

The antagonist properties of Bazedoxifene after acute treatment are shifted to stimulatory action after chronic exposure in the liver but not in the uterus

Mélissa Buscato, Coralie Fontaine, Aurélie Fabre, Alexia Vinel, Marie-Cécile Valera, Emmanuelle Noirrit, Maeva Guillaume, Bernard Payrastre, Raphaël Métivier, Jean-François Arnal

▶ To cite this version:

Mélissa Buscato, Coralie Fontaine, Aurélie Fabre, Alexia Vinel, Marie-Cécile Valera, et al.. The antagonist properties of Bazedoxifene after acute treatment are shifted to stimulatory action after chronic exposure in the liver but not in the uterus. Molecular and Cellular Endocrinology, 2018, 472 (472), pp.87-96. 10.1016/j.mce.2017.11.022 . hal-01812522

HAL Id: hal-01812522 https://univ-rennes.hal.science/hal-01812522

Submitted on 19 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	The antagonist properties of Bazedoxifene after acute treatment are shifted to
2	stimulatory action after chronic exposure in the liver but not in the uterus.
3	
4	Mélissa Buscato ¹ [*] , Coralie Fontaine ¹ [*] , Aurélie Fabre ¹ , Alexia Vinel ¹ , Marie-Cécile Valera ^{1,2} ,
5	Emmanuelle Noirrit ^{1,2} , Maeva Guillaume ¹ , Bernard Payrastre ^{1,4} , Raphaël Métivier ³ , Jean-
6	François Arnal ¹ .
7	
8	1- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse,
9	France;
10	2- Faculté de Chirurgie Dentaire, Université de Toulouse III, Toulouse, France;
11	3- Equipe SP@RTE, UMR CNRS 6290, Université de Rennes I, Rennes, France;
12	4- Laboratoire d'Hématologie, Toulouse, France.
13	
14 15	* The authors have equally contributed to this work
16	
17	
18	
19 20 21	Correspondance to: Jean François Arnal, 1 avenue du Pr. Jean Poulhes, CHU Rangueil, 31432 Toulouse, FRANCE Tel: (33) 561 32 36 83. Fax: (33) 561 32 20 84. E-mail: Jean-Francois.Arnal@inserm.fr
22	
23	Short Title: Tissue specific action of TSEC
24	Keywords: estrogen receptor (ER), Bazedoxifene, tissue-selective estrogen complex (TSEC),
25	hormone therapy, menopause, liver

26 Abstract

A promising alternative to conventional hormone therapy for postmenopausal symptoms is treatment combining Bazedoxifene (BZA), a third-generation selective estrogen receptor modulator (SERM), and conjugated equine estrogen (CE). This combination is also known as a tissue-selective estrogen complex (TSEC). Understanding the tissue-specific actions of SERMs and the TSEC remains a major challenge to try to predict their clinical effects.

The aim of this study was to compare acute versus chronic treatment with BZA, CE or 32 CE+BZA in two major targets of estrogens, the uterus and the liver. In these two tissues, 33 34 acute treatment with CE, but not with BZA, induced similar gene expression change than the most important endogenous estrogen, 17-β estradiol (E2). Acute induction of gene expression 35 by E2 or by CE was antagonized by the addition of BZA. Concomitantly, BZA alone or in 36 37 combination with E2 or CE induced a partial degradation of ER α protein after acute exposure. In uterus, chronic treatment of BZA alone had no impact on tissue weight gain or on epithelial 38 cell proliferation, and also antagonized CE-effect in uterus, thereby mimicking the acute 39 40 effect. By contrast, in the liver, chronic BZA and CE+BZA elicited agonistic transcriptional effects similar to those of CE alone. In addition, at variance to BZA acute effect, no change in 41 42 $ER\alpha$ protein abundance was observed after chronic treatment in this tissue.

These experimental *in vivo* data highlight a new aspect of the time-dependent tissue–specific action of BZA or TSEC, *i.e.* they can act acutely as antagonists but become agonists after chronic treatment. This shift was observed in liver tissue, but not in proliferative sex target such as the uterus.

The decline of estrogen levels after menopause is associated with bone loss, hot flushes and 49 vulvar-vaginal atrophy, affecting sexual function, relationships, and quality of life. Estrogen-50 progestin therapy was previously considered as the standard for managing moderate to 51 severely bothersome symptoms associated with menopause but this drug combination is now 52 controversial due to the increased risk of breast cancer and thromboembolism (Anderson et 53 al., 2004, Chlebowski et al., 2003, Rossouw et al., 2002). The combination of conjugated 54 estrogen (CE) with Bazedoxifene (BZA) is known as the tissue-selective estrogen complex 55 (TSEC). It was designed to minimize the undesirable effects of hormone therapy on breast 56 tissue yet allow the beneficial effects of estrogen on other estrogen-target tissues, thus 57 suppressing climacteric symptoms and preventing osteoporosis (Mirkin and Komm, 2013). 58 This drug combination was developed by Pfizer and has been marketed in the US for two 59 vears as Duavee[®] (CE, 0.45 mg / BZA, 20 mg). It has also been approved by the European 60 61 Medicines Agency (EMA) (Komm and Mirkin, 2013). The efficacy and safety of CE+BZA in postmenopausal women, and the impact of this drug combination on quality of life was 62 evaluated through a series of five pivotal phase 3 randomized, double-blinded, multicentered, 63 active and/or placebo-controlled studies, called the Selective estrogens, Menopause And 64 Response to Therapy (SMART) trials (Kagan et al., 2010, Mirkin and Komm, 2013, Pickar et 65 al., 2009, Pinkerton et al., 2009, Umland et al., 2016). From these trials, CE+BZA was found 66 to be associated with significant benefits such as a reduction in the frequency and severity of 67 vasomotor symptoms, the prevention of bone loss, improved sleep and better menopause-68 specific quality of life, whilst also providing a reasonable level of protection against 69 endometrial hyperplasia. Additionally, CE+BZA exhibited promising effects on breast tissue 70 since it did not increase mammographic breast density (Goldberg and Fidler, 2015, Lobo et 71 72 al., 2009, Pinkerton et al., 2014, Pinkerton et al., 2010, Pinkerton et al., 2009, Ronkin et al., 73 2005, Stovall et al., 2011). The SMART trials also suggested that CE+BZA treatment was 74 associated with similar rates of coronary heart disease, stroke, venous thromboembolism and 75 menorrhea as placebo-treated patients (Skouby et al., 2015), although definitive conclusions 76 cannot yet be made on these aspects due to the total number of women enrolled in these trials 77 and the trial durations.

The molecular mechanisms underlying TSEC action are far from fully understood. CE is a 78 mixture of different natural estrogens and BZA is one of a new generation of selective 79 estrogen receptor modulators (SERM) that demonstrate selective binding to the estrogen 80 receptors (ER) over other members of the nuclear receptors family (Alio Del Barrio et al., 81 2017). SERMs are thought to be ER agonists or antagonists depending on the tissue involved. 82 Contrary to the action of 17-β-estradiol (E2) or CE that allow ER to recruit coactivators, 83 leading to an enhanced transcription of target genes, SERM is reported to rather provoke the 84 85 mobilization of corepressors to the ERs (Shang and Brown, 2002). This differential recruitment of ER coregulators by estrogens versus SERMs can be attributed, at least in part, 86 to the different ER conformational changes induced by the binding of these ligands (Alio Del 87 Barrio et al., 2017). In addition, TSEC was shown to cause ER α degradation via the ubiquitin 88 proteasome system in the breast and uterus, which was at least in part responsible for the 89 suppression of ER α -mediated transcription (Han et al., 2016). However, this ER α modulation 90 appears to be cell- and tissue-specific since BZA treatment was able to exert an estrogen-91 mimetic action on bone (Palacios et al., 2015) and on the metabolism contributing to 92 beneficial glucidic and lipidic effects (Barrera et al., 2014, Kim et al., 2014). 93

Thus, the consequences of the co-administration of estrogens and SERM at the molecular, cellular and whole body levels are undoubtedly highly complex. Here, our goal was to explore the tissue-specific effects of BZA combined with CE *in vivo* in mice comparing in two major targets of estrogens, the uterus and the liver (Ahlbory-Dieker et al., 2009, Boverhof et al., 98 2004, Gao et al., 2008, Gordon et al., 2014, Handgraaf et al., 2013, Kim et al., 2014, 99 Kobayashi et al., 2013, Palierne et al., 2016, Pedram et al., 2013). Our results indicate that the 100 effects of BZA treatment varies according to the duration of treatment (acute *versus* chronic 101 administration) and the tissue, with the responses observed in the liver being dramatically 102 different from those observed in the uterus.

104 2. Materials and Methods

105 **2.1. Mice**

Female C57BL/6J mice were purchased from Charles River Laboratories. All procedures 106 107 were performed in accordance with the principles established by the National Institute of Medical Research and were approved by the local Ethical Committee of Animal Care. Mice 108 were anesthetized by intraperitoneal injection of ketamine (25 mg/kg) and xylazine (10 109 mg/kg) and ovariectomized at 4 weeks of age. To study the chronic effects of CE, BZA and 110 BZA+CE, 2 weeks after ovariectomy mice were implanted with subcutaneous osmotic 111 minipumps (Alzet; Alza, Palo Alto, CA) that released CE (3 mg/kg/day) or BZA (10 112 mg/kg/day) alone or in combination diluted in a solution of hydroxypropyl-β-cyclodextrin – 113 with a 0.63 degree of substitution - in HEPES buffer for a 3 week period. For acute treatment, 114 115 ovariectomized mice were orally administered with vehicle (PBS containing 0.5% methylcellulose, 2% Tween 80 and 5% DMSO), CE (3 or 10 mg/kg) or E2 (1 mg/kg) alone or 116 117 in combination with BZA (10 mg/kg). These dose have been chosen based on previous studies (Kim et al., 2014, Barrera et al., 2014, Della Torre et al., 2011, Fontana et al., 2014, Naqvi et 118 al., 2014, Oliva et al., 2013, Peano et al., 2009, Song et al., 2012) (Supplementary Table 1) 119 and in particular on those realized by Peano et al. in which uterus weight was used as final 120 endpoint to determine the minimal dose of CE (i.e 3 mg/kg/day) inducing uterine hypertrophy 121 and that of BZA (i.e 10 mg/kg/day) antagonizing this effect. 122

123

2.2. Histological analysis

Paraffin-embedded transverse sections (4 μ m) from formalin-fixed uterine specimens was stained as previously described (Abot et al., 2013) with anti–Ki-67 (RM-9106; Thermoscientific) and anti-ER α antibodies (MC-20, Santa Cruz Biotechnology, Santa Cruz, California). Sections were examined after numerization using a NanoZoomer Digital Pathology®. To examine the proliferative effects of each treatment, the ratio of Ki-67– positive epithelial cell/total cell number was evaluated from two microscopic fields ofmeasurement at x20 magnification for each uterine section.

131

2.3. Analysis of mRNA levels by qPCR

Tissues were homogenized using a Precellys tissue homogenizer (Bertin Technology, Cedex, 132 France), and total RNA from tissues was extracted using the TRIzol reagent (Invitrogen, 133 Carlsbad, CA). A total of 500 ng to 1 µg (depending on the tissue) was reverse transcribed for 134 10 minutes at 25°C and 2 hours at 37°C in a 20 µL final volume using the High Capacity 135 cDNA Reverse Transcriptase Kit (Applied Biosystems, Villebon sur Yvette, France). We 136 evaluated genes expression levels in liver by high throughput qPCR, using 6.5 ng cDNA from 137 each sample in 96.96 Dynamic Arrays analyzed in the microfluidic BioMark system 138 (Fluidigm Corporation, CA, USA). For gene expression in uterus, qPCR was performed using 139 SsoFast EvaGreen Supermix (Bio-Rad) on a StepOne instrument (Applied Biosystems). 140 141 Primers (Supplementary Table 2) were validated by testing PCR efficiency using standard curves (95% \leq efficiency \leq 105%). Gene expression was quantified using the comparative C_T 142 143 method. Genes' functional annotations were retrieved from different databases. Kegg and Reactome were obtained under the webgestalt platform 144 (http://www.webgestalt.org/option.php) and wikipathways directly from their website 145 (http://www.wikipathways.org/). Genes with no clear annotations were then manually curated 146 in the Biosystem database from the ncbi gene portal (https://www.ncbi.nlm.nih.gov/gene). 147 Genes involved in the regulation of metabolic pathway in at least one of these databases are 148 highlighted in yellow in the supplementary tables of results (Supplementary Tables 3 to 5). 149

150

2.4. Statistical analysis

151 Results are expressed as means \pm SEM. Statistical analyses were performed using graph pad.

152 1-way ANOVA was used to determine significance. * P<0.05, ** P<0.01, *** P<0.001.

153 3. **RESULTS**

3.1. Similar inhibitory action of BZA after acute treatment in the uterus and the liver.

To determine the relative effects of TSEC after acute treatment (4 hours), we first used 2 156 doses of CE (3 or 10 mg/kg) and the expression profile of selected genes known to be 157 regulated by E2 was evaluated in the uterus (Abot et al., 2013). We found that acute CE 158 treatment (3 mg/kg) induced a weak transcriptional response whereas a higher dose of CE (10 159 mg/kg) was able to induce gene expression changes to a similar extent as E2 (1 mg/kg) 160 (Figure 1A). The addition of BZA to E2 or to CE significantly attenuated these effects, while 161 BZA alone had no effect. Analysis of protein levels by Western blot indicated that BZA alone 162 or in combination with E2 or CE markedly down-regulated the amounts of ERa protein 163 (Figures 1B and 1C). In contrast, none of these treatments had a significant impact of on ERa 164 165 mRNA levels (Figure 1D).

Then, we analyzed the transcriptional response of liver to these acute treatments (Tables 3 and 166 167 4) analyzing a set of genes described to be regulated by estrogens or selective ER modulators exposure in the liver (Palierne et al., 2016, Boverhof et al., 2004, Gordon et al., 2014, Kim et 168 al., 2014, Pedram et al., 2013, Ahlbory-Dieker et al., 2009, Kobayashi et al., 2013). As 169 observed in the uterus, a dose of 3 mg/kg CE was less efficient than 10 mg/kg CE to induce 170 an optimal transcriptional response. Only around 40% of the genes induced by 10 mg/kg CE 171 or 1 mg/kg E2 were induced by 3 mg/kg CE (Figures 2A and 2B). Co-administration of BZA 172 strongly attenuated the transcriptional induction observed with E2 (Figure 2A and 173 Supplementary Table 3) or CE (Figure 2B and Supplementary Table 4). Acute BZA 174 treatment, both alone and when combined with estrogens, elicited a clear-cut down-regulation 175 of ERa at the protein level (Figures 3A and 3B), but not at the level of mRNA (Figure 3C). 176

177 Altogether, these results demonstrated that acute BZA treatment is able to exert similar 178 antagonistic action on the transcriptional modulations induced by E2 or CE in both uterus and 179 liver. Concomitantly, we observed reduced amounts of ER α protein in response to BZA in 180 these two tissues, an effect that occurred in a post-transcriptional manner as no differences in 181 ER α mRNA expression were observed following drug treatment.

182 3.2. Chronic BZA treatment exerts inhibitory action on uterus and stimulatory effect 183 on liver.

To determine the relative effects of TSEC after a chronic treatment of the animals, 4-week-old 184 ovariectomized female mice were treated with placebo, BZA (10 mg/kg/day), CE (3 185 186 mg/kg/day) or CE+BZA for 3 weeks, as previously described (Barrera et al., 2014, Della 187 Torre et al., 2011, Fontana et al., 2014, Kim et al., 2014, Naqvi et al., 2014, Oliva et al., 2013, Peano et al., 2009, Song et al., 2012) (Supplementary Table 1). Analysis of the uterine wet 188 weight confirmed that BZA antagonized the uterotrophic effect of CE (Figure 4A). 189 Accordingly, epithelial proliferation was significantly decreased in CE+BZA-treated mice 190 compared to CE-treated mice, as indicated by the immunohistochemical detection of the Ki-191 67 antigen (Figures 4B and 4C). After chronic exposure, large changes in uterine cellular 192 populations induced by CE treatment did not allow for a relevant comparison of protein 193 expression in tissue homogenates by Western blotting. Thus, ERa protein levels were 194 evaluated by immunohistochemistry (Figure 4D) which is essentially qualitative rather than 195 quantitative, and no obvious effect of BZA or CE+BZA on ERa abundance was apparent. 196 197 Altogether, the analysis of different parameters including uterine weight and epithelial proliferation clearly shows that BZA antagonizes the action of CE and E2 in the uterus. 198

No difference in body weight was observed between ovariectomized untreated mice (mean =
22.4 ± 2.1 g, n = 20), CE-treated mice (23.8 ± 0.5 g, n = 16), BZA-treated mice (21.8 ± 1.6 g,

n = 23) and CE+BZA-treated mice (21.4 ± 1.2 g, n = 22), showing that CE, BZA or CE+BZA 201 administrated subcutaneously for 3 weeks had no detectable impact on weight gain. Although 202 some genes were found to be regulated by either CE or BZA, the majority of the genes 203 204 studied were regulated by both CE and BZA (Figure 5 and Supplementary Table 5). Overall, chronic BZA and CE+BZA elicited agonistic effects similar to those of CE alone (Figure 5). 205 For example, whereas BZA antagonizes CE-induced transcriptional activation of gene such as 206 p21, Trim2, Psen2, Pgep1 or Inf2 after acute exposure (Supplementary Table 4), these genes 207 208 are induced by CE+BZA treatment after chronic exposure (Supplementary Table 5A). Genes described to be involved in the regulation of metabolic pathways do not correspond to a 209 specific regulatory profile in response to estrogens or BZA and are found in all the analyzed 210 cases (i,e regulated by estrogens only, BZA only or after combination of BZA + CE) 211 (Supplementary Table 5). In addition, chronic CE administration increased ERa protein and 212 mRNA abundance in the liver, whereas BZA alone or CE+BZA had no effect compared to 213 vehicle (Figures 6). Altogether, these data highlight a new aspect of the action of BZA on 214 liver tissue, where it can have antagonistic effects after acute treatment and agonistic effects 215 after chronic exposure. 216

217

218 4. **DISCUSSION**

The approval of Duavee[®] CE (0.45mg)/BZA(20mg) was based on Selective Estrogen, Menopause, and Response to Therapy (SMART) trials that aimed to evaluate CE/BZA's safety and efficacy in the management of moderate-to-severe vasomotor symptoms, bone mineral density, endometrial hyperplasia, moderate-to-severe vulvar/vaginal atrophy, and overall safety (Kagan et al., 2010, Mirkin and Komm, 2013, Pickar et al., 2009, Pinkerton et al., 2009, Umland et al., 2016). In parallel, preclinical studies in animal models reported beneficial effect on metabolic parameters (Barrera et al., 2014, Kim et al., 2014) and have

shown that, when combined with CE, BZA attenuates CE-induced uterine and mammary 226 gland cell proliferation (Kim et al., 2014, Barrera et al., 2014, Peano et al., 2009, Song et al., 227 2012). However, assessing the relative effects of estrogens or SERMS in vivo in rodents is 228 229 complicated by the fact that contrary to human, mice do not express the sex hormone binding globulin (SHBG) which modulates the bioactivity of sex steroids by limiting their diffusion 230 into target tissues. Based on the uterine weight as endpoint, dose response study determinates 231 CE (3mg/kg/day) and BZA (10 mg/kg/day) as reference doses (minimum fully effective 232 agonist and antagonist doses respectively) for combination studies with SERMS (Peano et al., 233 2009). Our results confirm that BZA (10 mg) antagonizes CE (3 mg) on uterus weight and 234 235 proliferative response after chronic treatment in uterus and also show that BZA inhibits the CE-mediated transcriptional gene regulations (10 mg) after acute treatment extending this 236 particular mechanism of action of BZA on sex targets. Furthermore, in cellular models of 237 breast cancer, BZA was shown to function as a pure ERa antagonist and effectively inhibited 238 the growth of both tamoxifen-sensitive and tamoxifen-resistant breast tumor xenografts 239 (Wardell et al., 2013). The antiestrogens that are currently available fall into two general 240 classes, acting as selective estrogen receptor modulators (SERMs) and/or selective estrogen 241 242 receptor down-regulators (SERD). We found that, after acute treatment, BZA led to a decrease in ER α protein levels in both uterus and liver without impacting ER α mRNA levels. 243 Indeed, BZA has been described to induce a unique conformational change in ER α that results 244 in its proteosomal degradation, although this property was shown to be dispensable for its 245 antagonistic activity (Wardell et al., 2013). ERa immunodetection generated similar signals in 246 247 tissues from untreated, CE-, BZA- and CE+BZA-treated ovariectomized mice, suggesting that BZA behaves as a SERM rather than a SERD after chronic treatment. Interestingly, a very 248 249 specific profile of BZA was previously reported in biochemical and cell-based assays, as its combination with CE displayed different properties from those observed following the 250

combination of CE with other SERMs (Berrodin et al., 2009, Chang et al., 2010, Wardell et 251 al., 2012). Indeed, in vitro, whereas raloxifene and lasofoxifene completely inhibited the CE-252 mediated recruitment of all cofactor peptides by ER, BZA inhibited the CE-mediated 253 254 recruitment of only some of the evaluated peptides. Furthermore, in MCF-7 breast cancer cells, the combination of BZA with CE did not totally abrogate the transcriptional response of 255 a subset of CE-responsive genes which were, in contrast, completely antagonized by 256 raloxifene and lasofoxifene. Interestingly, the CE-regulated genes antagonized by all three 257 258 SERMs were involved in cell cycle regulation and cell-to-cell signaling (Berrodin et al., 2009, Chang et al., 2010). Subsequent studies of differential gene regulation by TSEC, estrogen or 259 260 the SERM alone highlighted the importance of the promoter context on the activity of these ER ligands (Wardell et al., 2012). However, these studies only questioned the short term 261 action of CE, BZA or TSEC using in vitro models. 262

263 Here, we used an *in vivo* model to show that BZA acts as an antagonist after acute treatment in the liver, but displays agonistic effects in the liver following chronic exposure. This 264 265 underlines the importance of the time- and tissue-specific action of BZA, which induces a 266 very similar action to that of CE or E2 following chronic treatment. Our transcriptional analyses also revealed a group of genes for which CE and BZA cooperatively regulated their 267 expression under chronic treatment. This means that the effect of CE+BZA cannot be simply 268 269 extrapolated from its short-term action and suggests that additional pathways facilitating combined agonist/antagonist action must exist. It was previously proposed that, in addition to 270 the competitive inhibition of BZA on CE, BZA and CE could also cooperatively activate gene 271 transcription with one ER monomer bound to CE and the other one occupied by BZA (Liu et 272 al., 2013). High-throughput sequencing of chromatin immunoprecipitation experiments 273 274 (ChIP-seq) performed on livers from mice subjected to acute treatment with E2 led us to recently show that the ER α cistrome (all of the ER binding sites in the genome) in mouse 275

liver has unique properties (Palierne et al., 2016). In order to acquire novel insights into the 276 277 specific mechanisms involved in the shift of action of BZA from antagonism to agonism, it would therefore be of major interest to compare the liver cistrome of ER α in response to acute 278 279 and chronic treatment with CE, BZA and CE+BZA. These experiments would question: i) whether ERa bound to CE or BZA targets different/specific chromatin regions, which would 280 281 explain the difference in gene regulation; *ii*) whether these cistromes vary according to the 282 acute or chronic administration of these hormones, in relation to differences in gene regulation; and *iii*) whether the specific properties of the E2-bound ERa cistrome are 283 284 conserved using these treatments. Interestingly, the cistrome of ERa bound to 4hydroxytamoxifen (OHT), another SERM, has been determined in MCF-7 cells and was 285 found to be comparable with that of E2-bound ERa (with 60-75% similarity) (Hurtado et al., 286 287 2011), although this SERM had no agonist activity on gene transcription. It was therefore proposed that, in these cells, OHT-bound ER α is able to target the same sequences on 288 chromatin (although with less efficiency than E2-bound $ER\alpha$) but as an inactive complex or 289 repressive form since OHT-bound ERa is able to recruit corepressors (Shang and Brown, 290 2002). Hence, the shift of the action of BZA from antagonism to agonism may have a limited 291 292 impact on the cistrome of ER α and instead reflect a corepressor to coactivator exchange. The 293 mass spectrometry analysis of proteins associated with ER on chromatin (ChIP-MS) when bound to these different ligands (Mohammed et al., 2013) would also generate important 294 295 knowledge to further decipher the mechanisms of action of TSEC.

Finally, Mauvais-Jarvis and coworkers recently reported that BZA and TSEC exhibits
estrogen-mimetic action with regard to glucose and energy homeostasis (Kim et al., 2014).
Interestingly, they reported that lipid oxidation and increased energy expenditure promoted by
CE, BZA and TSEC involved different pathways as revealed by different target gene pattern
in the liver for these ERα ligands. Thus, the shift reported here from antagonist to agonist

activities of BZA in the liver, and potentially in other tissues, have undoubtedly contributed to
the metabolic benefit of BZA alone or in TSEC that mimic those provided by estrogens in
female mice on high fat diet.

In conclusion, these observations provide novel insights into the mechanisms underlying BZA action which can not only act as an agonist or antagonist in a tissue-specific fashion, but can also, in a given tissue such as the liver, be acutely antagonistic and chronically agonistic. This could help to explain, among other reasons, the reported beneficial effects of TSEC such as its favorable effects on glucidic and lipidic metabolism (Barrera et al., 2014, Kim et al., 2014). 309 Declaration of interest: JFA received research funding from Pfizer, Inc. Others authors
310 declare no competing financial interest.

Funding: This study was financially supported by Pfizer Pharmaceuticals, Inc., Pfizer IIR WI191216. This work was also supported by the INSERM, the Université de Toulouse III, the Faculté de Médecine Toulouse-Rangueil, the Institut Universitaire de France, the Fondation pour la Recherche Médicale, the Fondation de France, CNRS, the University of Rennes1 and La Ligue Contre le Cancer.

316 Acknowledgments

The staff of the animal facilities and of the "Plateforme d'experimentation fonctionnelle" are acknowledged for their skillful technical assistance. We also thank M.J. Fouque and G. Carcasses as well as J.J. Maoret and F. Martins for their excellent technical assistance and contribution to the qRT-PCR experiments carried out at the GeT-TQ Genopole Toulouse Facility. L. Fontaine and I. Raymond Letron at EVNT are also acknowledged for their help with the immunohistochemistry experiments.

324 **REFERENCES**

- Abot, A., Fontaine, C., Raymond-Letron, I., Flouriot, G., Adlanmerini, M., Buscato, M., Otto, C.,
 Berges, H., Laurell, H., Gourdy, P., Lenfant, F. and Arnal, J.F., 2013. The AF-1 activation
 function of estrogen receptor alpha is necessary and sufficient for uterine epithelial cell
 proliferation in vivo, Endocrinology. 154, 2222-33.
- Ahlbory-Dieker, D.L., Stride, B.D., Leder, G., Schkoldow, J., Trolenberg, S., Seidel, H., Otto, C.,
 Sommer, A., Parker, M.G., Schutz, G. and Wintermantel, T.M., 2009. DNA binding by estrogen
 receptor-alpha is essential for the transcriptional response to estrogen in the liver and the
 uterus, Mol Endocrinol. 23, 1544-55.
- Alio Del Barrio, J.L., El Zarif, M., de Miguel, M.P., Azaar, A., Makdissy, N., Harb, W., El Achkar, I.,
 Arnalich, F. and Alio, J.L., 2017. Cellular Therapy With Human Autologous Adipose-Derived
 Adult Stem Cells for Advanced Keratoconus, Cornea.
- 336 Anderson, G.L., Limacher, M., Assaf, A.R., Bassford, T., Beresford, S.A., Black, H., Bonds, D., Brunner, 337 R., Brzyski, R., Caan, B., Chlebowski, R., Curb, D., Gass, M., Hays, J., Heiss, G., Hendrix, S., 338 Howard, B.V., Hsia, J., Hubbell, A., Jackson, R., Johnson, K.C., Judd, H., Kotchen, J.M., Kuller, L., LaCroix, A.Z., Lane, D., Langer, R.D., Lasser, N., Lewis, C.E., Manson, J., Margolis, K., 339 Ockene, J., O'Sullivan, M.J., Phillips, L., Prentice, R.L., Ritenbaugh, C., Robbins, J., Rossouw, 340 J.E., Sarto, G., Stefanick, M.L., Van Horn, L., Wactawski-Wende, J., Wallace, R. and 341 342 Wassertheil-Smoller, S., 2004. Effects of conjugated equine estrogen in postmenopausal 343 women with hysterectomy: the Women's Health Initiative randomized controlled trial, Jama. 344 291, 1701-12.
- Barrera, J., Chambliss, K.L., Ahmed, M., Tanigaki, K., Thompson, B., McDonald, J.G., Mineo, C. and
 Shaul, P.W., 2014. Bazedoxifene and conjugated estrogen prevent diet-induced obesity,
 hepatic steatosis, and type 2 diabetes in mice without impacting the reproductive tract, Am J
 Physiol Endocrinol Metab. 307, E345-54.
- Berrodin, T.J., Chang, K.C., Komm, B.S., Freedman, L.P. and Nagpal, S., 2009. Differential biochemical
 and cellular actions of Premarin estrogens: distinct pharmacology of bazedoxifene conjugated estrogens combination, Mol Endocrinol. 23, 74-85.
- Boverhof, D.R., Fertuck, K.C., Burgoon, L.D., Eckel, J.E., Gennings, C. and Zacharewski, T.R., 2004.
 Temporal- and dose-dependent hepatic gene expression changes in immature ovariectomized mice following exposure to ethynyl estradiol, Carcinogenesis. 25, 1277-1291.
- Chang, K.C., Wang, Y., Bodine, P.V., Nagpal, S. and Komm, B.S., 2010. Gene expression profiling
 studies of three SERMs and their conjugated estrogen combinations in human breast cancer
 cells: insights into the unique antagonistic effects of bazedoxifene on conjugated estrogens, J
 Steroid Biochem Mol Biol. 118, 117-24.
- Chlebowski, R.T., Hendrix, S.L., Langer, R.D., Stefanick, M.L., Gass, M., Lane, D., Rodabough, R.J.,
 Gilligan, M.A., Cyr, M.G., Thomson, C.A., Khandekar, J., Petrovitch, H. and McTiernan, A.,
 2003. Influence of estrogen plus progestin on breast cancer and mammography in healthy
 postmenopausal women: the Women's Health Initiative Randomized Trial, JAMA. 289, 324353.
- Della Torre, S., Biserni, A., Rando, G., Monteleone, G., Ciana, P., Komm, B. and Maggi, A., 2011. The
 conundrum of estrogen receptor oscillatory activity in the search for an appropriate
 hormone replacement therapy, Endocrinology. 152, 2256-65.
- Fontana, R., Della Torre, S., Meda, C., Longo, A., Eva, C. and Maggi, A.C., 2014. Estrogen replacement
 therapy regulation of energy metabolism in female mouse hypothalamus, Endocrinology.
 155, 2213-21.
- Gao, H., Falt, S., Sandelin, A., Gustafsson, J.A. and Dahlman-Wright, K., 2008. Genome-wide
 identification of estrogen receptor alpha-binding sites in mouse liver, Mol Endocrinol. 22, 10 22.

- Goldberg, T. and Fidler, B., 2015. Conjugated Estrogens/Bazedoxifene (Duavee): A Novel Agent for
 the Treatment of Moderate-to-Severe Vasomotor Symptoms Associated With Menopause
 And the Prevention of Postmenopausal Osteoporosis, P T. 40, 178-82.
- Gordon, F.K., Vallaster, C.S., Westerling, T., Iyer, L.K., Brown, M. and Schnitzler, G.R., 2014. Research
 resource: Aorta- and liver-specific ERalpha-binding patterns and gene regulation by estrogen,
 Mol Endocrinol. 28, 1337-51.
- Han, S.J., Begum, K., Foulds, C.E., Hamilton, R.A., Bailey, S., Malovannaya, A., Chan, D., Qin, J. and
 O'Malley, B.W., 2016. The Dual Estrogen Receptor alpha Inhibitory Effects of the Tissue Selective Estrogen Complex for Endometrial and Breast Safety, Mol Pharmacol. 89, 14-26.
- Handgraaf, S., Riant, E., Fabre, A., Waget, A., Burcelin, R., Liere, P., Krust, A., Chambon, P., Arnal, J.F.
 and Gourdy, P., 2013. Prevention of obesity and insulin resistance by estrogens requires
 ERalpha activation function-2 (ERalphaAF-2), whereas ERalphaAF-1 is dispensable, Diabetes.
 62, 4098-108.
- Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D. and Carroll, J.S., 2011. FOXA1 is a key
 determinant of estrogen receptor function and endocrine response, Nat Genet. 43, 27-33.
- Kagan, R., Williams, R.S., Pan, K., Mirkin, S. and Pickar, J.H., 2010. A randomized, placebo- and active controlled trial of bazedoxifene/conjugated estrogens for treatment of moderate to severe
 vulvar/vaginal atrophy in postmenopausal women, Menopause. 17, 281-9.
- Kim, J.H., Meyers, M.S., Khuder, S.S., Abdallah, S.L., Muturi, H.T., Russo, L., Tate, C.R., Hevener, A.L.,
 Najjar, S.M., Leloup, C. and Mauvais-Jarvis, F., 2014. Tissue-selective estrogen complexes
 with bazedoxifene prevent metabolic dysfunction in female mice, Mol Metab. 3, 177-90.
- Kobayashi, H., Yoshida, S., Sun, Y.J., Shirasawa, N. and Naito, A., 2013. Gastric estradiol-17beta (E2)
 and liver ERalpha correlate with serum E2 in the cholestatic male rat, J Endocrinol. 219, 39 49.
- Komm, B.S. and Mirkin, S., 2013. Evolution of the tissue selective estrogen complex (TSEC), J Cell
 Physiol. 228, 1423-7.
- Liu, S., Han, S.J. and Smith, C.L., 2013. Cooperative activation of gene expression by agonists and
 antagonists mediated by estrogen receptor heteroligand dimer complexes, Mol Pharmacol.
 83, 1066-77.
- Lobo, R.A., Pinkerton, J.V., Gass, M.L., Dorin, M.H., Ronkin, S., Pickar, J.H. and Constantine, G., 2009.
 Evaluation of bazedoxifene/conjugated estrogens for the treatment of menopausal
 symptoms and effects on metabolic parameters and overall safety profile, Fertil Steril. 92,
 1025-38.
- 406 Mirkin, S. and Komm, B.S., 2013. Tissue-selective estrogen complexes for postmenopausal women,
 407 Maturitas. 76, 213-20.
- Mohammed, H., D'Santos, C., Serandour, A.A., Ali, H.R., Brown, G.D., Atkins, A., Rueda, O.M., Holmes,
 K.A., Theodorou, V., Robinson, J.L., Zwart, W., Saadi, A., Ross-Innes, C.S., Chin, S.F., Menon,
 S., Stingl, J., Palmieri, C., Caldas, C. and Carroll, J.S., 2013. Endogenous purification reveals
 GREB1 as a key estrogen receptor regulatory factor, Cell Rep. 3, 342-9.
- Naqvi, H., Sakr, S., Presti, T., Krikun, G., Komm, B. and Taylor, H.S., 2014. Treatment with
 bazedoxifene and conjugated estrogens results in regression of endometriosis in a murine
 model, Biol Reprod. 90, 121.
- Oliva, P., Roncoroni, C., Radaelli, E., Brunialti, E., Rizzi, N., De Maglie, M., Scanziani, E., Piaggio, G.,
 Ciana, P., Komm, B. and Maggi, A., 2013. Global profiling of TSEC proliferative potential by
 the use of a reporter mouse for proliferation, Reprod Sci. 20, 119-28.
- Palacios, S., Silverman, S.L., de Villiers, T.J., Levine, A.B., Goemaere, S., Brown, J.P., De Cicco Nardone,
 F., Williams, R., Hines, T.L., Mirkin, S., Chines, A.A. and Bazedoxifene Study, G., 2015. A 7-year
 randomized, placebo-controlled trial assessing the long-term efficacy and safety of
 bazedoxifene in postmenopausal women with osteoporosis: effects on bone density and
 fracture, Menopause. 22, 806-13.

- Palierne, G., Fabre, A., Solinhac, R., Le Peron, C., Avner, S., Lenfant, F., Fontaine, C., Salbert, G.,
 Flouriot, G., Arnal, J.F. and Metivier, R., 2016. Changes in Gene Expression and Estrogen
 Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment, Mol Endocrinol. 30, 709-32.
- Peano, B.J., Crabtree, J.S., Komm, B.S., Winneker, R.C. and Harris, H.A., 2009. Effects of various selective estrogen receptor modulators with or without conjugated estrogens on mouse mammary gland, Endocrinology. 150, 1897-903.
- Pedram, A., Razandi, M., O'Mahony, F., Harvey, H., Harvey, B.J. and Levin, E.R., 2013. Estrogen
 reduces lipid content in the liver exclusively from membrane receptor signaling, Sci Signal. 6,
 ra36.
- Pickar, J.H., Yeh, I.T., Bachmann, G. and Speroff, L., 2009. Endometrial effects of a tissue selective
 estrogen complex containing bazedoxifene/conjugated estrogens as a menopausal therapy,
 Fertil Steril. 92, 1018-24.
- Pinkerton, J.V., Pan, K., Abraham, L., Racketa, J., Ryan, K.A., Chines, A.A. and Mirkin, S., 2014. Sleep
 parameters and health-related quality of life with bazedoxifene/conjugated estrogens: a
 randomized trial, Menopause. 21, 252-9.
- Pinkerton, J.V., Harvey, J.A., Lindsay, R., Pan, K., Chines, A.A., Mirkin, S., Archer, D.F. and
 Investigators, S.-. 2014. Effects of bazedoxifene/conjugated estrogens on the endometrium
 and bone: a randomized trial, J Clin Endocrinol Metab. 99, E189-98.
- Pinkerton, J.V. and Stovall, D.W., 2010. Bazedoxifene when paired with conjugated estrogens is a
 new paradigm for treatment of postmenopausal women, Expert Opin Investig Drugs. 19,
 1613-21.
- Pinkerton, J.V., Utian, W.H., Constantine, G.D., Olivier, S. and Pickar, J.H., 2009. Relief of vasomotor
 symptoms with the tissue-selective estrogen complex containing bazedoxifene/conjugated
 estrogens: a randomized, controlled trial, Menopause. 16, 1116-24.
- Ronkin, S., Northington, R., Baracat, E., Nunes, M.G., Archer, D.F., Constantine, G. and Pickar, J.H.,
 2005. Endometrial effects of bazedoxifene acetate, a novel selective estrogen receptor
 modulator, in postmenopausal women, Obstet Gynecol. 105, 1397-404.
- Rossouw, J.E., Anderson, G.L., Prentice, R.L., LaCroix, A.Z., Kooperberg, C., Stefanick, M.L., Jackson,
 R.D., Beresford, S.A., Howard, B.V., Johnson, K.C., Kotchen, J.M. and Ockene, J., 2002. Risks
 and benefits of estrogen plus progestin in healthy postmenopausal women: principal results
 From the Women's Health Initiative randomized controlled trial, Jama. 288, 321-33.
- Shang, Y. and Brown, M., 2002. Molecular determinants for the tissue specificity of SERMs, Science.
 295, 2465-8.
- Skouby, S.O., Pan, K., Thompson, J.R., Komm, B.S. and Mirkin, S., 2015. Effects of conjugated
 estrogens/bazedoxifene on lipid and coagulation variables: a randomized placebo- and
 active-controlled trial, Menopause. 22, 351-60.
- Song, Y., Santen, R.J., Wang, J.P. and Yue, W., 2012. Effects of the conjugated equine
 estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) on mammary gland and
 breast cancer in mice, Endocrinology. 153, 5706-15.
- Stovall, D.W., Tanner-Kurtz, K. and Pinkerton, J.V., 2011. Tissue-selective estrogen complex
 bazedoxifene and conjugated estrogens for the treatment of menopausal vasomotor
 symptoms, Drugs. 71, 1649-57.
- 465 Umland, E.M., Karel, L. and Santoro, N., 2016. Bazedoxifene and Conjugated Equine Estrogen: A
 466 Combination Product for the Management of Vasomotor Symptoms and Osteoporosis
 467 Prevention Associated with Menopause, Pharmacotherapy. 36, 548-61.
- Wardell, S.E., Nelson, E.R., Chao, C.A. and McDonnell, D.P., 2013. Bazedoxifene exhibits
 antiestrogenic activity in animal models of tamoxifen-resistant breast cancer: implications for
 treatment of advanced disease, Clin Cancer Res. 19, 2420-31.
- Wardell, S.E., Kazmin, D. and McDonnell, D.P., 2012. Research resource: Transcriptional profiling in a
 cellular model of breast cancer reveals functional and mechanistic differences between
 clinically relevant SERM and between SERM/estrogen complexes, Mol Endocrinol. 26, 1235474

Figure 1: Effect of acute administration of E2 and CE alone or in combination with BZA on uterus

Four-week-old ovariectomized mice received an oral administration of vehicle (PBS 482 containing 0.5% methylcellulose, 2% Tween 80 and 5% DMSO), 17-B estradiol (E2, 1 483 mg/kg), conjugated equine estrogen (CE, 3 or 10 mg/kg) alone or in combination with 484 Bazedoxifene (BZA, 10 mg/kg). (A) Quantification of mRNA levels of the indicated genes, 485 (B) representativeWestern blot and (C) quantification of ERa protein levels and (D) 486 quantification of ERa mRNA levels in the uteri from these mice. Results are expressed as 487 488 means ± SEM. To test the respective roles of each treatment, one-way ANOVA and a Bonferroni's multiple comparison test were performed. 489

492 Figure 2: Effect of acute administration of E2 and CE alone or in combination with BZA

on transcriptional regulation in the liver

Four-week-old ovariectomized mice received an oral administration of vehicle (PBS 494 containing 0.5% methylcellulose, 2% Tween 80 and 5% DMSO), 17-β estradiol (E2, 1 495 mg/kg), conjugated equine estrogen (CE, 3 or 10 mg/kg) alone or in combination with 496 497 Bazedoxifene (BZA, 10 mg/kg). (A) Data obtained from 96.96 Dynamic Arrays were used to generate a cluster diagram of the significant gene expression changes. Each vertical line 498 represents a single gene. Each horizontal line represents an individual sample. (B) Pie chart 499 displaying the distribution of significantly induced genes according to the value of the fold 500 change. Genes that were up-regulated at least 1.5 fold relative to placebo are in red and the 501 502 color intensity indicates the degree of variation in expression. Genes whose expression was 503 not affected by treatments appear in black.

Four-week-old ovariectomized mice received an oral administration of vehicle (PBS containing 0.5% methylcellulose, 2% Tween 80 and 5% DMSO), 17- β estradiol (E2, 1 mg/kg), conjugated equine estrogen (CE, 10 mg/kg) alone or in combination with Bazedoxifene (BZA, 10 mg/kg). (A) Representative Western blots of ER α protein levels and (**B**) quantification of ER α protein expression. (**C**) Quantification of ER α mRNA levels by

- 513 qPCR. Results are expressed as means \pm SEM. To compare the effects of each treatment, one-
- 514 way ANOVA and a Bonferroni's multiple comparison test were performed (treatment *versus*
- 515 placebo: *** p<0.001).

D

Figure 4: Effect of chronic administration of E2 and CE alone or in combination with BZA on uterus

Four-week-old ovariectomized C57Bl/6J mice were treated with BZA (10 mg/kg/day), CE (3 mg/kg/day) alone or in combination (BZA+CE) during 3 weeks. (A) Uterus weight, (B) representative Ki-67 immunostaining picture (C) and quantification in transverse uterus sections (scale bar = 800 μ m). Results are expressed as means ± SEM. To test the respective roles of each treatment, one-way ANOVA and a Bonferroni's multiple comparison test were performed. (D) Detection of ER α by immunochemistry in transverse uterus sections (scale bar =400 μ m).

527 Figure 5: Effect Effect of chronic administration of E2 and CE alone or in combination

528 with BZA on transcriptional regulation in the liver

Four-week-old ovariectomized C57Bl/6J mice were chronically treated (3 weeks) with BZA
(10 mg/kg/day), CE (3 mg/kg/day) alone or in combination (BZA+CE). Gene regulation was
then analyzed using extracted liver RNA by 96.96 Dynamic Arrays. (A) Data obtained from
96.96 Dynamic Arrays were used to generate a cluster diagram of the significant gene

expression changes. Each vertical line represents a single gene. Each horizontal line
represents an individual sample. (B) Pie chart displaying the distribution of significantly
induced genes according to the value of the fold change. Genes that were up-regulated at least
1.5 fold relative to placebo are in red, whereas down-regulated genes are in green. The color
intensity indicates the degree of variation in expression. Genes whose expression was not
affected by treatments appear in black.

541 Figure 6: Effect of chronic administration of E2 and CE alone or in combination with

BZA

CE + BZA

CE

0.0

ovx

543	Four-week-old ovariectomized C57Bl/6J mice were chronically treated (3 weeks) with BZA
544	(10 mg/kg/day), CE (3 mg/kg/day) alone or in combination (BZA+CE). (A) Representative
545	Western blots of ER α protein levels and (B) quantification of ER α protein expression. (C)
546	Quantification of ER α mRNA levels by qPCR. Results are expressed as means \pm SEM. To
547	compare the effects of each treatment, one-way ANOVA and a Bonferroni's multiple
548	comparison test were performed (treatment versus placebo: *** p<0.001).

SUPPLEMENTARY TABLE LEGEND

Supplementary Table 1: Summary of BZA and CE doses used to study TSEC effect *in vivo* in mice with corresponding references

- Kim JH, Meyers MS, Khuder SS, Abdallah SL, Muturi HT, Russo L, Tate CR, Hevener AL, Najjar SM, Leloup C, Mauvais-Jarvis F. Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. *Mol Metab*. 2014;3:177-190
- Barrera J, Chambliss KL, Ahmed M, Tanigaki K, Thompson B, McDonald JG, Mineo C, Shaul PW. Bazedoxifene and conjugated estrogen prevent dietinduced obesity, hepatic steatosis, and type 2 diabetes in mice without impacting the reproductive tract. American journal of physiology. Endocrinology and metabolism. 2014;307:E345-354
- Peano BJ, Crabtree JS, Komm BS, Winneker RC, Harris HA. Effects of various selective estrogen receptor modulators with or without conjugated estrogens on mouse mammary gland. *Endocrinology*. 2009;150:1897-1903
- Song Y, Santen RJ, Wang JP, Yue W. Effects of the conjugated equine estrogen/bazedoxifene tissue-selective estrogen complex (tsec) on mammary gland and breast cancer in mice. *Endocrinology*. 2012;153:5706-5715
- Della Torre S, Biserni A, Rando G, Monteleone G, Ciana P, Komm B, Maggi A. The conundrum of estrogen receptor oscillatory activity in the search for an appropriate hormone replacement therapy. *Endocrinology*. 2011;152:2256-2265
- Oliva P, Roncoroni C, Radaelli E, Brunialti E, Rizzi N, De Maglie M, Scanziani E, Piaggio G, Ciana P, Komm B, Maggi A. Global profiling of tsec proliferative potential by the use of a reporter mouse for proliferation. *Reproductive sciences*. 2013;20:119-128
- Naqvi H, Sakr S, Presti T, Krikun G, Komm B, Taylor HS. Treatment with bazedoxifene and conjugated estrogens results in regression of endometriosis in a murine model. *Biology of reproduction*. 2014;90:121
- Fontana R, Della Torre S, Meda C, Longo A, Eva C, Maggi AC. Estrogen replacement therapy regulation of energy metabolism in female mouse hypothalamus. *Endocrinology*. 2014;155:2213-2221

Supplementary Table 2 : List of specific primers used in the study

Supplementary Table 3: Effect of the acute administration of E2 and BZA alone or in combination on liver mRNA levels. Four-week-old ovariectomized mice received an oral administration of vehicle (PBS containing 0.5% methylcellulose 2% Tween 80 and 5% DMSO), E2 (10 mg/kg) and/or BZA (2 or 10 mg/kg). Gene regulation was then analyzed using extracted liver RNA by 96.96 Dynamic Arrays. Significant fold gene regulation (>1.5 fold) are red highlighted. Gene involved in the regulation of metabolic pathway are yellow highlighted. *nd*= not determined

- Palierne G, Fabre A, Solinhac R, Le Peron C, Avner S, Lenfant F, Fontaine C, Salbert G, Flouriot G, Arnal JF, Metivier R. Changes in gene expression and estrogen receptor cistrome in mouse liver upon acute e2 treatment. *Molecular endocrinology*. 2016;30:709-732
- Gao H, Falt S, Sandelin A, Gustafsson JA, Dahlman-Wright K. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver. Molecular endocrinology. 2008;22:10-22
- Boverhof DR, Fertuck KC, Burgoon LD, Eckel JE, Gennings C, Zacharewski TR. Temporal- and dose-dependent hepatic gene expression changes in immature
 ovariectomized mice following exposure to ethynyl estradiol. *Carcinogenesis*. 2004;25:1277-1291Ahlbory-Dieker DL, Stride BD, Leder G, Schkoldow J,
 Trolenberg S, Seidel H, Otto C, Sommer A, Parker MG, Schutz G, Wintermantel TM. DNA binding by estrogen receptor-alpha is essential for the
 transcriptional response to estrogen in the liver and the uterus. *Molecular endocrinology*. 2009;23:1544-1555
- Ahlbory-Dieker DL, Stride BD, Leder G, Schkoldow J, Trolenberg S, Seidel H, Otto C, Sommer A, Parker MG, Schutz G, Wintermantel TM. DNA binding by
 estrogen receptor-alpha is essential for the transcriptional response to estrogen in the liver and the uterus. *Molecular endocrinology*. 2009;23:1544-1555

Supplementary Table 4: Effect of the acute administration of CE (10 mg/kg) and BZA (10mg/kg) alone or in combination on liver mRNA levels.

Four-week-old ovariectomized mice received an oral administration of vehicle (PBS containing 0.5% methylcellulose 2% Tween 80 and 5% DMSO), CE (10 mg/kg) and/or BZA (10 mg/kg). Gene regulation was then analyzed using extracted liver RNA by 96.96 Dynamic Arrays. Significant fold gene regulation (>1.5 fold) are red highlighted. Genes involved in the regulation of metabolic pathway are yellow highlighted. nd = not determined

- Palierne G, Fabre A, Solinhac R, Le Peron C, Avner S, Lenfant F, Fontaine C, Salbert G, Flouriot G, Arnal JF, Metivier R. Changes in gene expression and estrogen receptor cistrome in mouse liver upon acute e2 treatment. *Molecular endocrinology*. 2016;30:709-732
- Boverhof DR, Fertuck KC, Burgoon LD, Eckel JE, Gennings C, Zacharewski TR. Temporal- and dose-dependent hepatic gene expression changes in immature ovariectomized mice following exposure to ethynyl estradiol. *Carcinogenesis*. 2004;25:1277-1291Ahlbory-Dieker DL, Stride BD, Leder G, Schkoldow J, Trolenberg S, Seidel H, Otto C, Sommer A, Parker MG, Schutz G, Wintermantel TM. DNA binding by estrogen receptor-alpha is essential for the transcriptional response to estrogen in the liver and the uterus. *Molecular endocrinology*. 2009;23:1544-1555
- Ahlbory-Dieker DL, Stride BD, Leder G, Schkoldow J, Trolenberg S, Seidel H, Otto C, Sommer A, Parker MG, Schutz G, Wintermantel TM. DNA binding by estrogen receptor-alpha is essential for the transcriptional response to estrogen in the liver and the uterus. *Molecular endocrinology*. 2009;23:1544-1555

Supplementary Table 5: Effect of chronic administration of CE (10 mg/kg) and BZA (10mg/kg) alone or in combination on liver mRNA levels.

Four-week-old ovariectomized C57Bl/6J mice were chronically treated (3 weeks) with BZA (10 mg/kg/day), CE (3 mg/kg/day) alone or in combination (BZA+CE). Gene regulation was then analyzed using extracted liver RNA by 96.96 Dynamic Arrays. Significant fold gene regulation induced by the different treatments are reported in the Table. (A) Red highlight represents up-(>1.5 fold) regulated genes and (B) Green highlight down-(<0.65 fold) regulated genes. Genes involved in the regulation of metabolic pathway are yellow highlighted. nd = not determined

- Palierne G, Fabre A, Solinhac R, Le Peron C, Avner S, Lenfant F, Fontaine C, Salbert G, Flouriot G, Arnal JF, Metivier R. Changes in gene expression and estrogen receptor cistrome in mouse liver upon acute e2 treatment. *Molecular endocrinology*. 2016;30:709-732
- Boverhof DR, Fertuck KC, Burgoon LD, Eckel JE, Gennings C, Zacharewski TR. Temporal- and dose-dependent hepatic gene expression changes in immature ovariectomized mice following exposure to ethynyl estradiol. *Carcinogenesis*. 2004;25:1277-1291Ahlbory-Dieker DL, Stride BD, Leder G, Schkoldow J, Trolenberg S, Seidel H, Otto C, Sommer A, Parker MG, Schutz G, Wintermantel TM. DNA binding by estrogen receptor-alpha is essential for the transcriptional response to estrogen in the liver and the uterus. *Molecular endocrinology*. 2009;23:1544-1555
- Gordon FK, Vallaster CS, Westerling T, Iyer LK, Brown M, Schnitzler GR. Research resource: Aorta- and liver-specific eralpha-binding patterns and gene regulation by estrogen. *Molecular* endocrinology. 2014;28:1337-1351
- Kim JH, Meyers MS, Khuder SS, Abdallah SL, Muturi HT, Russo L, Tate CR, Hevener AL, Najjar SM, Leloup C, Mauvais-Jarvis F. Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. *Mol Metab*. 2014;3:177-190
- Pedram A, Razandi M, O'Mahony F, Harvey H, Harvey BJ, Levin ER. Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling. Sci Signal. 2013;6:ra36
- Handgraaf S, Riant E, Fabre A, Waget A, Burcelin R, Liere P, Krust A, Chambon P, Arnal JF, Gourdy P. Prevention of obesity and insulin resistance by estrogens requires eralpha activation function-2 (eralphaaf-2), whereas eralphaaf-1 is dispensable. *Diabetes*. 2013;62:4098-4108
- Ahlbory-Dieker DL, Stride BD, Leder G, Schkoldow J, Trolenberg S, Seidel H, Otto C, Sommer A, Parker MG, Schutz G, Wintermantel TM. DNA binding by estrogen receptor-alpha is essential for the transcriptional response to estrogen in the liver and the uterus. *Molecular endocrinology*. 2009;23:1544-1555
- Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A. Gastric estradiol-17beta (e2) and liver eralpha correlate with serum e2 in the cholestatic male rat. The Journal of endocrinology. 2013;219:39-49
- Gao H, Falt S, Sandelin A, Gustafsson JA, Dahlman-Wright K. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver. Molecular endocrinology. 2008;22:10-22

CE dose (mg/kg/day)	BZA dose (mg/kg/day)	Duration	References
2.5	3	8 weeks	Kim <i>et al.</i> Mol metabolism (2014)
5	3	6 to 12 weeks	Barrera et al. AJP endo (2014)
3	0.08-0.4-2 or 10	2 weeks	Peano <i>et al.</i> Endocrinology (2009)
3	10	3 weeks	Fontana et al. Neuroendocrinology (2014)
3	2	4 weeks	Song et al. Endocrinology (2012)
3	1-2-3 or 5	8 weeks	Naqvi et al. Biol reproduction (2014)
3	10	3 weeks	Oliva et al. Reproductive science (2013)
3	10	3 weeks	Della-Torre et al. Endocrinology (2011)

Gene symbol	Reverse	Forward	Gene symbol	Reverse	Forward
ERα	CTGTCGGCTGCGCAAGTGTT	AACATTCTCCCTCCTCGGCGGT	Lifr	AAGAGCATTGCTTCCCTCGCA	TGTTGGCGTGGTAACGAGCAT
Ramp3	TGTTGTTGCTGCTTTGTGGTGA	CTCCAGCATCCCTGTCTCGTT	ll17ra	GGTGGGATCTGTCATCGTGCT	CTACGGGCAAGATGCCATTGA
Mad2l1	GAGAGGCAGGGAGGACAGCTT	CCTCGTTTCAGGCACCACCAAA	Tsen54	GTATCTGCTGGAGTGTGGTTCGAT	CATAGCCCAGTCTCTTCAGGTGG
Gadd45g	AGTCCTGAATGTGGACCCTGACA	GCAGAACGCCTGAATCAACGTG	Lsyna1	TTCACGGTGCCCGCCTGGGT	CGCGCACAGGTCGCAAGGAGG
Inhbb	TTTGCAGAGACAGATGGCCTCG	GCCTGCACCACGAATAGGTTCT	Synpo	TGCGGCATCTGGAGAAGGTTG	GTTTGGTGAGGACTGCTGGGT
Prtn3	AGTCCACTCCATGAAGAATGCCA	TATGCCGGGAACACAACGTG	ltpk1	CCAGGGGGCCCTGCTCCTCAA	GCGGAGCTGTGCAGGAAGCGAG
Lcn2	TCTGTACCTGAGGATACCTGTGCAT	ATGTCACCTCCATCCTGGTCA	Acot1l	AAGCCGGGGGTGGCCTGGTT	GGTCACGCTGCCCACGCACC
p21	CAGGCGCAGATCCACAGCGA	GCACACTTTGCTCCTGTGCGGA	Spata2l	GCTGCCCTGGAGAAAGGAGTT	ACCATTAGGCGGTGGTTGTCC
Slc34a2	TGTACTGAGCAGCGCCTTCC	CCAGTCCAGCCACAGGATTAGAC	Dsc2	TGTATCAAACACCGAGGCTCCTG	TGCCCTCCACTTTTGACTCCAG
IGFBP1	AGGGATGTCTCACACTGTTTGCT	GCCCTGCCAACGAGAACTCTA	Ehhadh	GCCAGTGGGAGATTTAAAGCCA	TGCCATCAGTCCAACTGTAATCA
Gdf15	TGGGACCCCAATCTCACCTCT	AGCCGAGAGGACTCGAACTCA	Agpat9	GCCATGGTTAAGGCTTGTCCTC	ATTGTTGATGCAAGTACCTTCTGGG
Crybb3	CTCCAGAACAAACTGCTCCCCA	AAGGTGGGCTCCATCCAAGT	Pgpep1	CTCCAGTCCCTACAGCCAGGAT	ACAGTATGCTCCCCAAAAGGGC
Lsyna1	TTCACGGTGCCCGCCTGGGT	CGCGCACAGGTCGCAAGGAGG	Baiap2l1	TGCTTCTACCTTCAGAGCGCC	GCAAAGGGGTTTTCTCCACTGA
Srgap3	TCTTTAACGGCAGTATGGAAGCGT	TCCCCTGCTGCTGGAGTCCATA	Tgm2	TCATACAGGGGATCGGAAAG	TGGAGAATCCCGAAATCAAC
Elovl3	AGACGACCACTATGAGAAATGAGCTT	GTCTGCAAAATCGAAATGGACACAT	Peo1	TGCAGACAGCATCCATTTTCGG	AAAGCGATTCTTGGACACCTGC
Ly6d	TCCTCCTTGTCTTGGCTGTGG	AGAAGTTGGACGGGCAGACCT	C2cd2l	TTGGGTGCGAGCCTTGAATGAG	TGGTGGGAGTTGGGGTATCTCTT
Marco	TCTGCCTACAAGACCTGGGAC	GGAATCCAGGGATTGCAGGTGT	Caskin2	GCGCAGAAGCACCAGTGCCCA	GCGGCCGGGAGAGACCCTCA
Slc3a1	AATCCTCAACAGCGTATCTGAAGTC	AAGGACAGTGACAAGGATGGG	Spon1	TGTGTGATTCTGAAGGCCAGC	GTCCGTCACCCCATCAAGTGT
Cyp8B1	AAGACATCCCCGTGCTTGGC	TTTTGTGCCCTGGCTGGGTC	Etnk2	CGGGCTGTGCTACGAGTATGT	TGGCGTGGATGGTGTGAATCT
SHP	AAGGGCACGATCCTCTTCAA	CTGTTGCAGGTGTGCGATGT	Inf2	CCTCAAGGAACCAAGAAGAGTTTG	AGGCAACACATCCAGCCGAT
Corin	GGGACCTGAGTGACGAGCAAAA	GGCTGTGACAAGAGCAGTTGA	Dopey2	CGCAGATCAAAGGGGATGAGAAGT	CCTCCTGCAGGTCTGGTATGGA
FGF21	GCCATGGGCTTCAGACTGGTA	TTGCCAACAGCCAGATGGAGC	Upp2	TTCCTGCTATCTGCCCACCG	TCTTCGTCCATGCCTTCCAGG
Hmgcr	TTCACGAGAAAGCTCTAGGACCAG	TGCCTTGTGATTGGAGTTGGCA	Sulf2	ACTCAGAGCGGCCAGTGAAC	TGTGGAGCAGTTTGCCTCTCTC
Ms4a4a	GGCTGCTTCGAACCAAACCTT	TGTCGACCGGTGAAATACCCC	Rad51l1	CGCAACCTGGTGGACCTGTAA	ACGGCTTATGAGTTAAAGACACGA
Trim2	ACAGGCAGTTTGCAGGTCCC	TCCATTGGAGCCAAACTTCAACAT	Mn1	AGAAGGCCAAGTCCCAGAACC	CCTTGTTGGTGGGGTGGTCAT
Ggct	GTGTGGGGAGTGGTATGGAGAA	CGTCATCAGGTAACTTCGGCA	Ngfr	CTCCATCTTGGCTGCTGTGGT	CCGGCTGTTGGCTCCTTGTTT
Insig2	GTGGCGGTGTTCGTGGGTATAA	GTGCAGCCAGTGTGAGGGAAA	Zfp276	CAGTGACCTTTCTGAGGGAGAC	GCTTCTCTGCCTTCGCTCTTCT
Smtnl2	CATGCCACCTTTTCGCTGTCC	ATCCGTTGGCTGGACCTGCAT	Pcp4l1	CCGGGATGAGCGAGCTTAACA	CTCTGGCGCTGTCAGGTCAAT
Stat5a	CTTCTGGGACATGGCGTCAACC	ACACAGCTCCAGAACACGTATGACC	PPARa	TGCCTTCCCTGTGAACTGACG	TGTTGGATGGATGTGGCCAGG
Ptgds	CACAGAGGAGGACATTGTTTTCC	ACTGACTTCTCTCACCTGCGTTT	Clec2h	GGAGACACAGTGGAGATGATTCTGA	CAGCTCACAGATGAATGCTGCAA
Cyp17a1	CATCCCACACAAGGCTAACA	CAGTGCCCAGAGATTGATGA	Sucnr1	TGACATTCCCAAGCAGTCCAA	ACAGAAGCCGACAGCAGAATG
Aqp8	GGCTCATCATTGCTACCTTGGG	AGCGACAGCAGGGTTGAAG	Coq10b	GCTGAGAGTGCAGAAGGGAGCGG	TGGCGTTTTAGCCAGGTCTTCCT
Flrt1	ACATGGGGCCAAGGATGTGAG	TGACCCACCCAACCTGGAGT	Car1	GGTTGGCTGGACCAACCTTCA	CTGAGCACACCGTGGATGGAA
Cyp17	ATTTACCTTCGGAGCTGGT	AGGGCAGCTGTTTGTCATCT	Fmo2	CAAGAGTTTTCAAAGGCTTGTGTAGC	TCCAGGTAGTCAACGTAGTTGGT
Psen2	ACTGGCAACGGAGACTGGAA	AACACAGCAAGCAGCAGGAGG	Upp2	TTCCTGCTATCTGCCCACCG	TCTTCGTCCATGCCTTCCAGG
Map3k13	CTGGAGATGCGCGAGAAGGA	ATTCGGGTGGATGATTGGACGG	Nr1d1	GGAGGAGCCACTAGAGCCAATG	GAGGCCATCACAACCTCCAGTT
Dusp8	GCGCCTTCAGCAGGGAAAAGTG	CTGGCATCTCGTGTGCTCTGGT	Aqp4	TACCTGGTCACACCTCCCAGT	CCAGCGGTGAGGTTTCCATGA
Traf3ip2	GAGGACGAGCATGGCTTACATACT	CGGCACATGCTCCTTCTTGG	Cyp2c55	GCCAGGGTCAAATACTTCTGGGTT	CAATGTGCCCCATGCAGCTA

upplementary Tab	le 3				Fold induction (compared to PLB)			
Regulated by	Gene	Gene –associated functions (when available)	References	E2	E2 + BZA 10	E2 + BZA 2	BZA 10	
	Slc34a2	Type II Na+/Pi cotransporters, Transmembrane transport, Metabolism of proteins	Palierne et al., Mol endo , 2016	124.67	42.93	82.25	7.62	
T T	Gdf15	TGF-beta signaling pathway	Palierne et al., Mol endo , 2016	15.59	6.65	10.27	6.91	
	Corin	Myometrial Relaxation and Contraction Pathways	Palierne et al., Mol endo , 2016	6.86	2.86	4.31	1.52	
	Map3k13	Insulin Signaling	Palierne et al., Mol endo , 2016	5.08	2.46	3.31	2.28	
F2	ll17ra	Cytokine Signaling in Immune system	Palierne et al., Mol endo , 2016	4.83	3.33	5.22	2.31	
BZA 10	Shp	Bile secretion, organism-specific biosystem	Gao et al. Mol endo, 2008	3.26	1.67	2.66	2.08	
$(E_2 + B_7 A_{10})$	Gpcpd1	Metabolism of lipids and lipoproteins, Glycerophospholipid metabolism	Palierne et al., Mol endo , 2016	3.19	2.42	2.92	1.98	
Supplementary Fabre 3 Regulated by Gene Gene - associated functions (when available) E2, Sic34a2 Type II Nav/Pi cotransporters. Transmembrane transport, Metabolism of proteins Gorin Palara BZA 10, Sipe Bile secretion, organism-specific biosystem Palara (E2, BZA 10, Sipe Bile secretion, organism-specific biosystem Gao (E2 + BZA 10) Gpcpd1 Metabolism of lipids and lipoproteins. Metabolism of poids and lipoproteins, Metabolism of poids and lipoproteins, Metabolism of poids and lipoproteins. Metabolism of poids and lipoproteins of points and spot point of activates of points and points of activates of points and points of activates of points and points and points and points and the points and points and points and the points and	Protein-protein interactions in the podocyte	Palierne et al., Mol endo , 2016	3.07	1.99	2.72	2.20		
	Palierne et al., Mol endo , 2016	2.69	2.02	2.27	1.59			
	Epi Gene Gene Gene Gene References E2 guiated by Sistain Type II Nam/Pi contransports, Transmerniture insegon, Metabolien of proteins Phileme et al., Mol endo; 2016 124.87 2 E2. Contro Opening I Resource in and Contralscippe Insegon Phileme et al., Mol endo; 2016 168.87 2 E2. Bits Opening I Resource in and Contralscippe Insegon Phileme et al., Mol endo; 2016 168.87 2 E2. Bits Opening I Resource in and Contralscippe Insegon Phileme et al., Mol endo; 2016 48.83 3 E2. Bits Opening I Resource in a Resource insegon Phileme et al., Mol endo; 2016 48.83 3 E2. Bits Bits	1.50	1.98	1.54				
		Metabolism of lipids and lipoproteins, Phospolipid, Fatty acid, Triacylglycerol metabolism	Palierne et al., Mol endo , 2016	2.61	1.94	2.72	1.61	
	Zfp276	Regulation of transcription, DNA-templated	Palierne et al., Mol endo , 2016	2.47	1.84	2.03	1.51	
	Coq10b	Respiratory electron transport, ATP synthesis, and heat production by uncoupling proteins	Palierne et al., Mol endo , 2016	2.20	1.78	2.19	1.59	
	Flrt1	Downstream signaling of activated FGFR1	Palierne et al., Mol endo , 2016	24.14	2.92	3.82	1.27	
	Lifr	Immune System	Palierne et al., Mol endo , 2016	6.74	2.06	2.24	1.49	
	Mad2l1	Cell Cycle	Palierne et al., Mol endo , 2016	4.76	1.90	2.45	1.33	
	p21	Cell Cycle	Ahlbory-Dieker et al. Mol endo, 2009	4.03	1.89	7.65	1.46	
	Ngfr	Cytokine-cytokine receptor interaction, Circadian rythm related genes	Palierne et al., Mol endo , 2016	3.57	1.99	npared to PLB 2 + E2 + A 10 BZA 2 2.93 82.25 .65 10.27 .86 4.31 .33 5.22 .67 2.66 .42 2.92 .99 2.72 .00 1.98 .94 2.72 .50 1.98 .94 2.72 .84 2.03 .78 2.19 .92 3.82 .06 2.24 .90 2.40 .89 7.65 .99 2.40 .89 7.65 .99 2.40 .83 1.67 .52 1.60 .83 2.20 .77 2.07 .60 2.19 .76 1.88 .18 3.77 .42 1.58 .35 2.05 .31 2.90 .47 1.60 .46 1.82	1.33	
F2	Tsen54	tRNA processing in the nucleus	Palierne et al., Mol endo , 2016	3.51	1.58	1.67	0.99	
(E2 B7A10)	Lsyna1	nd	Palierne et al., Mol endo , 2016	3.34	1.52	1.60	0.82	
(L2 + D2A10)	ltpk1	Metabolic pathways, Inositol phosphate metabolism, Phosphatidylinositol signaling system	Palierne et al., Mol endo , 2016	3.04	1.83	2.16	1.20	
and (E2 +BZA 2)	Acot1I	Metabolic pathways, Biosynthesis of unsaturated fatty acids	Palierne et al., Mol endo , 2016	2.70	1.88	1.94	1.36	
	Peo1	Mitochondrial biogenesis	Palierne et al., Mol endo , 2016	2.47	1.57	1.64	1.43	
	Caskin2	nd	Palierne et al., Mol endo , 2016	2.29	1.53	2.20	1.40	
	Spon1	Metabolism of proteins, O-glycosylation of TSR domain-containing proteins	Ahlbory-Dieker et al. Mol endo, 2009	2.28	1.77	2.07	1.33	
	Insig2	Regulation of cholesterol biosynthesis by SREBP	Palierne et al., Mol endo , 2016	2.13	1.60	2.19	0.93	
	Upp2	Metabolic pathways, Drug metabolism - other enzymes	References E2 E2+ BZA 10 E2+ BZA 20 BZA 10 I proteins Palierne et al., Mol endo, 2016 15.59 6.65 10.27 6.91 Palierne et al., Mol endo, 2016 6.86 2.86 4.31 1.52 Palierne et al., Mol endo, 2016 5.08 2.46 3.33 2.28 Gao et al. Mol endo, 2016 3.19 2.42 2.92 1.98 gao et al., Mol endo, 2016 3.07 1.99 2.72 2.20 Palierne et al., Mol endo, 2016 2.69 2.02 2.27 1.59 Xidation Palierne et al., Mol endo, 2016 2.61 1.94 2.72 2.60 Vidation Palierne et al., Mol endo, 2016 2.61 1.94 2.72 1.61 Inetabolism Palierne et al., Mol endo, 2016 2.41 1.84 2.03 1.51 palierne et al., Mol endo, 2016 2.41 1.84 2.03 1.51 palierne et al., Mol endo, 2016 3.51 1.58 1.67 0.99 Autory-Dieker et al. Mol endo, 2016 3.51					
	Dusp8	MAPK signaling pathway, Oxidative stress response	Palierne et al., Mol endo , 2016	3.08	1.18	3.77	1.36	
	Stat5a	Immune System	Palierne et al., Mol endo , 2016	3.00	1.42	1.58	1.27	
	Baiap2l1	Signaling by FGFR3	Palierne et al., Mol endo , 2016	2.55	1.35	2.05	1.22	
	Tgm2	Huntington's disease	Palierne et al., Mol endo , 2016	2.55	1.27	1.72	1.01	
E2	Srgap3	PDGF signaling pathway	Palierne et al., Mol endo , 2016	(compared to PLB) E2 E2 + BZA 10 E2 + BZA 2 124.67 42.93 82.25 15.59 6.65 10.27 6.86 2.86 4.31 5.08 2.46 3.31 4.83 3.33 5.22 3.26 1.67 2.69 3.07 1.99 2.72 2.65 1.50 1.98 2.61 1.94 2.72 2.65 1.50 1.98 2.61 1.94 2.72 2.65 1.50 1.98 2.61 1.94 2.72 2.47 1.84 2.03 2.20 1.78 2.19 24.14 2.92 3.82 6.74 2.06 2.24 4.76 1.99 2.40 3.51 1.58 1.67 3.34 1.52 1.60 3.04 1.83 2.16 2.70 1.88 1.94 <	0.84			
and (E2 + BZA 2)	IGFBP1	Factors and pathways affecting insulin-like growth factor (IGF1)-Akt signaling	Boverhof et al. Carcinogenesis, 2014	2.32	1.31	2.90	0.92	
	C2cd2l	Positive regulation of insulin secretion involved in cellular response to glucose stimulus	Image: comparison of the second sec	1.60	1.36			
	Etnk2	Glycerophospholipid metabolism	Palierne et al., Mol endo , 2016	1.87	1.46	1.82	1.33	
	Dopey2	Golgi to endosome transport	Palierne et al., Mol endo , 2016	1.68	1.19	1.54	1.10	
	Sulf2	Liver regeneration, metabolic process, bone development, kidney development	Palierne et al., Mol endo , 2016	1.56	1.27	1.50	1.17	
E2, (E2 + BZA 2) and	lkzf4	regulation of transcription, DNA-templated	Palierne et al., Mol endo , 2016	1.88	1.32	2.76	1.82	
BZA 10	Fbf1	Cilium Assembly	Palierne et al., Mol endo , 2016	1.61	1.19	1.95	1.70	
E2, (E2 + BZA 10) and BZA 10	Smtnl2	nd	Palierne et al., Mol endo , 2016	4.18	1.83	1.49	1.56	
E2 and BZA 10	Nox4	Cellular responses to stress	Palierne et al., Mol endo , 2016	1.50	1.26	1.01	1.61	
	Dsc2	Formation of the cornified envelope, Keratinization	Palierne et al., Mol endo , 2016	2.68	1.41	1.44	1.10	
T	Pgpep1	proteolysis	Palierne et al., Mol endo , 2016	2.57	1.35	1.33	1.17	
	Psen2	Notch signaling pathway	Palierne et al., Mol endo , 2016	2.18	1.05	1.29	0.91	
	Traf3ip2	IL17 signaling pathway	Palierne et al., Mol endo , 2016	2.14	0.89	1.10	0.84	
	Inf2	protein-protein interactions in the podocyte	Palierne et al., Mol endo , 2016	1.84	1.09	1.32	1.10	
E2 only	Trim2	Interferon gamma signaling	Ahlbory-Dieker et al. Mol endo, 2009	1.81	1.10	1.29	0.98	
	Mn1	regulation of transcription, DNA-templated	Palierne et al., Mol endo , 2016	1.56	1.07	1.20	1.09	
[Cyr61	protein-protein interactions in the podocyte	Boverhof et al. Carcinogenesis. 2004	1.55	0.91	0.84	0.96	
+	Ets2	Cellular Senescence Cellular responses to stress	Boverhof et al Carcinogenesis 2004	1.52	1 00	1 35	1 11	
+	Rad5111	DNA Repair organism-specific hiosystem	Palierne et al Mol endo 2016	1.50	1.00	BZA 2 82.25 10.27 4.31 5.22 2.66 2.92 2.72 2.27 1.98 2.72 2.27 1.98 2.72 2.27 1.98 2.72 2.03 2.19 3.82 2.24 2.45 7.65 2.40 1.67 1.60 2.16 1.94 1.67 1.60 2.16 1.94 1.64 1.94 1.64 1.94 1.68 3.77 1.58 2.05 1.72 1.75 2.90 1.86 3.77 1.58 2.05 1.72 1.75 2.90 1.60 1.82 1.72 1.75 1.75 1.60 1.82 1.54 1.50 1.29 1.20 0.84 1.32 1.29 1.20 1.32 1.29 1.20 1.32 1.29 1.20 1.32 1.29 1.20 1.32 1.29 1.20 1.32 1.29 1.20 1.32 1.32 1.29 1.20 1.32 1.29 1.20 1.32 1.29 1.20 1.32 1.32 1.33 1.38	0.95	
Rad51l1				1.00	1.20	1.00	0.30	

					Fold in	duction	
				(compare	d to PLE	3)
De sudate d'hui	0	Conc. consisted functions (when evolution)	Defenences	0 - 40	CE 10	05.0	CE 3
Regulated by	Gene	Gene –associated functions (when available)	References	CE 10	+ BZA	CE 3	+ BZA
	Slc34a2	Metabolism of proteins, Transmembrane transport of small molecules, Type II Na+/Pi cotransporters	Palierne et al., Mol endo , 2016	41.62	8.21	7.03	6.68
CE 10	Gdf15	TGF-beta signaling pathway	Palierne et al., Mol endo , 2016	12.06	4.03	5.72	4.19
	ll17ra	Cytokine Signaling in Immune system	Palierne et al., Mol endo , 2016	5.38	2.76	1.54	1.85
	Gpcpd1	Metabolism of lipids and lipoproteins, Glycerophospholipid metabolism	Palierne et al., Mol endo , 2016	4.27	2.03	1.82	2.14
(CE 10 + BZA),	Spata2l	nd	Palierne et al., Mol endo , 2016	(compared to PLB)CE 10CE 10CE 3FBZA41.628.217.036.6812.064.035.724.195.382.761.541.854.272.031.822.143.391.922.071.682.981.551.551.672.242.371.972.168.961.561.850.886.581.991.921.381.881.651.920.913.531.641.050.982.671.531.070.742.451.511.191.29.381.12.431.083.041.191.7412.511.241.541.352.271.51.641.383.430.811.491.512.11.390.871.781.911.151.311.661.751.351.071.543.421.191.541.562.541.31.611.512.291.371.652.774.751.211.461.413.170.871.331.382.861.461.361.172.461.121.331.42.061.071.411.012.061.071.411.012.061.041.090.752.0311.23 <td< td=""><td>1.68</td></td<>	1.68		
and (CE 3 + BZA)	Synpo	Protein-protein interactions in the podocyte	Palierne et al., Mol endo , 2016	2.98	(compared to PLB) IO CE 10 + BZA CE 3 CI + E i2 8.21 7.03 6. i6 4.03 5.72 4. a 2.76 1.54 1. 7 2.03 1.82 2. 9 1.92 2.07 1. 8 1.55 1.55 1. 4 2.37 1.97 2. 6 1.56 1.85 0. 8 1.99 1.92 1. 8 1.65 1.92 0. 3 1.64 1.05 0. 7 1.53 1.07 0. 5 1.51 1.19 1 8 1.1 2.43 1. 4 1.19 1.74 1 1 1.24 1.54 1. 5 1.51 1.1 1.53 1.51 1.54 1. 5 1.55 </td <td>1.67</td>	1.67	
	Pcp4l1	nd	Palierne et al., Mol endo , 2016	2.24	2.37	1.97	2.16
CE 10,	Lifr	Immune System	Palierne et al., Mol endo , 2016	8.96	1.56	1.85	0.88
CE 3,	Map3k13	Insulin Signaling	Palierne et al., Mol endo , 2016	6.58	1.99	1.92	1.38
(CE 10 + BZA)	Erc1	NF-kappa B signaling pathway	Palierne et al., Mol endo , 2016	1.88	1.65	1.92	0.91
05.40	Nafr	Cytokine-cytokine receptor interaction	Palierne et al., Mol endo , 2016	3.53	1.64	1.05	0.98
CE 3, (CE 10 + BZA) CE 10 and (CE 10 + BZA) CE 10 and CE 3 CE 10 and (CE 3 + BZA) CE 10, CE 3 and CE 3 + BZA	Zfp276	regulation of transcription. DNA-templated	Palierne et al., Mol endo , 2016	2.67	1.53	1.07	0.74
and (CE 10 + BZA)	C2cd2l	positive regulation of insulin secretion involved in cellular response to glucose stimulus	Palierne et al., Mol endo , 2016	2.45	1.51	1.19	1.2
	Firt1	Downstream signaling of activated FGFR1	Palierne et al., Mol endo , 2016	9.38	1.1	2.43	1.08
-	Smtnl2	nd	Palierne et al., Mol endo , 2016	3.04	1.19	1.74	1
CE 10 and CE 3	Stat5a	Immune Svstem	Palierne et al., Mol endo , 2016	2.51	1.24	1.54	1.35
CE 10 and CE 3	Peo1	Mitochondrial biogenesis	Palierne et al., Mol endo , 2016	2.35	1.34	1.58	1.5
	Etnk2	Glycerophospholipid metabolism	Palierne et al., Mol endo , 2016	2.27	1.5	1.64	1.38
	IGFBP1	Factors and pathways affecting insulin-like growth factor (IGF1)-Akt signaling	Boverhof et al. Carcinogenesis. 2004	3.43	0.81	1.49	1.51
CE 10	Srgap3	PDGF signaling pathway	Palierne et al., Mol endo , 2016	2.1	1.39	0.87	1.78
and (CE 3 + BZA)	ltpk1	Metabolic pathways, Inositol phosphate metabolism, Phosphatidylinositol signaling system	Palierne et al., Mol endo , 2016	1.91	1.15	1.31	1.66
, , , , , , , , , , , , , , , , , , , ,	Mad2l1	Cell Cycle	Palierne et al., Mol endo , 2016	1.75	1.35	npared to PLB) E 10 CE 3 CE + B 3.21 7.03 6. 3.21 7.03 6. 1.03 5.72 4. 2.76 1.54 1.4 2.03 1.82 2. 1.92 2.07 1.1 1.92 2.07 1.1 2.37 1.97 2. 1.56 1.85 0.1 1.99 1.92 0. 1.65 1.92 0. 1.64 1.05 0. 1.53 1.07 0. 1.51 1.19 1. 1.24 1.54 1. 1.19 1.74 1. 1.24 1.54 1. 1.34 1.58 1. 1.35 1.07 1. 1.39 0.87 1. 1.35 1.07 1. 1.35 1.07 1. 1.37 1.65 2.	1.54
	Lsyna1	nd	Palierne et al., Mol endo , 2016	3.42	1.19	1.54	1.56
	Spon1	Metabolism of proteins, O-glycosylation of TSR domain-containing proteins	Ahlbory-Dieker et al. Mol endo, 2009	2.54	1.3	1.61	1.51
and CE 3 + BZA	Caskin2	nd	Palierne et al., Mol endo , 2016	2.29	1.37	1.65	2.77
	p21	Cell Cycle	Ahlbory-Dieker et al. Mol endo, 2009	4.75	1.21	1.46	1.41
	Traf3ip2	IL17 signaling pathway	Palierne et al., Mol endo , 2016	3.17	0.87	1.33	1.38
	Coq10b	Respiratory electron transport, ATP synthesis by chemiosmotic coupling	Palierne et al., Mol endo , 2016	2.86	1.46	1.36	1.17
	Dsc2	Formation of the cornified envelope, Keratinization	Palierne et al., Mol endo , 2016	2.46	1.12	1.33	1.4
	Rad51I1	DNA Repair, organism-specific biosystem	Palierne et al., Mol endo , 2016	2.06	Compared to PLB E 10 CE 10 CE 3 +BZA CE 3 + 41.62 8.21 7.03 1 5.38 2.76 1.54 4 4.27 2.03 1.82 1 3.39 1.92 2.07 1 2.98 1.55 1.55 1 2.98 1.55 1.55 1 2.98 1.56 1.85 1 6.58 1.99 1.92 1 8.96 1.56 1.85 1 3.53 1.64 1.05 2 2.67 1.53 1.07 2 2.45 1.51 1.19 9 3.04 1.19 1.74 2 2.51 1.24 1.54 2 2.51 1.24 1.54 2 3.04 1.19 1.74 2 2.51 1.24 1.54 2 2.51 1.24	1.01	
	Psen2	Notch signaling pathway	Palierne et al., Mol endo , 2016	2.06	1.04	1.09	0.79
	Tsen54	tRNA processing in the nucleus	Palierne et al., Mol endo , 2016	2.03	1	1.23	0.93
	Pgpep1	Proteolysis	Palierne et al., Mol endo , 2016	2.00	1.05	1.21	1.09
Only CE 10	Baiap2l1	Signaling by FGFR3	Palierne et al., Mol endo , 2016	1.82	1.07	0.83	1.11
-	Upp2	Metabolic pathways, Drug metabolism - other enzymes	Palierne et al., Mol endo , 2016	1.81	1.28	1.14	1.43
	Insig2	Regulation of cholesterol biosynthesis by SREBP	Palierne et al., Mol endo , 2016	1.68	1.34	1.04	0.94
	Agpat9	Metabolism of lipids and lipoproteins, Phospholipid metabolism, Fatty acid, triacylglycerol metabolism	Palierne et al., Mol endo , 2016	1.68	1.21	0.99	1.08
	Cyp17	Metabolism of steroid hormones	Palierne et al., Mol endo , 2016	1.63	1.16	1.3	1.1
	Tgm2	Huntington's disease	Palierne et al., Mol endo , 2016	1.63	0.9	1.1	0.82
	Trim2	Interferon gamma signaling	Ahlbory-Dieker et al. Mol endo, 2009	1.6	1.02	1.27	0.93
	Inf2	Protein-protein interactions in the podocyte	Palierne et al., Mol endo , 2016	1.58	1.15	1.4	1.2
	Mn1	Regulation of transcription, DNA-templated	Palierne et al., Mol endo , 2016	1.53	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.04	

Supplementa	ary Table 5	Α		Fo (cor	old induct	tion PLB)
Regulated by	Gene	Gene -associated functions (when available)	References	CE	BZA	CE + BZA
	Prtn3	Signaling by Interleukins	Pedram et al., Science Signaling, 2013	371.64	352.72	281.47
	Lcn2	Innate Immune System	Pedram et al., Science Signaling, 2013	40.63	8.38	6.25
	p21	Cell Cycle	Ahlbory-Dieker et al. Mol endo, 2009	17.59	8.64	8,18
-	Slc34a2	Metabolism of proteins. Transmembrane transport of small molecules. Type II Na+/Pi cotransporters	Palierne et al Mol endo 2016	10.09	105.48	50.83
	IGFBP1	Factors and pathways affecting insulin-like growth factor (IGE1)-Akt signaling	Boverhof et al. Carcinogenesis 2004	9.60	12 19	7.55
	Gdf15	TGE-beta signaling pathway	Palierne et al Mol endo 2016	7.63	17.65	22.35
-	Crybh3	Structural constituent of eve lens	Palierne et al. Mol endo 2016	6.17	2.35	2.82
-	L syna1	nd nd	Palierne et al. Mol endo 2016	6.12	8 26	7.60
	Srgap3	PDGE signaling pathway	Palierne et al. Mol endo 2016	5.42	2 42	2.94
-	Elovi3	Metabolism of linids and linoproteins. Fatty acid, triacylolycerol, and ketone body metabolism	Palierne et al. Mol endo 2016	4 11	1.87	3.95
·	Lv6d	Matabolism of hipds and hipprotents, and yigreets, and retorie body metabolism	Palierne et al. Mol endo 2016	4.06	5.48	1.89
·	Marco		Pedram et al. Science Signaling 2013	3.95	3 17	5.08
	Slo2o1		Podram et al., Science Signaling, 2013	3.55	3.17	5.00
CE	Cup9B1	Nuclear recent in linid matchelium and taxicity DPAP signaling pathway	Pedram et al., Science Signaling, 2013	3.57	2.40	1.54
B74	суровт	Ruclear receptors in lipto metabolism and toxicity, FFAR signaling partway	Kim et al. Mol Medeaine, 2014	2.41	2.00	1.04
	Corin	Die Secteron	Riffieldi, Mol Medecille, 2014	2.29	3.10	4.07
and $(DZA + CE)$	ECE21		Kim et al. Mol metab. 2014	3.20	14.10	9.75
	FGFZI Matata	Regulation of Actin Cytoskeleton	NITI et al, Mol metab, 2014	3.23	2.07	2.52
	Trim2	///u	Ablean Dicker et al. Mol ando 2000	3.00	2.11	3.00
-	Cast	Materiellon Glutething materialing	Anibory-Dieker et al. Mol endo, 2009	2.83	2.31	2.28
-	Ggct	Metabolism, Glutanione metabolism	Pallerne et al., Mol endo , 2016	2.66	4.01	3.68
			Pallerne et al., Mol endo , 2016	2.63	1.97	2.83
-	Smtni2	na	Palierne et al., Mol endo , 2016	2.49	4.41	4.78
-	Stat5a	Immune System	Palierne et al., Mol endo , 2016	2.48	2.10	2.03
-	Ptgds	Metabolic pathways, Metabolism of liplos and lipoproteins, Arachidonic acid metabolism	Gao et al., Mol endo 2008	2.47	12.48	16.93
	FIRT	Downstream signaling of activated FGFR1	Pallerne et al., Mol endo , 2016	1.99	2.64	3.17
	Psen2	Notch signaling pathway	Palierne et al., Mol endo , 2016	1.98	1.61	1.74
-	Марзкіз		Pallerne et al., Mol endo , 2016	1.88	2.05	3.44
-	Dusp8	MAPK signaling pathway, Oxidative stress response	Palierne et al., Mol endo , 2016	1.62	1.73	1.85
	Ngfr	Cytokine-cytokine receptor interaction, Circadian rythm related genes	Pallerne et al., Mol endo , 2016	1.60	1.50	1.88
-	Hmgcr	Metabolic pathways, Metabolism of lipids and lipoproteins, Cholesterol biosynthesis, Bile secretion	Palierne et al., Mol endo , 2016	3.20	1.47	1.18
0F 1	Aqp8	Bile secretion	Palierne et al., Mol endo , 2016	2.31	1.04	0.91
CEONIY	Esr1	Estrogen signaling pathway	Palierne et al., Mol endo , 2016	1.66	0.90	0.76
	Traf3ip2	IL17 signaling pathway	Palierne et al., Mol endo , 2016	1.62	1.37	1.30
	Mn1	Regulation of transcription, DNA-templated	Palierne et al., Mol endo , 2016	1.61	1.07	1.44
BZA only	Peo1	Mitochondrial biogenesis	Palierne et al., Mol endo , 2016	1.16	1.67	1.34
(BZA + CE)	Pgpep1	Proteolysis	Palierne et al., Mol endo , 2016	1.39	1.32	1.66
only	Spon1	Metabolism of proteins, O-glycosylation of TSR domain-containing proteins	Ahlbory-Dieker et al. Mol endo, 2009	1.04	1.41	2.63
	Sulf2	Liver regeneration, metabolic process, bone development, kidney development	Palierne et al., Mol endo , 2016	0.94	1.43	1.51
	Caskin2	nd	Palierne et al., Mol endo , 2016	1.49	1.95	2.00
	Tsen54	tRNA processing in the nucleus	Palierne et al., Mol endo , 2016	1.45	1.67	1.54
	Spata2l	nd	Palierne et al., Mol endo , 2016	1.43	2.22	1.91
BZA	ll17ra	Cytokine Signaling in Immune system	Palierne et al., Mol endo , 2016	1.37	3.01	3.14
and (BZA + CE)	Inf2	Protein-protein interactions in the podocyte	Palierne et al., Mol endo , 2016	1.29	1.57	2.44
. ,	PCK1	Glycolysis and Gluconeogenesis	Kim et al, Mol metab, 2014	1.16	1.82	1.82
	Etnk2	Metabolism of lipids and lipoproteins, Phospholipid metabolism, Glycerophospholipid metabolism	Palierne et al., Mol endo , 2016	1.06	1.77	1.73
	Pcp4l1	nd	Palierne et al., Mol endo , 2016	0.60	4.14	4.66
CE and (BZA+CF)	Cyp17a1	Metabolism of lipids and lipoproteins, Steroid hormone biosynthesis	Pedram et al., Science Signaling, 2013	2.47	1.19	2.46

Supplementary Table 5B

	Gene	Gene –associated functions (when available)	References	CE	BZA	CE + BZA
CE and BZA	Aqp4	Bile secretion	Palierne et al., Mol endo , 2016	0.35	0.57	0.85
BZA and BZA + CE	Aacs	Metabolism of lipids and lipoproteins, Metabolism of lipids and lipoproteins	Pedram et al., Science Signaling, 2013	0.86	0.47	0.19
CE L BZA only	Cyp2B10	Nuclear receptors in lipid metabolism and toxicity	Boverhof et al. Carcinogenesis, 2004	0.75	1.12	0.53
	Srebp1c	AMPK signaling pathway	Handgraaf et al, Diabetes, 2013	0.72	0.68	0.47
BZA only	Foxa2	Liver steatosis AOP	Gordon, Mol endo 2014	0.94	0.54	0.80
	Zfp276	regulation of transcription, DNA-templated	Palierne et al., Mol endo , 2016	0.63	1.11	0.71
	PPARa	Nuclear Receptors in Lipid Metabolism and Toxicity, Steatosis AOP	Kim et al, Mol Medecine, 2014	0.59	0.69	0.67
	Coq10b	Respiratory electron transport, ATP synthesis by chemiosmotic coupling	Palierne et al., Mol endo , 2016	0.47	1.04	0.66
	Car1	Nitrogen metabolism	Pedram et al., Science Signaling, 2013	0.46	0.66	0.84
	Clec2h	Immune System	Pedram et al., Science Signaling, 2013	0.52	0.38	0.45
CE BZA	Sucnr1	cAMP signaling pathway, Signaling by GPCR	Pedram et al., Science Signaling, 2013	0.47	0.25	0.26
and BZA + CE	Fmo2	Metabolism	Pedram et al., Science Signaling, 2013	0.45	0.39	0.27
	Upp2	Metabolic pathways, Drug metabolism - other enzymes	Palierne et al., Mol endo , 2016	0.40	0.61	0.36
	Cyp2c55	Metabolic pathways, Steroid hormone biosynthesis, Arachidonic acid metabolism, Linoleic acid metabolism	Kobayashi et al, J endocrinol, 2013	0.32	0.33	0.25