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ABSTRACT Quantified-self is a growing movement that stimulates users to monitor their health status
for a better prevention of illnesses using a set of sensors. For reliable monitoring, it should be easy to
retrieve sensors data despite the implemented communication protocol, standard or proprietary. In this
contribution, we propose a middleware that can be used by software developers to retrieve data from
sensors without worrying about the communication protocol implemented by those sensors. This middleware
takes into consideration data category, that is, wellness or medical. It also handles sensors reliability and
legal framework. Six sensors, which implement one standard protocol and two proprietary ones, have
been integrated to the middleware. They offer to measure 24 different data types, such as weight, blood
pressure, or heart rate. The middleware manages also users’ privacy.

INDEX TERMS Biomedical monitoring, e-Health, interoperability, Internet of Things, wearable sensors.

I. INTRODUCTION
The number of connected sensors, also known as Internet
of Things (IoT), is increasing exponentially [1] with projec-
tion of reaching 24 billion devices by 2020. In healthcare,
the IoTmarket is expected to reach $409.9 billion by 2022 [2].
This expansion provides e-health and telecare sectors with
the necessary tools to get developed. As a matter of fact,
this market value may increase by $21.9 billion between
2014 and 2020 [3]. A recent movement, named the
4P medicine (Predictive, Personalized, Preventive and Par-
ticipatory), has appeared [4]. It focuses on providing per-
sonalized health prevention instead of treating diseases [5]
which can be done thanks to quantified-self. The latter con-
sists in engaging any individual in the self-tracking of any
kind of biological, physical, behavioral or environmental
information [6]. Using a set of sensors, users can monitor
themselves in order to improve their health. On the one
hand, this quantification helps them improving their lifestyle,
and, on the other hand, by sharing their health data with
their practitioners, remotely and in real-time, they participate
in improving their treatment [7]. However, such follow-up
cannot be done efficiently using only sensors implementing
the ISO/IEEE 11073 protocol [8], also known as Continua,

which is the standard protocol for personal health devices
and which is promoted by the Personal Connected Health
Alliance (PCHA). The number of certified devices indeed
kept decreasing over the last 8 years, from 10 devices cer-
tified in 2009 to only 1 device implementing the standard
protocol in 2016 [9]. A recent survey [10] has shown that
out of 92 health sensors, 86 implement proprietary proto-
cols. Consequently, sensors with proprietary protocols should
be considered for an extensive health monitoring.

In parallel, a new business model based on data has
emerged. Thus, many sensors manufacturers privilege their
own proprietary protocols to control their users’ data. How-
ever, reliable health monitoring cannot be limited to one
sensor. Therefore, interoperability becomes a crucial issue to
exchange data frommultiple types of sensors to provide better
health monitoring.

In order to encourage interoperability in health systems,
we propose a middleware, in the form of a software library,
able to communicate with a set of sensors, using both stan-
dard and proprietary protocols, with the objective to access
any data. This middleware is meant to be used by third-
party developers, healthcare service applications or providers
to retrieve patients’ data, enabling them to ensure
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TABLE 1. A comparison between the proposed middleware and related works middlewares.

interoperability with a maximum number of health sensors
with minimal effort. By using such a library, developers do
not need to implement each protocol independently and can
focus on data analysis and processing.

In this contribution, we first present a state-of-the-art in
Section II. Then, in Section III, we tackle the technical,
privacy and legal specifications that are considered, as well
as the architecture of our system and its operating mode.
We present our results in Section IV and discuss them
in Section V.

II. RELATED WORKS
Many studies have been done to improve interoperability
between health sensors [11]–[15], [17].

Hofer et al. [11] proposed an interoperable health
system for monitoring obstructive pulmonary diseases
named COMPASS. These authors developed a server-client
RESTful architecture with a publish/subscribe mechanism
running on Android devices with the aim of increasing the
quality of care by collecting and analyzing sensors data in
a long-term monitoring context. Collected data were sent
to a remote server for storage and later processing. The
authors used a prototype multi-sensor medical device from
Biovotion, measuring several vital signs such as blood oxy-
genation, heart rate, skin temperature and steps count. Data
were retrieved from the sensor using ISO/IEEE 11073 pro-
tocol and sent remotely using HL7 standard protocol [18].
However, despite the increasing number of commercialized
health sensors, especially those using proprietary protocols,
COMPASS does not support any of these sensors. Fur-
thermore, the only device integrated to the platform is a
prototype that is not commercialized, and thus not publicly
available. Ramírez-Ramírez et al. [12] developed a hard-
ware middleware device that handles data from a sensor
and sends them to the cloud. The sensor is a prototype that
measures body temperature and integrates a fall detector,
and uses ISO/IEEE 11073 to communicate. Once retrieved
by the middleware, these data are then transmitted to a
remote server using HL7 protocol. Similarly to Hofer’s work,
Ramírez-Ramírez middleware does not implement any
wide public sensor, neither standard nor proprietary.
Mihaylov et al. [13] proposed a cloud-based platform for
supporting elderly e-health services so that they can live at
home much longer. It aimed at detecting abnormal behaviors
in elderly lifestyle that might indicate a change in their
health status. To achieve this goal, the middleware retrieved

data from numerous sensors like pulse oximeters before
transmitting them to a cloud-based server for a later process-
ing. Implemented sensors used only the standard protocol
ISO/IEEE 11073 and remote transmission was done using
HL7 protocol. Catarinucci et al. [14] proposed an architecture
for a monitoring system within hospitals, consisting in a
wireless sensors network that implements a REST interface
for data communication. It was able to communicate with
RFID-based sensors. Due to its complex architecture, this
type of solution is not adapted for personal health and home-
based telemonitoring systems. Furthermore, it does not sup-
port market-ready sensors. Rahmani et al. [15] presented the
concept of a smart e-health gateway that served as a bridge for
medical sensors between the home and the hospital. It runs
on a Pandaboard device running Ubuntu operating system.
Similarly to previous works, commercialized sensors were
not integrated.

Table 1 summarizes the characteristics of the current
related studies. First of all, none of them supports market-
ready health sensors, but only research devices. Most of
these works are based on standard protocols like ISO/IEEE
11073 or HL7. Although HL7 is widely used, especially
in hospitals, among commercialized personal health sen-
sors, very few use the Continua standard to communicate
whereas the number of devices implementing proprietary
protocols is growing continuously. As a matter of fact, only
7% of personal health sensors implement the ISO/IEEE
11073 protocol [10]. Several studies demonstrated that it
is possible to implement both standard and proprietary
protocols [9], [16]. Georgi and Le Bouquin Jeannès [9]
developed an Android application that retrieves data from
sensors implementing the standard protocol ISO/IEEE
11073 such as weight scale and blood pressure monitor
and from others implementing proprietary protocols (iHealth
blood pressure monitor and Microsoft Band actimeter).
Gay and Leijdekkers [16] also developed an Android appli-
cation that integrates, besides health sensors, cloud services
for managing data like Google Fit andMicrosoft HealthVault.
However, in these two studies, developers implemented each
protocol separately in an application, which is time and cost
consuming whereas it is possible to aggregate all these proto-
cols into one middleware that can be reused and shared with
other developers to encourage interoperability. Moreover,
as we detail below, privacy and reliability are very impor-
tant in healthcare. Despite this, few works took them into
consideration.
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III. METHODS AND MATERIALS
In this contribution, we propose a middleware integrating fea-
tures mentioned in Table 1. We tackle users’ privacy, in terms
of data category (wellness or medical), as well as how data
are retrieved (directly from the sensor or through cloud) and
sensors reliability. This middleware can retrieve health data
(such as blood pressure or weight) without worrying about
which communication protocol sensors implement.

A. MIDDLEWARE SPECIFICATIONS
We first mention the middleware specifications, which can be
divided into three categories: legal, privacy and technical.

1) LEGAL SPECIFICATIONS
In healthcare, sensors can be split into two categories: med-
ical and wellness devices. In the European Union, medi-
cal devices are those certified by the European directive
93/42/CEE which aims to ‘‘ensure a high level of protection
for human health and safety, smooth operation of the single
market and to achieve the results for which the devices are
intended to’’. This directive defines four categories ofmedical
devices (I, IIa, IIb, III in criticality order). Regarding wellness
sensors, according to the Center for Devices and Radiological
Health (CDRH), they are intended for wellness use with a
very low risk to users’ safety.

In France, any data retrieved from a medical device is
considered as medical data. Therefore, only companies with
health-data-hosting authorization can store them. This autho-
rization ensures a high level of security, ethical, technical
and economical requirements to secure medical data [19].
An administration linked with the French ministry of health,
ASIP Santé (Agence des Systèmes d’Information Partagés de
Santé), is in charge of the authorization process.

In order to identify whether data need special hosting,
the middleware informs its users if measuring data is done
with a medical device. In this case, they should subscribe to
a medical data hosting service. It is important to mention that
the middleware is only aimed at retrieving data from sensors
to send them back to users. Therefore, it is their responsibility
to get the final user consent to retrieve these data, to store
them for later processing and, if necessary, to transmit them
securely.

2) PRIVACY SPECIFICATIONS
Retrieving data from sensors can be done in two ways:
directly from the sensor or from the manufacturer’s cloud.
In the latter case, the middleware users are no longer able
to control who is accessing the data and hence to protect
their privacy. As a matter of fact, a recent study examined
four sensors manufacturers’ privacy policies and concluded
that ‘‘. . . all of the services collect more data than necessary,
and none properly specify who they are sharing user data
with.’’ [20].
In order to ensure privacy, the middleware can apply

a filter on the sensors list to consider according to the

application requirements. Thus, if the final user decides to
fully protect his data, developers should inform the middle-
ware to ignore all cloud-based sensors, and to use only direct-
communication sensors. Using this strategy, the user stays in
control of his data since they are not transmitted to third-party
clouds.

3) TECHNICAL SPECIFICATIONS
The middleware is able to handle both online and offline
data, when this option is available. In fact, users can perform
measurements without having their sensors connected to their
smartphones. For instance, some blood pressure monitors can
be used without smartphones since the measure is directly
displayed on the device screen. In this case, measures are
saved on the device itself until it is synchronized with the
smartphone later on. The smartphone downloads these data
from the sensor either to keep a history of the user’s mea-
sures or for processing. Therefore, any available measure
saved on the sensor can be retrieved when the middleware
is connected to it.

Another point to consider is data reliability, since some
sensors are more reliable than others. Consequently, when
two or more sensors are able to measure the same type of
data, the middleware starts by determining which is the most
reliable one as detailed in section III-B2.

B. MIDDLEWARE ARCHITECTURE
1) OVERVIEW
Users request data from the middleware and the latter handles
the communication with the available sensors to retrieve the
requested data.

The increasing number of proprietary protocols imple-
mented by health sensors is causing a critical heterogeneity.
Therefore, the middleware has been designed to handle data
type. Thus, when its users want to retrieve measures, they
have to ask the middleware for a specific data type and not
for a sensor model. For example, they can request a measure
of heart rate but not a measure from Microsoft Band. This
is a deliberate choice since, when monitoring health status,
the data themselves must prevail. When they need to use a
sensor from a specific manufacturer, developers should use
the SDK or the API (Application Programming Interface)
provided by this manufacturer.

2) OPERATING MODE
In this section, we detail the operating mechanism of the
middleware as displayed in the flowchart of Fig. 1.
When a measure is requested, the middleware starts by

determining the list of sensors able to perform this measure
(Fig. 1 - 1©). This list is retrieved from the middleware
database. Then, users can ask the middleware to apply two
filters on the sensors list. The first one deals with users’ pri-
vacy, and removes from the list any sensor that sends its data
to the manufacturer. Therefore, only sensors allowing direct
communication are used. The second filter limits measures to

VOLUME 6, 2018 26285



N. Georgi et al.: Middleware Architecture for Health Sensors Interoperability

FIGURE 1. A flowchart describing how the middleware proceeds to measure data from sensors.

either medical devices or wellness devices. Of course, if users
want to use any type of sensors, this filter should not be
applied. If the middleware is used for a medical development
goal, it canmeasure datawithmedical devices only. Similarly,
if developers do not want to use a medical hosting offer to
store users’ medical data for economic reasons, the middle-
ware is able to measure data from wellness devices only.

Sensors are retrieved in line with the used hardware. For
instance, if the hardware running the middleware does not
support Bluetooth Low Energy (BLE), sensors using it are
ignored. Similarly, if an Internet connection is unavailable at
the time of current measurement, cloud-based sensors are not
used.

Once established, this list is sorted in terms of reliability.
As a matter of fact, all sensors do not present the same
level of confidence, some types being more reliable than
others. Therefore, they are sorted so that the most accurate
one is ranked the highest and accessed first. Sensors are first
ranked regarding their types. For instance, upper arm blood
pressure monitors are more reliable than wrist blood pressure
ones [21] since the latter overestimate the blood pressure

measure [22]. Hence, the middleware sorts upper-arm blood
pressure monitors first. If no study allows identifying such
rules, then this step is skipped. Thereafter, sensors are sorted
based on their technical characteristics, provided by devices
manufacturers. When sensors are equally reliable, the one
allowing a direct communication is privileged. If several
sensors allow it, the one that does not require any interaction
with the user is privileged. If this case is met for more than
one sensor, the sensors are sorted randomly.

Another aspect that is taken into consideration is contin-
uous measurement. Indeed, it can be important to monitor a
health data type over a period of time. When users request a
continuous measure, the middleware retrieves only sensors
able to perform such measure, then sorting sensors with
regard to their accuracy is applied as mentioned above. For
example, a heart rate can be measured continuously with a
pulse oximeter but not with a blood pressure monitor. There-
after, a discovery service is launched to retrieve data from
the established sensors list. The service iterates this list until
data is measured from one of the sensors (Fig. 1 - 2©). The
most accurate sensor is used first. It starts by determining the
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appropriate SDK or API to use. Based on the communication
technology used by sensors, we distinguish three processes:

• If the sensor communicates viaWi-Fi (Fig. 1 - 3©), a web
request is performed to retrieve data. This request is
intended either to the sensor or to its manufacturer’s
cloud.

• If the sensor uses BLE (Fig. 1 - 4©), the middleware
scans the surrounding area looking for sensors.

• Finally, if the sensor uses a classic Bluetooth connection
(Fig. 1 - 5©), the middleware searches for it among
paired devices.

Once a connection is established, the measure is performed
and data is returned to the final user. If the connection to
the sensor has been established but no measurement can be
obtained, due to a sensor dysfunctioning for example, an error
notification is returned and the middleware proceeds with the
next sensor existing on the list established by the discovery
service. It is necessary to inform users that a measure could
not be retrieved despite an established connection because
the sensor might be damaged. In the case where sensors need
manual activation, themiddleware notifies developers that the
user needs to perform some action on the sensor. In this case,
developers should ask the user to activate the sensor using
the application User Interface (UI). If no sensor is found to
perform the measure, a null object is returned.

When a cloud-based sensor is used for the first time, a noti-
fication is sent to the end-user informing him that his data are
handled by a third-party provider. This choice is made so he
can be fully aware of his privacy.

To optimize the middleware performance, a cache function
is available (Fig. 1 - 6©). It stores the used sensors to improve
the middleware performance. If it is enabled, the middleware
tries to re-establish a connection to the last used sensor before
launching the discovery service. If it fails, the sensors list
is retrieved as mentioned above. If the healthcare applica-
tion requirements are limited, the requested sensors can be
preloaded in the cache. The discovery service can also be
limited to only sensors available in the middleware cache.
Any interaction between the application and the middleware
is done asynchronously, preventing the middleware from
freezing the application user interface.

The middleware has a prefilled database with all necessary
information for its functioning. It includes, amongst others,
sensors types, models, their communication protocols and the
list of data types they can measure.

3) COMPONENTS
The middleware is composed of a number of components
as illustrated in Fig. 2. It is designed as a software library,
therefore intended to be embedded in third-party applications.
The communication service component is the communica-
tion interface between the middleware and other applica-
tions. When the middleware users request data, as detailed in
Section III-B2, it is done through this component, and when
the measure is realized, the communication service returns
the result to users.

FIGURE 2. A diagram illustrating the middleware components.

As mentioned in III-B1, when data are requested, they are
requested as a data type. Hence, the middleware needs to
determine which sensor can be used to perform this measure.
The semantic component handles this point and transmits
a list of possible sensors to the device manager. The latter
manages the measurement process. It starts by applying the
filters described above, sorting sensors based on their reliabil-
ity then launching the discovery service in order to determine
which sensor the final user handles. It also identifies which
communication protocol the sensor implements to decide
which SDK or API to enable. Since some sensors require
an identified user, the device manager communicates with
a credentials manager to get the login ID that should be
used. The credentials manager stores credentials provided
by the application developer. The communication between
the device manager component and sensors is done through
the hardware layer of the operating system running the
middleware.

The middleware has also an update manager component
in charge of updating sensors firmware. Regarding updating
the middleware, to add new sensors for instance, developers
should upgrade it in their development project, as they would
update any software library used as a dependency.

4) OUTPUT RESULT
If no connection can be established with a sensor for measur-
ing the requested data, a null object is returned. Otherwise,
a measure object is returned containing the following data
related to the measure:

• Type: the requested data type (weight, blood pressure...).
• Value: the requested data value.
• Unit: the requested data unit (kg for weight, mmHg for
blood pressure).

• Timestamp: the requested data measure time, enabling
the healthcare application to know when the measure-
ment was done and therefore if it is a live measure-
ment or not. If the sensor gives the measure time, it is
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TABLE 2. Sensors supported by the middleware.

TABLE 3. Data measured through middleware on two devices: Samsung Galaxy Tab S2 (Android 6.0.1) and Google Nexus 7 (Android 5.1.1). Green =

successful measures, Red = failed measures. Sensors column refers to Table 2.

used; otherwise, the current time is used. The Network
Time Protocol (NTP) is used to ensure that real time is
used.

• Resolution: the sensor accuracy as indicated by the man-
ufacturer in the sensor data sheet.

• Privacy: this field is a Boolean. It allows users to know
if data have been retrieved directly from the sensor
(true) or from the manufacturer’s cloud (false).

• Medical data: this field is a Boolean. It tells users if the
retrieved measure is a medical data and therefore if it
requires an authorized company to host it.

The users of the middleware can request an instance of the
sensor type used for the measurement. In this case, they can
get the following data (when applicable):

• Sensor type (weight scale, oximeter. . . ).
• Sensor model.
• Battery level.

If a continuous measure is requested or if the measure is
an array of single values, then a measure result is sent back
to users each time a new value is available. The measure time
can be predetermined at launch, or stopped manually by users
when they estimate that it is time to.

IV. RESULTS
We developed this middleware for the Android platform.
It supports OS versions starting API 19 (KitKat 4.4), since
older versions are no longer supported [11], [23]. Themiddle-
ware is programmed using Java language, and is interoperable
with the six sensors described in Table 2. With these sensors,
healthcare application can retrieve up to 24 data, described
in Table 3. To test our middleware, we implemented an
Android application integrating this middleware to retrieve
health measures, as would other developers do for their devel-
opments. This application stores measured data in a local
database and then displays them on a chart.

In a recent work [9], we used iHealth API to retrieve
data. Since then, iHealth has published an SDK enabling
direct communication with its sensors. This has the benefit
of allowing direct control on sensors such as blood pressure
monitors, actimeters or oximeters. In fact, when we used the
API to retrieve data, we could not measure live data neither
control the sensors (e.g. interrupt the measure, modify the
sensor settings). This lack forces the user to use two appli-
cations, the manufacturer’s one and the healthcare service
one, thereby reducing the application ease of use. Now with
the available SDK, we can directly control the sensors and
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therefore measure live data. Regarding A&D sensors, they
implement the ISO/IEEE 11073 standard protocol which is
natively supported by Android since API 14 through Blue-
toothHealth class. To retrieve data from Netatmo sensor,
we implemented its API to fetch measures from the manufac-
turer’s cloud. Therefore, an Internet connection is required.

Unlike A&D, both iHealth and Netatmo sensors require
developer credentials to communicate their data. Netatmo
requires in addition the credentials of the final user who
should provide them through the developer’s application.
Developers can communicate these data to the middleware
credentials manager that uses SharedPreferences. It is a key-
value interface for storing data in a given context. Since the
context used by themiddleware is supplied by the developers’
application, both sides can access the same data. The middle-
ware cache is also based on the SharedPreferences interface.
The database used by the middleware is SQLite, which is also
supported natively by Android.

Asynchronous communications are done using IntentSer-
vices. These components are designed to perform long oper-
ation in a worker thread. They have the benefit of stopping
themselves once the requested task is done allowing optimiz-
ing the use of the platform resources. The communication
between different components of the middleware is done
using the ResultReceiver interface.

Since API 23 (Android Marshmallow 6.0), users grant
permissions to an application at runtime rather than at instal-
lation time. In order to respect users’ privacy, the middle-
ware only requests necessary permissions for the required
SDK instead of requesting all permissions at once.

Table 4 details the number of lines of code a developer
needs to write when using our middleware to implement a
specific protocol compared to a self implementation of the
protocol. The middleware has an average cyclomatic com-
plexity of 1.92 and a total cyclomatic complexity of 435.
Its static memory footprint (compiled bytecode) is 778.8 KB.

TABLE 4. Implementation effort when using the middleware versus
without it.

This application was tested on two devices: a Samsung
Galaxy Tab S2 runningAndroid 6.0.1 that was testedwith and
without Internet connection, and a Google Nexus 7 running
Android 5.1.1 with an Internet connection. This configuration
made it possible to test the middleware adaptation to the
chosen hardware. The 24 supported data types were mea-
sured. Table 3 shows the result of each measure. Green color
means data measure was successfully performed, red color
when it fails which is due either to a non-adapted hardware
(Nexus 7 does not support BLE), or to the absence of an
Internet connection (Galaxy S2) required by cloud sensors.

Sensors columnmakes reference to Table 2. Regarding Fig. 3,
it presents an example of heart rate measures retrieved using
the middleware.

FIGURE 3. A line chart displaying heart rate measures.

V. DISCUSSION
We developed the middleware for Android because this plat-
form represents 84.82% of smartphones [24]. Fig. 4 illus-
trates the evolution of mobile platforms among smartphones
since 2009. A recent survey [10] showed that out of 92 health
sensors, 96% of them use Bluetooth and/or Wi-Fi to commu-
nicate their data. Hence, we choose to focus on implement-
ing these two wireless technologies. Other communication
technologies could also be used, but they are not as widely
adopted as Bluetooth andWi-Fi. For instance, infrared port is
supported by very few sensors, just as ANT wireless network
technology.

FIGURE 4. An illustration of the progress of Android platform compared
with others.

Nexus 7 is a device that does not support BLE, therefore
it cannot retrieve data measured by BLE sensors. Therefore,
failed measurements in Table 3 are due to the inability of
the Nexus 7 device to communicate over BLE. Regarding
the Samsung device, since it does not have an Internet con-
nection, it could not retrieve data from the Netatmo weather
station which is a cloud-based sensor (cf. Table 2 - Sensor 6).
Currently, the middleware does not retrieve any data from
services like Google Fit or Apple Health because no explicit
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Listing 1. Example of data request code using the middleware.

Listing 2. Example of data reading code using the middleware.

data are available about the saved measures such as their
category (medical or wellness), the sensor used to perform
the measure, its accuracy, etc.

The developed application based on the middleware allows
the user to retrieve his health data and to store them locally
maintaining privacy. It offers an alternative solution to com-
mercial applications.

Regarding the implementation effort, the middleware
spares developers from implementing by themselves each
protocol. The benefit increases with the rising of the number
of implemented protocols as detailed in Table 4. As a matter
of fact, when using the middleware, only 2.74% of the code
amount is needed compared to the non-use of themiddleware.
Even if this is implementation-specific, it gives an order of
magnitude of the implementation effort. Listing 1 shows the
necessary code to request a specific type of data whereas
Listing 2 shows how data are read. This benefit is even more
significant as smartphone applications size keeps increasing.
We analyzed 250 applications obtained from Google Play
through a search with the keyword ‘‘health monitoring’’.
Eighteen applications were excluded because they were out-
side the scope (servers and battery monitoring). Among the
rest of the applications, we considered only those having
more than 10 000 downloads resulting in 115 applications
among 232. Forty-five percent of these applications commu-
nicate with at least one health sensor (weight scale, blood
pressure monitor, etc.). The average size of these applications
is 33.51MB. This means that themiddleware represents 2.3%
of an application size which is not significant regarding the
saved implementation effort.

Thanks to the small number of implemented sensors,
the middleware retrieves requested data quickly. How-
ever, with the increasing number of supported devices, the
searching time to find the appropriate sensor might become
significant. For this reason, we implemented the cache func-
tion. The used sensors are stored in the middleware memory
and can be reused saving search time. Thus, developers are

encouraged to preload in the cache the sensors their users are
likely to use when possible. Currently, it needs on average
0.045 second to determine the appropriate sensor to use. The
time to obtain sensor data depends on the need of the user’s
intervention to activate the sensor. As a matter of fact, sensors
n◦1 (A&D weight scale), n◦2 (A&D blood pressure monitor)
and n◦4 (iHealth oximeter) need to be activated manually
by the user in order to retrieve the measures. For sensor
n◦3 (iHealth blood pressure monitor), the middleware needs
around 37 seconds to perform the measure. This delay is
normal and required for the device cuff to inflate and deflate
in order to determine the user’s blood pressure. For sensor
n◦5 (iHealth actimeter), it needs 5.6 seconds to establish a
connection and to retrieve current data, and 0.412 second to
retrieve measures from sensor n◦6 (Netatmo weather station).
We also used several software analysis tools to ensure

a high quality code of the middleware. This enabled us to
maintain it and upgrade it easily in the future. First, we used
the Checkstyle tool. This ensures for developers willing to
use it that the middleware code respects coding standards
and conventions and, therefore, is easily understandable.
PMD software was also used to provide a clean and readable
code. The Android Studio default tool, Lint, was also used to
look for optimizations and identify potential errors.

In this work, we developed a middleware, as a soft-
ware library, that improves interoperability with health sen-
sors implementing both standard and proprietary proto-
cols. It allows developers to communicate with a greater
diversity of sensors and to manipulate data without worry-
ing about which communication protocol to use in order to
achieve a better health monitoring. It is also able to take
account of the used material characteristics, legal require-
ments and users’ privacy.

Currently, sensors are sorted based on the technical char-
acteristics provided by their manufacturers and based on
their type. However, several studies in the literature have
already revealed that the reliability varies with sensors. As an
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example, a recent study showed that a Fitbit Charge HR was
less accurate than a Polar H7 for measuring heart rate [25].
In a future work, we propose to test the veracity of the sensors
accuracy regarding the technical characteristic provided by
the manufacturers. We also plan to increase the number of
interoperable sensors supported by the middleware on the one
hand, and to make it compatible with other platforms than
Android on the other hand.
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