multispectrum) analysis approach was then adopted for a simultaneous fit 

to a manifold of experimental profiles across various pressures. As explained in [669], this 

global analysis should reduce the uncertainty associated with the line-shape model, as well as 

the fluctuations resulting from statistical correlations among the adjusted parameters. Another 

way to reduce the uncertainty caused by the approximate modeling of collisional effects (ie 

the line-shape model) is to use a highly sensitive detection technique capable of probing 

samples at very low pressures. This is possible by using long-path absorption techniques or 

cavity-enhanced methods, as recently done in [670] where acetylene spectra near 787 nm 

were recorded using CRDS at pressures as low as 1.5 Pa. Nevertheless, large systematic 

deviations (of about 800 ppm) remained, mostly ascribed to weak hidden lines overlapping 

with the selected transition. Very recently, a comb-assisted highly sensitive CRDS 

spectrometer, operating at 1.578 m, has been developed [671] using pure CO2 as a molecular 

gas target since, as discussed in [162], this molecule turns out to be an excellent choice for 

DBT measurements. It was subsequently shown that the combination of high sensitivity, 

absolute frequency calibration and extremely dense sampling of the absorption profiles leads 

to a statistical uncertainty of 8 ppm over a measurement time of only 5 h. Thermodymanic 

temperature determinations have been demonstrated by using this approach, with the 

spectroscopically unprecedented combined uncertainty of 14 ppm [671]. 

 

 5.2.2 Amount of gas metrology  

 Linear absorption spectroscopy of isolated transitions is a versatile and potentially 

absolute method for measuring the gas-phase amount of a substance (cf Sec. 5.1) that can be 

modeled by the Beer-Lambert law. This approach is species- and isotopologue-specific 

(contrary to mass spectrometry), linear in concentration (assuming that saturation effects are 

negligible), and suitable for both inert and reactive gases. The line intensity plays the role of 

an intrinsic molecular standard provided this quantity and the line shape (a key issue as 

discussed below) are accurately known, thereby supplanting the routine need for calibration 

gases. Also, ratios of spectral-peak areas can be used to measure the relative abundance of 

isotopologues in terms of known line intensities, without the need for an arbitrary reference 

material as required in mass spectrometry. 

 Concerning the line intensity, it can be computed using ab initio predictions of the wave 

functions and dipole-moment surfaces (DMSs) (eg [672,673]) or it can be determined from 

effective DMSs and Hamiltonians that have been fitted to numerous measured values with 

one goal being to average over independent biases among experiments (eg [674]). Laboratory 
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measurements of line intensities are potentially more accurate than predictions and, in any 

case useful for assessing uncertainties. However, except for rotational transitions in the far 

infrared for which Stark and Zeeman measurements can be made, accurate experimental 

determinations of line intensities must meet several technical challenges. The first, for which 

possible solutions are discussed in Sec. 2, is that high-fidelity measurements of both the 

spectrum detuning and absorbance axes are required. The second is that the composition, 

pressure (or number density) and temperature of the gas sample introduced in the 

spectrometer must be stable and accurately known. This can be solved by using accurate and 

precise P and T sensors and certified mixtures that are commercially available for numerous 

gases or which can be prepared using various SI-traceable methods (eg [675-678]). For the 

most stable gases, mixtures with relative standard uncertainties of less than 0.1 % are 

generally available. Note that, particularly when H2O is involved, steady flows of humidified 

gas conditions are preferable over cylinder-based sources which tend to exhibit long-term 

drift [435,679]. Finally, to retrieve the line intensity from fits of measured spectra the 

normalized line profile used must be carefully chosen. The profile enables optimal 

exploitation of the experimental information, in addition to enabling interpolation between 

data points and ensuring the extrapolation necessary to account for the peak area underneath 

the line wings outside of the measurement domain. From this point of view it has been shown 

that using the VP leads to systematic and pressure-dependent errors (up to several %) on the 

retrieved line intensity that are usually larger than experimental uncertainties 

[46,188,284,435,467,489,680,681]. Furthermore, the fitted results are much more sensitive to 

the spectral range considered [435] by comparison to results obtained with higher-order line 

profiles. However, when using more advanced profiles involving several floated parameters 

(speed-dependence and/or velocity-changing frequency, etc), differences between fitted areas 

decrease strongly and may become as small as 0.05 % (eg [46,682,683]). Given the 

availability of low-uncertainty SI-traceable gas standards and the capability to measure 

spectra with SNRs far greater than 1000 and analyze them with advanced line-shapes, the last 

decade has seen the emergence of absolute line-intensity measurements with relative 

uncertainties approaching 0.1 % [8,60,96,683,684]. 

 Obviously, when the line intensity is assumed known in order to determine the relative 

or absolute density of a given molecule (or isotopologue) from an absorption measurement, 

the use of an improper line shape in the fits leads to errors on the retrieved value. Discussions 

on this issue in the context of isotopic-ratio determinations can be found in [680,685-687]. In 

particular, Fig. 23 shows the measured spectra and associated fit residuals used [687] to 

retrieve the H2
17

O/ H2
16

O amount ratio. While the VP is clearly inadequate, the GP, Nelkin-

Ghatak profile (NGP or RP) and SDVP lead to comparable and much smaller residuals. As 

for the 
17

O/ 
16

O ratio, that obtained with the VP is unrealistically large (581 ppm), while the 

GP and SDVP provide the same results which are about 0.8 % smaller than those obtained 

with the NGP (368 ppm) [687]. It should be noted that the literature on isotopic-ratio 

measurements by means of laser spectroscopy, as an alternative to mass spectrometry, is quite 

broad. An exhaustive coverage of this field would be outside the scope of the present review 

article, also considering that in many cases a refined line-shape model is not required [688].  
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Fig. 23: Experimental water 

vapor spectrum near 

=1392.0625 nm for a total 

pressure of about 2000 Pa (15 

Torr), at a temperature of 

298.15 K. Absolute residuals 

are also reported, resulting 

from the non-linear least-

squares fit to Voigt, Galatry, 

Nelkin-Ghatak, and speed-

dependent Voigt profiles. The 

H2
16

O peak corresponds to the 

63,3 → 52,4 component of the 23 

band, while the H2
17

O peak is 

due to the 21,1 → 11,0 line of 

the1+3 band. After [687]. 

 

Another particularly important field requiring accurate line-intensity data involves the remote 

sensing of greenhouse gases from satellite and terrestrial platforms Examples include 

NASA’s OCO-2 satellite [577,585,588], ground-based TCCON [594] observations of O2 and 

CO2, and the planned MERLIN satellite for measuring CH4 [578]. These applications have 

concentration retrieval targets with uncertainties at the 0.25 % level or below and therefore 

motivate low-uncertainty laboratory measurements that incorporate advanced line profiles (eg 

[9,100,689] and references therein ; see also Sec. 5.1.1a). 

 

5.3 Radiative heat transfer and climate modeling 

 In radiative heat transfer problems, one generally wishes to predict the power locally 

lost or gained by the gas (eg in W/m
3
) and the local net fluxes (eg in W/m

2
) to solid surfaces. 

This is obviously relevant for industrial systems where these quantities may affect the 

hydrodynamics and efficiencies of combustion processes, as well as the longevity of the solid 

parts of the system. It is also crucial for correct predictions of climate and radiative forcing, 

with the example of predicting the degree to which warming of the Earth can be attributed to 

anthropogenic greenhouse gases. For such problems, the quantities of interest are integrated 

over the entire thermal emission spectrum of the medium and, eventually, also over that of an 

external source of radiative energy (eg the Sun). Because of this broad integration, the results 

are generally almost insensitive to refined pressure effects affecting narrow spectral intervals 

(eg the deviations from the VP in the core regions of the lines discussed in Sec. 2.2). However, 

this may not be the case at (very) elevated pressures for which LM can significantly change 

the shape of entire bands after the line structure has vanished. In addition, the far wings of 

lines and CIA may then play a non negligible role, particularly when they affect the regions of 

relative transparency between the strongly absorbing bands. 

 

5.3.1 Heat transfer in "industrial" devices 

 In systems of human scale, the path lengths and gas densities are generally too low to 

make far wings and CIA significant. Furthermore, when at elevated pressure, gases in 

industrial devices are often also at high temperature. The resulting densities are then moderate 

so that LM effects in the central regions of the bands remain small. These elements, and the 

computer-cost inherent to the use of sophisticated line-shapes, explain why radiative transfer 

calculations for industrial-type applications mostly use line-by-line approaches with VPs 
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(eventually corrected by a  factor in the wings), or even simpler models built from them. 

[690-692] present such simplified approaches and examples of their use in heat-transfer 

calculations can be found in papers cited therein as well as in studies among those that cite 

these three references. 

 

 5.3.2 Modeling atmospheres observed in the solar system 

 High pressure atmospheres are found on the giant planets Jupiter, Saturn, Uranus and 

Neptune (H2 and He), Venus (9 MPa, 95 % CO2) and, to some extent, Titan (0.15 MPa, 95 % 

N2). The past ten years have seen an increased interest in the accurate numerical simulation of 

radiative transfer within high-pressure planetary atmospheres with the development of a new 

generation of Global Climate Models (GCM) for most solar system atmospheres, supported 

by space missions equipped with atmospheric sounders like Venus Express, Cassini (Saturn, 

Titan) and Juno (Jupiter).  

 Among the terrestrial planets, Venus remains challenging because of its high-pressure 

and high-temperature atmosphere. The available spectroscopic data for individual lines, 

complemented by the high-pressure CO2 data and the H2O continuum parameterizations 

discussed in Sec. 4.3, have allowed the main behavior of the observed temperature profiles to 

be reproduced using physical models (eg [693-695]). The thermal structure is found to be 

primarily controlled by energy exchanges taking place in the infrared, especially in windows 

where the opacities are smallest, and thus not well known. Specifically, [694] showed that to 

model the Venusian atmosphere, uncertainties in the air opacity are crucial in two spectral 

regions which remain poorly known: (i) Between 20 μm and 30 μm, in the window between 

the 15 μm CO2 band and the CO2 roto-translational CIA. Light-matter interactions in these 

spectral regions control the temperature in the cloud convective layer (45 km to 60 km). (ii) In 

the infrared region, energy exchange between the deep atmosphere, the cloud base and within 

the deep atmosphere occurs mostly in the 3 μm to 4 μm and 5 μm to 7 μm intervals. The 

calculated thermal structure was also found to depend in the solar energy deposited below the 

clouds and thus on the assumed cloud properties, which can be adjusted. Errors in the thermal 

radiative transfer can be partly compensated, and it is therefore not straightforward to 

constrain the gaseous opacities when fitting the observed atmospheric temperatures. 

Nevertheless, as reported in [694] it was concluded that, when using the latest data on CO2 

and H2O absorption in the 3 µm to 7 µm spectral region, the opacity is not quite enough to 

reach the observed surface temperatures in the model when the cloud-base temperature is 

consistent with observations: "additional laboratory measurements of CO2 absorption in the 

conditions of the deep atmosphere of Venus (1-10 MPa, 500 K to 750 K) are needed".  

Titan is, in theory, easier to model than Venus since, like the Earth, it has a nitrogen-

dominated atmosphere (with ~5 % of CH4 and ~0.1 % of H2) with a surface pressure of only 

0.15 MPa. Except for the very low temperatures (<100 K) of the troposphere and lower 

stratosphere, for which measurements and/or calculations are still needed, many spectroscopic 

studies performed for the Earth's atmosphere are thus valid. Nevertheless, CIA plays a 

stronger role on Titan than on the Earth, with contributions from N2-N2, N2-CH4, N2-H2 and 

CH4-CH4. Nowadays the relevant data can be obtained from HITRAN [432,433], which are 

notably based on the relatively old studies of [696-698]. Radiative heating occurs through the 

absorption of visible and near-infrared light by methane and aerosols. As mentioned in section 

5.1.1b, methane spectroscopy beyond 0.8 µm has been improved recently [629] but a 

remaining issue is related to the (sub-Lorentzian) behavior of the methane line wings, which 

remains poorly known. It is currently derived [628] from observations of the Titan 

atmosphere by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) in the near 

infrared. 
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 In giant-planet atmospheres, radiative cooling primarily occurs through the thermal 

emission of minor species (eg methane, ethane, acetylene) along with CIA by H2-H2 and H2-

He in the thermal infrared (see Sec. 5.1.1b for further details and [699] for a recent work on 

Saturn).  

 

 5.3.3 New challenges: simulating exoplanets and ancient atmospheres 
 More and more studies are conducted to model "new" kinds of atmospheres which are 

thought to have existed in the past in the solar system, or to be present on extrasolar planets. 

Within this context, the need for a good understanding of the effect of pressure on the spectra 

of gases in a wide range of conditions is stronger than ever. The number of possible cases is 

countless. Indeed, while the atmospheres of most extrasolar planets have not been 

characterized yet, it is known that the diversity of exoplanets is huge, including giant planets, 

mini-Neptunes, volatile rich rocky planets, in all possible ranges of temperatures (eg [700]). 

For both the ancient solar system planets and the exoplanets, there is a special interest in the 

modeling of the conditions that control habitability at the surface (ie allowing the existence of 

liquid-water lakes or oceans) and the limit of the "habitable zone". Such studies usually 

involve high-pressure atmospheres and challenging spectroscopic issues.  

 On strongly irradiated planets (early Venus or exoplanets near the inner edge of the 

habitable zone), a key concern is the greenhouse effect of warm H2O-rich atmospheres and 

the uncertainties in the water-vapor continuum which controls the "runaway greenhouse 

effect" that defines the limit of habitability [529-531,701]. 

 On the opposite, in order to investigate the possible climates on weakly irradiated 

terrestrial planets (early Mars or exoplanets near the outer edge of the "habitable zone") most 

studies have focused on the radiative effect of 0.1 to 1 MPa CO2-rich atmospheres. 

Interestingly, such atmospheres have been found difficult to model, and many problems have 

arisen. For instance, until 2010, to calculate the far infrared collision-induced opacity in a 

multi-bar CO2 atmosphere, almost all published studies (eg [701-704]) relied without 

modification on a parameterization originally derived for the Venus atmosphere in [705] (see 

detailed description in [706]). It was based on the measurements of [707] from 7 cm
-1

 to 250 

cm
-1

, and on a simple parameterization of collision-induced opacity in the other spectral 

domains described in an unpublished PhD thesis [708], still available as a NASA report. This 

parameterization included significant opacities between 295 cm
-1

 and 526 cm
-1

 actually 

resulting from the pressure-broadened wings of the 15 µm bands! Unfortunately, this feature 

was kept in subsequent models, despite the fact that these opacities were probably 

overestimated and, in most cases, already accounted for in the codes chosen to calculate the 

radiative transfer in the 15 µm band. As a result, all studies overestimated the greenhouse 

warming of CO2 by several K. [709] later combined the results of [415] and [710] to propose 

a more up-to-date method to account for the CIA when using modern spectroscopic databases 

for CO2.  

 More recently [711] claimed that explicitly including the effect of CO2 collisional LM 

in their radiative transfer calculations yielded CO2 atmospheres that are more transparent to 

infrared radiation than when spectra calculations are made using -corrected Lorentzian line 

shapes, thus generating much colder temperatures than previously estimated. However [712] 

later showed that this relative cooling was rather due to the wrong choice of broadening 

species (air instead of CO2) and that when using properties derived for self-broadened CO2 

[311] no significant change could be noticed. Understanding why the early Martian climate 

could have been warm enough for liquid water to flow on the surface remains one of the 

major enigmas of planetary science [713] and no consensus scenario has yet been reached. 

The solution certainly lies in experiments for long paths and/or elevated gas pressures, 

capable of probing spectral regions where the (weak) absorption is proportional to the squared 
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total density. For instance, the most promising recent theory is the study from [714] where it 

was suggested that methane or hydrogen could have acted as powerful greenhouse gases in 

the early Martian atmosphere because of CH4-CO2 and H2-CO2 CIA. In atmospheres of 50 

kPa CO2 or more, percent levels of H2 or CH4 were shown to raise the annual mean surface 

temperatures by tens of K, with temperatures reaching 273 K for pressures of 0.125 MPa to 

0.2 MPa and 2 % to 10 % of H2 and CH4. Such solutions had been previously explored [715], 

but the CIA-induced greenhouse effect was probably underestimated because of the use of 

CIA data adapted for an N2 atmosphere rather than a CO2 atmosphere. In fact, the coefficients 

used by [714] remain theoretical and measurements are urgently needed. 

The same conclusions can be reached for many of the ongoing climate studies in planetary 

science. In particular, even for heavily studied molecules like CO2 or H2O, much remains to 

model the extreme environment on some exotic exoplanets [700]), in protoatmospheres [716] 

or terrestrial atmospheres that are subject to asteroid impacts [717]. 

 

 

6.  Remaining issues and directions for future research 
 This review shows that considerable progress has been made in the last decade in the 

determination of spectral-shape parameters from laboratory measurements. These advances, 

particularly significant for isolated lines, result from the unprecedented accuracy of modern 

experiments and the analysis of measurements with multispectrum fitting techniques using 

refined models. In many cases, the absorption can now be measured and represented in a 

broad pressure range with fit residuals of a few 0.1 % or lower. At the same time, promising 

theoretical approaches have been proposed for the prediction of pressure effects from the 

intermolecular interaction potential. Together with more empirical approaches in which some 

parameters are adjusted, these capabilities often enable accurate descriptions of numerous 

mechanisms affecting the spectral shape, from individual lines to entire (allowed or collision 

induced) absorption bands. Despite these achievements, many issues remain, from both the 

experimental and theoretical points of view, in conjunction with the needs of practical 

applications or of our understanding of physical processes. These remaining issues are far too 

numerous to be all discussed here, but we below discuss some possible directions for future 

research. 

 

6.1  Experiments  

 Despite considerable progress, current laboratory experimental set-ups remain limited 

for the following reasons: (i) The first is that the accessible temperatures are often limited to 

room temperature or, when variable, within typically 220 K to 350 K. Furthermore, when the 

sample temperature can be varied, the path length is generally quite limited. (ii) In addition, 

only sub-atmospheric pressures can often be studied. (iii) Finally, tunable-laser experiments, 

which provide the most accurate and sensitive measurements, are limited to relatively narrow 

spectral intervals and low generated-data throughputs. These limitations are generally not too 

constraining with regard to applications in radiative transfer and remote sensing in the 

atmosphere of the Earth, but this is not the case for many planetary studies. Indeed, 

exoplanets or early (paleo) objects in the solar system often involve high temperatures and/or 

pressures together with atmospheres that are extremely optically thick in the central regions of 

many bands. The absorption in the windows of relative transparency must then be accurately 

modeled and providing the relevant quantitative information may require measurements under 

conditions that are not yet obtainable in the laboratory. There is thus a need to develop 

experimental set-ups in which absorption for very large optical paths at elevated pressure and 

temperature can be investigated. Considering the extension of spectral ranges that can be 
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studied, we are relatively confident that it will broaden with the development of new laser 

sources and high reflectivity mirrors.  

 As it appears from the preceding sections, a relatively limited number of spectra have 

been recorded over broad temperature intervals. Consequently, the available comparisons 

between measurements and predictions remain often insufficient for a thorough assessment of 

the quality of some theories or models. For the same reason, the temperature dependence is 

known for relatively few of the spectral-shape parameters deduced from fits of measured 

spectra. We thus believe that efforts should be made both for the development of new set-ups 

and the use of existing ones for the investigation of pressure effects over extended 

temperature ranges. In doing this, as recalled at the end of Sec. 2.1, much care should be taken 

for the precise determination of the characteristics of the gas sample (and particularly its 

temperature and pressure) so that associated uncertainties do not degrade the quality of the 

results. 

 

6.2  Theories and models  

 With regard to theories, the modified Robert-Bonamy approach, the use of molecular 

dynamics simulations and some recent quantum mechanical approaches for CIA are, in our 

opinion, the main recent advances. Their extensions to other molecular systems are obviously 

relevant for future studies, and their ability to describe the effects of temperature, which was 

seldom studied so far, must be further tested. Together with the other approaches also 

presented in Sec. 3, they provide a broad set of tools for predictions of the various collisional 

effects influencing the absorption shapes. However, although the predicted trends afforded by 

these models are quite good in most cases, absolute predictions (ie those achieved without 

adjustment of any parameter) remain significantly less reliable than laboratory measurements. 

In addition, they also generally do not fulfill the accuracy required by various applications. 

From this point of view, we are quite pessimistic regarding the question of whether theories 

will be able to catch up with experiments and predict spectra at the typical uncertainty of 

0.1 %. However, there are two reasons why predictive theories should not be disregarded. 

First, for the situations where no measurements are available or feasible, theory is the only 

option. It is, for instance, the case of the far infrared CIA by CO2+H2O mixtures, needed for 

planetary studies (Sec. 5.3.3), which is extremely difficult (if not impossible) to measure but 

can be predicted by CMDS (Sec. 3.6.1). Other examples are given by spectral-shape 

parameters at very high temperature, which can only be obtained (eg [207,404]) from 

calculations. Second, theories can be used to identify and quantify the respective contributions 

of the physical processes involved in the spectral-shape issue under consideration. This 

provides a tool to develop empirical or phenomenological models, helping to identify which 

are the key parameters and their behaviors. For instance, calculations using the approaches 

described in Sec. 3.3, or fits of CMDS calculated spectra (Sec. 3.2.1) with the HTP (Sec. 

3.2.4a), may provide information on how to parameterize the influence of temperature on the 

speed-dependence and narrowing parameters. In addition, theories can bring valuable 

information to help in the analysis of experiments by identifying which are the most 

influential processes and parameters. For instance, the modified RB formalism (Sec. 3.4.3) 

can indicate which lines are significantly affected by LM in order to reduce the number of 

unknowns in fits to measured spectra. Predictions can also be used to constrain those 

parameters used in sophisticated profiles that cannot be reliably fitted because of the noise on 

measured spectra and/or of the limited pressure range investigated, and/or because of the large 

numbers of known and unknown variables, as well as the poorly defined correlations among 

them.  

 

6.3 Databases 
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 The current version of the HITRAN database [430] provides parameters for the HTP 

(and less refined non-Voigt line-shapes) only for some transitions of a limited set of 

molecules, due to the relatively recent incorporation of this line shape into the analysis of 

experiments. As new measurements become available they will undergo thorough evaluation 

before inclusion into the database. In addition, only first-order (Rosenkranz) LM parameters 

are currently provided (except for CO2). This is mostly because the various multi-spectrum 

fitting softwares employed in laboratories worldwide use slightly different formalisms when 

fitting LM along with correlated parameters. This situation makes it difficult to deliver 

consistent LM data to users. Ideally one should be able to provide codes (for instance within 

HAPI) for users to calculate absorption coefficients themselves from archived parameters. 

What constitutes the most efficient solution for this problem is still an open question under 

discussion in the spectroscopic and atmospheric communities. The number of planetary-

relevant molecules that have broadening and shift parameters caused by collisions with CO2, 

H2 and He needs to be extended. Similarly, data for line-broadening by water vapor of some 

important atmospheric gases will also have to be introduced. For all these topics there is a 

clear need for more information concerning the effects of temperature. Furthermore, for line-

mixing and some of the parameters (the speed dependence, the Dicke narrowing, etc) of 

refined individual line shapes, a consensus is still to be found on how to parameterize their 

temperature dependences. This also stands for the usual widths and shifts, for which the use 

of the single 296 K reference to parameterize their variations with T needs to be questioned if 

one wants to provide data suitable for very broad temperature ranges. Finally, note that there 

is an effort underway [433] to substantially update the CIA section of the database described 

in [432]. 
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