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By means of three-dimensional discrete element simulations, we studied the spreading of a granular
droplet on a horizontally vibrated plate. Apart from a short transient with a parabolic shape, the
droplet adopts a triangular profile during the spreading. The dynamics of the spreading is governed
by two distinct regimes: A super-diffusive regime in the early stages driven by surface flow followed
by a second one which is sub-diffusive and governed by bulk flow. The plate bumpiness is found
to alter only the spreading rate but plays a minor role on the shape of the granular droplet and
on the scaling laws of the spreading. Importantly, we show that in the sub-diffusive regime, the
effective friction between the plate and the granular droplet can be interpreted in the framework of
the µ(I)-rheology.
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I. INTRODUCTION

The spreading dynamics of a granular material sub-
jected to external horizontal agitations may be crucial
in some industries like coatings. But unlike the spread-
ing of a liquid on a solid, vibrated granular films have
not been given great attention. As a reminder, exten-
sive experimental, theoretical and numerical studies have
shown that the spreading dynamics of a liquid droplet
goes through two stages, an early capillary slow regime
governed by Tanner’s law r ∼ t1/10, when the droplet
radius r is smaller than the capillary length, followed by
a gravitational faster regime r ∼ t1/7, when the droplet
has a pancake shape [1]. However, when the viscous dis-
sipation is neglected and a balance between inertia and
surface tension is invoked, the power law of the spreading
dynamics become r ∼ t1/2 at early stages and r ∼ t2/3 for
later ones [2, 3]. In other studies, it has also been shown
that the spreading of polymer nanodroplets in cylindrical
geometry scales as r(t) ∼ t1/7 for the earlier times and
as r(t) ∼ t1/5 for the asymptotic stages [4–6].

The spreading of a granular system requires in general
external mechanical excitation to overcome solid friction.
A large number of studies have been conducted on vi-
brated granular systems but in confined geometries (see
for example the review by Nadler et al. [7]). A pio-
neer work by Sanchez et al. [8] has been conducted to
investigate the spreading dynamics of a free granular de-
posit on a controlled wiggling surface. They show that
the transverse width W of the granular film follows a
single spreading scaling law W (t) ∼ t1/3 and that the
droplet morphology obeys a scale invariant parabolic pro-
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file. They also proposed a nonlinear diffusion model for
the spreading dynamics that reproduces reasonably well
the experimental outcomes. From a simple Coulomb fric-
tional model, they were able to identify two different rhe-
ological behaviors of the granular droplet: shear thicken-
ing at low vibration energies and shear thinning at high
energies, leading to a non-monotonous behavior of the
effective friction coefficient µ as a function of the inertial
number I of the µ(I)-rheology, in contrast with the previ-
ously observed shear-rate dependent behavior in granular
inertial regime [9].

One major limitation to this specific experiment is that
the spreading process and the droplet rheology are in-
ferred only from the temporal evolution of the droplet
shape but not from bulk properties. In order to over-
come this limitation and get a better understanding of
the underlying physical mechanisms, we perform exten-
sive discrete element method (DEM) simulations of the
spreading of a granular droplet on a horizontally vibrated
plate. We investigate the spreading dynamics as well as
the friction between the droplet and the basal substrate
for a wide range of vibration energies and various plate
bumpiness. We also analyze the bulk properties of the
granular droplet during the spreading process, including
velocity field and solid packing fraction.

The paper is organized as follows. In section II we
briefly recall the basic elements of the DEM and describe
the physical simulated system. Results are presented in
section III which includes the morphodynamics of the
granular droplet, the scaling laws of the spreading, the
influence of the plate bumpiness on the spreading pro-
cess and the effective rheology of the granular droplet.
Conclusion and outlook are given in section IV.
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FIG. 1. Sketch of the DEM simulated granular droplet laid on
a rough base driven by horizontal vibrations and mimicking
the experiment in [8].

II. SIMULATION PROCEDURE

A. Simulated system

We perform 3D discrete element method (DEM) sim-
ulations on model systems of polydisperse (±20%), co-
hesionless spheres of diameters uniformly distributed
around the mean value d and of uniform material density
ρ. The simulation box is rectangular (900d× 10d× 30d)
with periodic boundary conditions along the y dimension;
it has free boundaries in the x dimension and is limited
in the vertical z dimension by a base and an open top as
it is depicted in Fig. 1. The base is made either bumpy or
smooth. We employ four different bases: three that are
bumpy and a smooth one. The bumpy bases are made of
spherical grains placed at the nodes of a square lattice.
The average diameter of the basal spheres is ds = λd,
with λ = 0.25, 0.5 and 1. The smooth base corresponds
to λ = 0. The substrate is vibrated horizontally by im-
posing a sinusoidal movement x(t) = a sin(ωt), where a
and ω are respectively the amplitude and the pulsation
of the vibration. On the basis of the experiments from
Sanchez et al. [8], we set a = d and investigate a set of

pulsations ranging from 0.5
√
g/d to 2.5

√
g/d; where g

is the gravity acceleration. In terms of the reduced ac-
celeration Γ = aω2/g, we thus probe values from 0.4 g
to 6 g for the latter. We undertook a few simulations
with thicker systems (20d). We did not notice any ma-
jor variations in the spreading dynamics in comparison
with small systems (10d). We thus assume that 10d is
large enough to avoid the effects of the periodic boundary
conditions.

In the presence of a gravitational field g, the grains
have translational and rotational accelerations deter-
mined by numerically integrating Newton’s second law
using Velocity Verlet algorithm [10]. The total forces

and torques acting on a particle i are:

F total
i = mig +

∑
j

F n
ij + F t

ij , (1)

τ total
i = −1

2

∑
j

rnij × F t
ij , (2)

where index j goes over all the grains in mechanical con-
tact with the grain i and the superscripts n and t stand
for normal and tangential components of the contact
force. The forces F n and F t are functions of the rel-
ative position of the particles and also of their relative
velocity, they are composed of conservative (elastic) and
dissipative (viscous) parts which can be referred to as a
spring-dashpot model. The normal and tangential con-
tact forces are written as [11]:

F n = (knδ + γnvn)un, (3)

F t = (ktξ + γtvt)ut, (4)

where δ is the overlap distance, kn,t and γn,t are the
elastic and the viscoelastic constants and are defined be-
low. The unit vector of the normal direction is un =
(ri − rj)/|ri − rj | and ut is its tangential counterpart.
vn and vt are, respectively, the moduli of the normal and
the tangential components of the relative velocity at con-
tact:

vn = (vi − vj) · unun, (5)

vt = vi − vj − vn +
1

2
(diωi + djωj)× un, (6)

where the parameters di, vi and ωi represent, respec-
tively, the diameter, velocity and angular velocity of the
particle i. We can thus define a tangential unit vector
by ut ≡ vt/vt. We denote by ξ the relative elastic tan-
gential displacement between two particles in contact,
it is computed by integrating the tangential relative ve-
locity during the lifetime of a contact that started at
time t0: ξ =

∫
t0
vt(t
′)dt′. The tangential elongation ξ

has to be truncated whenever necessary to satisfy the
Coulomb’s friction law locally Ft ≤ µpFn, where µp is
the inter-particle friction coefficient and Fn ≡ ‖Fn‖ and
Ft ≡ ‖Ft‖. This force scheme is identically applied to the
particle-substrate interactions but with a different set of
model parameters. In Table I, we give a set of interaction
parameters used in the simulations.

Solid mechanics provides relations between the model
parameters. When two grains enter in collision, the linear
spring-dashpot model of the forces keep the two grains in
contact for a finite duration before they separate again.
The ratio of the relative normal velocities before and after
the collision defines a normal restitution coefficient en
which is directly related to γn by [11]:

en = exp
(
− γn

2meff
tn

)
, (7)
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with

tn = π

(
kn
meff

−
( γn

2meff

)2
)−1/2

(8)

the duration of the collision and meff = mimj/(mi +mj)
the effective mass. Similarly, we can define a restitution
coefficient et for the tangential relative velocities. The
restitution coefficients en and et set the values of the
model parameters γn and γt. We choose for en and et
values corresponding to spent glass beads [12] as reported
in Table I.

The value of the spring stiffness should in principle be
related to material properties. A link to the Young mod-
ulus and Poisson ratio is possible for Hertzian contacts.
For linear models, we have to rely on ad hoc approxi-
mation [13]. In the linear spring-dashpot model, taking
equal normal and tangential contact durations leads to
a relation between the elastic constants kn and kt that
reads: 7kt(π

2 + (ln en)2) = 2kn(π2 + (ln et)
2). This is

different from the usual kt/kn = 2/7 for equal restitu-
tion coefficients en and et. We employ a classical value
used in the literature [13, 14]: kn = 2 × 105 mg/d (see
Table I). This value corresponds to softer particles than
real glass particles but allow faster simulations. We pick
the particle-particle and particle-wall friction coefficients
to be both µp = 0.5, which corresponds to standard val-
ues found in the literature based on static rather than
dynamic values [15–17]. Finally, it is noteworthy to say
that all the simulation results are given in dimensionless
units obtained by setting the particle diameter d, its mass
m and gravity acceleration g equal to unity.

B. Preparation of the droplet

We conduct numerical simulations to mimic the
spreading experiments of a granular droplet reported
in [8]. In order to build up the initial configuration, we
add inside the simulation box two transverse walls at
symmetric y positions from the middle of the simulation
box and are placed 150d apart. We then fill the inner
box by pouring 47000 grains from a randomly diluted
simple cubic lattice. Once the grains have sedimented,
we vigorously shake the whole simulation box horizon-

Parameter symbol grain/grain grain/base units

Elastic constant kn 2 × 105 2 × 105 mg/d

Normal restitution en 0.972 0.8

Tangential restitution et 0.25 0.35

Particle friction µp 0.5 0.5

TABLE I. Interaction values used in the simulations. The
particle mass m, its diameter d and the gravitation constant
g are used to rescale all the material parameters and hence
are set to unity. A polydispersity in the particle size of ±20%
is introduced to hinder crystallization.

tally with a dimensionless acceleration Γ = 4.38 during
a time span t = 130T where T = 2π/ω is the vibration
period. After turning off the vibrations and letting the
system relax, we slowly move apart the transverse lat-
eral walls until they reach the limits of the simulation
box. At the end of the process, the transverse walls are
no more in contact with the granular droplet so that they
can be removed safely. By doing so, we obtain a granular
pile with two slip faces and a flat top which is 220 × d
wide, 29 × d high and 10 × d deep (see Fig. 1). In the
experiment led in [8], the top surface of the initial pile
preparation has the shape of a chalet roof. This is due to
a different preparation scheme in the experiment in which
a bottomless box is first filled with grains, then horizon-
tally vibrated to level out the deposit before it is lifted
up. Our procedure is employed for generating initial con-
figurations of all simulations. The generated granular
piles may slightly differ according to the basal bumpiness.
For every basal bumpiness corresponding to different val-
ues of the parameter λ, we run the same set of simula-
tions for the following set of dimensionless accelerations
Γ = {0.39, 0.49, 0.62, 0.80, 1.10, 1.58, 2.47, 4.39, 6.32}.

III. RESULTS

We present first the simulation results in the case
where the basal bumpiness parameter is λ = 1 and then
investigate the influence of the bumpiness on the spread-
ing dynamics. Finally, we analyze the rheological prop-
erty of the granular droplet in course of the spreading
process.

A. Droplet morphology

As already described in the previous section, the initial
state is a granular heap with two slip faces and a nearly
flat top. When turning on the vibrations, and after a
short transient regime of about t = 3T , the free surface
of the droplet rounds out. The granular droplet pro-
file is shown in Fig. 2 at different times while spreading
over a substrate driven by horizontal vibrations. After
this transient, we record the droplet profile at regularly
spaced time intervals measured in terms of multiples of
of the vibration period T . The vibrations are turned off
when the toe of the granular droplet reaches the limits
of the simulation box.

Due to the invariance in the y direction, we focus our
attention on the morphological properties of the one-
dimensional profile z(x) of the granular droplet. From
the profile, it is easy to extract the maximum height H
and lateral width W , and study their temporal evolution
in course of time.

In Fig. 3, we present the time evolution of the one-
dimensional profile of the free surface obtained at the
acceleration Γ = 0.39. The solid lines correspond to the
best parabolic fits of the numerical data. At the very be-
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FIG. 2. Profiles of a granular droplet while spreading at acceleration Γ = 1.10 on a substrate of bumpiness λ = 1. The
chronological sequences have been recorded at times represented in units of the vibration period: t/T = 1/8 (top), t/T = 3
(middle) and t/T = 12 (bottom). The color gradient codes the z-position of the grains in the droplet. These simulation
snapshots have been rendered by the open visualization tool Ovito [18].

ginning of the spreading process, while still in the tran-
sient regime (t/T = 1/8), we clearly see that the heap has
a nearly flat top which is progressively smoothed out.
The heap then adopts a shape that can be pretty well
approximated by a parabolic profile at time t/T = 3.

At later times, the droplet profile deviates significantly
from the parabolic shape and exhibits a triangular mor-
phology. This is the first notable discrepancy with the
experiments in [8] where the heap keeps a parabolic shape
during the entire spreading process. It is noteworthy
to mention that the scale of the vertical dimension in
Fig. 3 have been magnified by a factor ten in compari-
son with the horizontal scale, so that the deviations from
the parabolic plots are visually amplified. The profiles
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FIG. 3. Mean two-dimensional profiles (open symbols) of a
granular droplet at different instants along with their corre-
sponding best parabolic fits (solid lines) for Γ = 0.39 and
substrate bumpiness λ = 1. Note the large discrepancy be-
tween the horizontal and the vertical scales.

rescaled by their respective maximum height H(t) and
width W (t) are shown in Fig. 4. In the rescaled plot, we
clearly see the transition from a parabolic shape at the
initial stages to a triangular one at the final stages.

B. Spreading dynamics

A key feature to understand the spreading dynamics of
a granular droplet is to quantify the rate of the spreading
process as a function of the intensity of the vibrations.
In Fig. 5, we present the time evolution of the height
H(t) and width W (t) of the granular droplet versus the
reduced acceleration Γ. As expected, the height is de-
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FIG. 4. The granular droplet profiles of Fig. 3 are normalized
here by their instantaneous maximum width W (t) and height
H(t) (open symbols). The black solid line represents a nor-
malized parabolic function z(x) = 1− (2x)2 added to the plot
as a guide to the eye.
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FIG. 5. Time evolution of a granular droplet height H(t) and
its width W (t) while horizontally vibrating a rough substrate
(λ = 1) at different acceleration rates Γ.

creasing in course of time while the width is increasing.
We also find that the spreading rate increases with an in-
creasing acceleration Γ. The strong correlation between
the height and width of the granular droplet indicates
that its volume keeps roughly constant. In other words,
compaction or decompaction process remain marginal.
We will come back on that issue later in the paper.

It is noteworthy to mention that in the first stages of
the spreading process (i.e., t . 5T ), the curves H(t) and
W (t) obtained for different values of Γ all collapse in
a unique trend. This transient regime thus seems to be
independent of the amount of vibrational energy injected
in the system. These earlier stages correspond in fact to a
slight decompaction process as discussed later. After this
transient, the higher the acceleration rate is, the more
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FIG. 6. Spreading dynamics of a granular droplet on a rough
substrate (λ = 1) following the model proposed in [8] (Fig. 3d
therein) at different acceleration rates Γ.

the spreading is effective, except for extreme acceleration
values (Γ = 4.39 and 6.32) for which the spreading rate
saturates or even slows down.

The experiments of Sanchez et al. [8] reveal that the
spreading dynamics is sub-diffusive and obeys the follow-
ing scaling law:

W 3(t)−W 3(0) ∼ t. (9)

To check whether this scaling law holds or not, we re-
plot our data to represent the temporal evolution of the
relative width W 3(t) −W 3(t0) as represented in Fig. 6.
We discard the initial transient and set the initial time
to t0 = 5T . Definitely, the numerical data do not show
a linear trend as would be expected if the experimental
scaling law held. In Fig. 7, a log-log plot reveals instead
that the spreading dynamics exhibits two distinct power-
law regimes of the form:

W (t)−W (t0) ∼ tm,n, (10)

where m and n are two distinct exponents relative to the
two observed spreading behaviors.

The first regime (i.e., (t−t0)/T ≤ 16) is super-diffusive:
the scaling m is of order of 0.8. The second regime is
characterized by a scaling exponent n < 0.5, thus cor-
responding to a slower dynamics and to a sub-diffusive
spreading. The respective values of m and n obtained for
the different acceleration rates Γ are listed in Table II.
We observe a slight variation of the scaling exponents
with the acceleration rate: m ranges from 0.61 to 0.81,
while n takes values from 0.34 to 0.48. There is no clear
variation trends in m and n with increasing acceleration.

At this stage, it is important to emphasize that the sec-
ond sub-diffusive regime found in the simulation is com-
patible with that observed in the experiments by Sanchez
et al. [8]. We indeed obtain a scaling exponent close to
1/3.

We analyze another important parameter, the solid
volume fraction φ, which may vary during the spread-
ing due to the vibrations. Since this system is invariant
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(t− t0)/T

Γ = 0.39
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FIG. 7. A log-log plot of the granular droplet contact width
on a rough substrate (λ = 1) for acceleration rates Γ = 0.39
and 1.10. Two different spreading regimes are evidenced.
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Γ 0.39 0.49 0.62 0.80 1.10 1.58 2.47 4.39 6.32

m 0.81 0.70 0.76 0.78 0.82 0.72 0.71 0.73 0.61

n 0.34 0.40 0.42 0.44 0.46 0.47 0.48 0.40 0.43

TABLE II. Critical exponents m (super-diffusive) and n (sub-
diffusive to diffusive) of the log-log spreading scaling laws for
substrate bumpiness λ = 1 at different acceleration rates Γ.

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0 20 40 60 80 100 120

Γincreases

φ

t/T

Γ = 0.39
0.49
0.62

0.80
1.10
1.58

2.47
4.39
6.32

FIG. 8. Evolution of the mean packing fraction φ averaged
over the granular droplet depth in the case of rough substrate
λ = 1 at different acceleration rates Γ.

along the y direction, φ is computed as the ratio of two
surfaces φ = Ss/Sr, where Ss is the intersection surface
of a vertical (x, z) plane at a given y position with the
three dimensional assembly of spheres, and Sr is the ref-
erence surface area below the droplet profile. The value
of the packing fraction φ is averaged through the droplet
width along the y direction. In Fig. 8, we plot the tem-
poral evolution of the mean solid fraction of the granular
droplet. In the transient stage (i.e., t < 5T ), we observe
a decompaction process which increases in intensity for
increasing acceleration: the higher Γ, the more the de-
compaction is effective. After this transient, the packing
fraction φ keeps roughly constant in course of time. We
can however note a slight re-compaction of the granu-
lar droplet in the case of the smallest acceleration rates
(Γ = 0.39 and 0.49).

C. Bumpiness influence

We now examine the influence of the basal bumpiness
on the spreading dynamics. Fig. 9 presents the tempo-
ral evolution of the width W and height H of a gran-
ular droplet on four different substrates with respective
bumpiness values λ = 0, 0.25, 0.5 and 1, obtained at a vi-
bration acceleration Γ = 1.10. As expected, the spread-
ing rate increases with decreasing bumpiness values. The
increase of the spreading rate is spectacular when we go
from λ = 1 to λ = 0.5 but is much weaker for lower values
of λ.

It is important to note that we do not observe signif-
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1

FIG. 9. Time evolution of W relatively to its initial value W0

for different substrate bumpiness λ at the same acceleration
rate Γ = 1.10 (upper part). The height ratio H/H0 evolution
is also represented (lower part).

icant variation of the exponents m and n of the scaling
laws with the substrate bumpiness (see Table III). We
still have a first super-diffusive regime followed by a sub-
diffusive one.

λ 0 0.25 0.5 1

m 0.81 0.85 0.78 0.82

n 0.47 0.50 0.49 0.46

TABLE III. Critical exponents m (super-diffusive) and n
(sub-diffusive to diffusive) of the spreading scaling laws for
different basal bumpiness λ at the same acceleration rate
Γ = 1.10.

Additionally, we analyze the influence of the basal
bumpiness on the temporal evolution of the solid volume
fraction of the droplet during the spreading (see Fig. 10).
Interestingly, lowering the bumpiness results in a greater
re-compaction. For the smooth case (λ = 0) the packing
fraction of the droplet at the end of the spreading process
(i.e., t/T = 120) is 7% greater than that in the roughest
case (λ = 1). The compaction phenomenon observed for
low bumpiness is interpreted as an ordering process of
the granular packing induced by the smooth base.

Finally, we shall say a few words about the combined
effect of the bumpiness and the vibration acceleration.
For finite bumpiness (i.e., λ 6= 0), the spreading rate is
found to have a nonlinear dependence with the vibration
period T (see Fig. 5). In contrast, the smooth case is
peculiar in the sense that the spreading becomes linearly
dependent of the period T . As seen in Fig. 11, the curves
H(t/T ) and W (t/T ) obtained for different accelerations
surprisingly all collapse on each other.
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FIG. 10. Normalized solid packing fraction comparison for
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Γ = 1.10, φ0 is the packing fraction before activating the
vibrations.
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FIG. 11. Normalized width and height comparison for differ-
ent accelerations at the same bumpiness λ = 0. W0 and H0

are, respectively, the initial width and height.

D. Velocity field within the droplet

We looked into the velocity field map obtained by a
spatial averaging through the droplet width and a tempo-
ral one over a time span of two vibration periods. We ob-
serve a marked difference in the velocity field for the two
spreading regime. In the first spreading regime (t/T = 5)
(see the upper map in Fig. 12 and the vertical velocity
profiles in Fig. 13). The flowing phase is localized close
to the free surface: it spans from the top of the droplet
down to the toe and penetrates the droplet interior over
a thickness of about ten grain diameters. The spreading
dynamics at this stage corresponds to the super-diffusive
regime in which the flow appears to be controlled by su-
perficial processes similar to avalanches on a granular
pile. In contrast, the flow in the second sub-diffusive
spreading regime (see Figs 12 and 13) is no longer local-
ized at the free surface but spans more uniformly through
the droplet depth. As a result, the spreading process is
essential governed by a bulk flow spanning through the
droplet depth rather than a surface flow.

E. Basal friction

The spreading process can be figured out in terms of
momentum transfer between the granular droplet and the
base. One way to understand how momentum is trans-
ferred from the base to the heap, the whole granular
droplet can be seen, in a first approximation, as a solid
mass sliding on a substrate with an effective friction co-
efficient µ which is defined as the ratio of the shear stress
τ to the pressure P .

In Fig. 14, we present the time evolution of the ef-
fective friction. We observe a first phase during which
µ increases monotonously. This increasing phase corre-
sponds to the super-diffusive spreading regime.

In a second phase, µ goes towards a stabilization of the
friction coefficient This second phase matches up with the
sub-diffusive regime identified by a spreading scaling law
approaching t1/3 as reported in [8]. In this latter study,
a nonlinear diffusion model was developed to explain the
1/3 exponent. It is based on two assumptions: (i) a
constant effective friction coefficient µ and (ii) a shallow
flow approximation. The latter is justified as long as the
vertical velocity are much smaller than their horizontal
counterparts. These two assumptions are evidenced in
our simulations during the sub-diffusive regime. While
we have seen that the effective friction is indeed con-
stant (see Fig. 14), the vertical profiles of the horizontal
and vertical velocity in Fig. 13 indicate clearly that at
t = 30T the vertical velocities are much smaller than the
horizontal ones: vz ∼ −0.02

√
gd and vx ' 0.1

√
gd.

The question that naturally arises is why the sub-
diffusive spreading regime is not observed in the initial
phase of the spreading? In the first regime, the friction
coefficient is not constant but most importantly the hy-
pothesis of shallow flow does not hold anymore. Indeed,
we clearly see on the velocity field map (see Fig. 12) that
in the first regime, the flow is localized at the free sur-
face, contrarily to the second regime in which the flow
affects the whole granular droplet. In the first regime,
the spreading is thus governed by a surface flow simi-
lar to avalanches on a granular pile. This surface flow
is more efficient in spreading the droplet and leads to a
spreading scaling law with a higher exponent. A more
quantitative analysis work remains to be done to be able
to derive the value of the exponent. This is what we aim
to develop in a near future using a 2D continuum model
with an appropriate rheological law.

F. Effective rheology

We look at the effective rheology in the second asymp-
totic sub-diffusive regime where µ is nearly constant dur-
ing the spreading. The recent models concerning the
rheology of granular matter [9, 19–23] show that dense
unidirectional granular flows can be fairly well described
using a single friction coefficient that varies with an iner-
tial dimensionless parameter I, defined as the ratio of a
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FIG. 12. Profiles of the coarse-grained vector and scalar velocity fields averaged over two vibration periods. All the velocities
are normalized by the maximum velocity in both configuration t/T = 5 (top) and at t/T = 30 (bottom). The substrate
bumpiness is λ = 1 and acceleration Γ = 1.10. We show only the half of the droplet since the spreading is symmetrical.
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FIG. 13. Vertical profiles of the horizontal and vertical velocity (vx and vz) calculated at t = 5T ((a) and (c)) and t = 30T
((b) and (d)) respectively.

microscopic grain rearrangement time scale to a macro-
scopic flow time scale. This rheology which may be seen
as a generalization of the basic Coulomb friction model,
with a friction coefficient that varies according to the lo-

cal shear rate τ and confinement pressure P , is usually
written as follows:

µ(I) = τ/P = µs +
µ∞ − µs

1 + I0/I
. (11)
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FIG. 14. Time evolution of the effective friction coefficient µ
for different acceleration rates Γ at constant bumpiness λ = 1.

The constants µs and µ∞ correspond, respectively, to a
minimum friction coefficient at low I and to an asymp-
totic friction coefficient at high I values. In the case
of the spreading of a granular droplet, the macroscopic
time is associated with the duration for a grain to travel
a distance d under the shear velocity aω while the mi-
croscopic time is given by the duration of a free grain
to fall over a distance d under gravity. This thus gives:
I = tmicro/tmacro = (d/

√
gd)/(d/aω) = aω/

√
gd, which

is simply the ratio of two velocity scales.

In our numerical study, this inertial number I is varied
from 0.6 to 2.5. The magnitude of the inertial number I
gives usually an indication about the nature of the gran-
ular flow [24]. In the limit of vanishing I (I ≤ 10−3),
the flow can be considered as shear independent (µ is
constant and equal to µs). For intermediate values of I
(i.e., 10−2 ≤ I ≤ 10−1), this is the so-called dense iner-
tial regime with a rate dependent flow. At higher inertial
number I ≥ 1, the flow gets faster and more dilute and
quits the frictional regime governed by eq. 11 to enter a
collisional regime which is well described by the kinetic
theory for dissipative granular gas [25].

The frictional µ(I)-rheology is usually complemented
by an additional relationship which states that the solid
fraction φ is a decreasing function of the sole parameter
I. During the last decade, a large number of experimen-
tal and numerical studies confirms the relevance of the
frictional µ(I)-rheology for unidirectional dense granular
flows as we report in Table IV.

In the present work, we analyze the asymptotic spread-
ing regime in the framework of the frictional µ(I)-
rheology. As there is one-to-one correspondence between
the inertial number and the reduced vibration accelera-
tion, it is relatively easy to compute the variation of the
effective friction coefficient µ of the granular droplet with
the base and the mean solid volume fraction φ as a func-
tion of the inertial number. The computed values of µ
and φ in our study are both averaged over two vibration
periods during the second regime of the spreading.

In Figures 15 and 16, we present the resulting curves
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FIG. 15. Effective friction coefficient µ for different bumpiness
values λ. Straight lines are the best fits.
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FIG. 16. Mean packing fraction for different bumpiness values
λ. Straight lines are the best fits.

µ(I) and φ(I) obtained for the four different basal bumpi-
ness. Concerning the effective friction, we can first note
that the obtained values never exceeds the microscopic
friction used in the simulation (i.e., µ < µp = 0.5). Sec-
ond, we observe a nice linear behavior up to high inertial
numbers. The effective friction coefficient µ can therefore
be well approximated by an affine function of I

µ(I) = µ0 + a I . (12)

The fit coefficients µ0 and a are given in Table V. µ0

shows a slight dependence with the base bumpiness: it
increases from 0.13 to 0.17 when λ goes from 0 to 1. In
contrast, the slope a exhibits a strong dependence of the
base bumpiness since it rises from 0.03 to 0.11. Third,
our results differ from those predicted by the model devel-
oped in [8], where the effective friction coefficient reveals
a non-monotonous behavior. It presents a maximum seen
as a transition from a shear thickening regime at low I
and a shear thinning at higher values.

The solid packing fraction φ also exhibits a linear varia-
tion with the inertial number I that can be approximated
by

φ(I) = φ0 − b I . (13)
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Flow Study I µ(I) law References

Plane shear 2D-DEM ≤ 0.3 µ0 + aI [19]

Plane shear 2D-DEM ≤ 0.1 µ0 + aIα [26, 27]

Plane shear 3D-DEM ∼ 1 µ0 + aI [28]

Annular shear 2D-DEM ≤ 0.1 µ0 + aI + be−(I/C) [29]

Annular plane shear Experimental ≤ 0.1 µ0 + aI [30, 31]

Pile between rough sidewalls Experimental ≤ 0.5 Eq. (11) [23]

Vibro-fluidized granular film Experimental ∼ 1 a− b(I − Ic)
2 [8]

Vibro-fluidized and vane shear Experimental [10−5, 10] µ̃(I) [32]

TABLE IV. Non-exhaustive summary of the µ(I) rheology laws found in the literature. The µ̃(I) equation in [32] represents
a unified rheological model based on a modified Pouliquen law in addition to other corrections due to Bernoulli pressure and
Bagnold rheology.

λ 0 0.25 0.5 1

µ0, a 0.13, 0.03 0.15, 0.04 0.16, 0.07 0.17, 0.11

φ0, b 0.62, 0.01 0.61, 0.01 0.60, 0.01 0.59, 0.01

TABLE V. Fitting parameters of the effective friction µ =
µ0 + aI and the packing fraction φ = φ0 − bI corresponding
to different basal bumpiness λ.

The fit coefficients φ0 and b are given in Table V. The
dependence of these coefficients on the basal bumpiness
contrasts with that obtained for µ0 and a. We find that
the slope b is weakly dependent on the basal bumpiness
while φ0 decreases significantly with an increasing bumpi-
ness parameter λ. It is noteworthy that the value of
the slope b of order of 0.01 is smaller than the standard
value of 0.2 usually reported in the literature. We also
note that the behavior of the effective friction coefficient
µ and the packing fraction φ law is akin to those seen
in the case of cohesive granular dense flows. The basal
bumpiness λ induces similar effects to those of the inten-
sity of cohesion on the variations of µ(I) and φ(I) [33].

IV. CONCLUSION AND OUTLOOK

Using discrete element method simulations, we stud-
ied the spreading of a granular droplet on a horizontally
vibrated substrate. We used a variety of substrates with
different bumpiness. We show that during a short tran-
sient, the granular droplet takes a parabolic shape as ob-
served experimentally and then adopts a triangular shape
for later times up to the end of the simulation. We also
find out that the spreading dynamics is governed by two
distinct regimes, a super-diffusive at the early stages, fol-
lowed by an asymptotic sub-diffusive regime. These re-
sults contrast with the experiment where we only observe
the second sub-diffusive regime [8]. We have identified
that the super-diffusive regime is driven by surface flows
similar to avalanches on a granular pile, while the sub-
diffusive regime is governed by a bulk flow that can be

modeled by a nonlinear diffusion equation leading to a
1/3 scaling exponent as shown in [8]. The surface flows
are found to be much more efficient to spread the droplet
and leads to a super-diffusive regime.

The transition is also marked by a change in the evolu-
tion of the basal friction. Indeed, in the first regime, the
effective friction coefficient increases during the spreading
while in the second regime, the friction reaches a plateau.

Varying the basal bumpiness has no strong impact on
the droplet morphology nor on the scaling laws of the
spreading: the triangular shape of the profiles is persis-
tent and the spreading is still characterized by two dis-
tinct regimes with scaling exponents weakly dependent
of the bumpiness.

Finally, we observe in the asymptotic sub-diffusive
regime that the basal friction coefficient is a linear func-
tion of the inertial number. We also show that the
packing fraction is a decreasing linear function of the
inertial number in accordance with the frictional µ(I)-
rheology. Importantly, our simulation reveals that the
effective friction coefficient and the droplet packing frac-
tion are strongly dependent on the base bumpiness.

As a further work, it would be worthwhile to develop a
quantitative analysis based on continuum model in order
to derive the value of the exponent in the super-diffusive
regime. The key issue is to use an appropriate rheological
law. The first attempt would be the use of the classical
µ(I)-rheology or non-local rheological laws as such pro-
posed in [26, 34].
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