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Abstract 

Despite the severe impacts of the Deepwater Horizon oil spill, the foundation plant 

species Spartina alterniflora proved resilient to heavy oiling, providing an opportunity to 

identify mechanisms of response to the anthropogenic stress of crude oil exposure. We 

assessed plants from oil affected and unaffected populations using a custom DNA 

microarray to identify genome-wide transcription patterns and gene expression networks 

that respond to crude oil exposure. Additionally, we used T-DNA insertion lines of the 

model grass Brachypodium distachyon to assess the contribution of four novel candidate 

genes to crude oil response. Responses in S. alterniflora to hydrocarbon exposure across 

the transcriptome as well as xenobiotic specific response pathways had little overlap with 

those previously identified in the model plant Arabidopsis thaliana. Among T-DNA 

insertion lines of B. distachyon, we found additional support for two candidate genes, one 

(ATTPS21) involved in volatile production, and the other (SUVH5) involved in 

epigenetic regulation of gene expression, that may be important in the response to crude 

oil. The architecture of crude oil response in S. alterniflora is unique from that of the 

model species A. thaliana, suggesting that xenobiotic response may be highly variable 

across plant species. In addition, further investigations of regulatory networks may 

benefit from more information about epigenetic response pathways. 

 

Introduction 

 Human-induced environmental change is now a dominant evolutionary force, altering 

populations and ecological communities through direct and indirect effects of development 

and commerce (Palumbi 2001; Halpern 2008; Gedan et al. 2009). Coastal ecosystems, which 

have great commercial value and provide valuable ecosystem services (Pennings & Bertness 

2001), are among the most vulnerable environments to human-mediated impacts (Halpern 
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2008; Gedan et al. 2009). Within coastal systems, salt marshes, in particular, have long been 

the target of exploitation and development, and pollution arising from economic pressures 

threatens these productive communities worldwide (Gedan et al. 2009). Pollutant releases, 

like oil spills, pose an immediate threat to organisms through chemical effects, such as 

polycyclic aromatic hydrocarbon (PAH) toxicity, and physical effects, such as coating 

(Pezeshki et al., 2000). Over longer periods of time, pollution toxicity degrades habitat and 

potentially alters evolutionary trajectories in natural populations via selection and 

genotoxicity (Lin & Mendelssohn 2012; Silliman et al. 2012; Reid et al. 2016). 

In 2010, the Deepwater Horizon (DWH) oil spill released an estimated 4.9 million 

barrels of oil into the Gulf of Mexico (National Commission on the BP Deepwater Horizon 

oil spill 2011). This oil eventually made landfall along 1,773 kilometers of the shorelines of 

Louisiana, Mississippi, and Alabama (Mendelssohn et al. 2012), nearly half of which was salt 

marsh habitat dominated by the grass Spartina alterniflora (Michel et al. 2012). As a 

foundation species, S. alterniflora provides crucial ecosystem functions by serving as refuge 

for invertebrates, as nurseries for birds and fish, and as a buffer from storm and wave action 

(Day et al. 2007; Mendelssohn et al. 2012). Spartina alterniflora also shows remarkable 

resilience to a variety of stressors (Baisakh et al. 2008; Baisakh & Subudhi 2009; Pennings & 

Bertness 2001; Silliman et al. 2012). Oil-affected populations showed up to 100% recovery 

within seven months of the DWH spill, despite the immediate effects of reduced carbon 

fixation and transpiration (Lin & Mendelssohn 2012; RamanaRao et al. 2012; Silliman et al. 

2012; Lin et al. 2016), and evidence for genetic divergence of oil exposed populations from 

nearby uncontaminated populations (Robertson et al. 2017). Prior studies in S. alterniflora 

under controlled conditions have examined expression of candidate genes in response to heat, 

salt or oil stressors (Baisakh et al. 2008; Baisakh & Subudhi 2009; RamanaRao et al. 2012), 

and Bedre et al. (2016) recently characterized the full transcriptome response to salinity. 
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However, the particular molecular mechanisms that regulate the remarkable resilience of S. 

alterniflora remain understudied. Understanding the molecular underpinnings of oil stress 

response in natura (Shimizu et al. 2011; Kudoh 2016) may provide not only valuable 

information for the conservation and management of these threatened ecosystems, but also a 

novel understanding of the mechanisms of extreme stress response to an anthropogenic 

stressor. 

Molecular biologists have developed the xenome concept to understand the genetic 

machinery that underlies the detection, transport and detoxification of toxic compounds, or 

‘xenobiotics’ (Edwards et al. 2010). Although genetic resources are scarce in non-model 

species such as S. alterniflora, in the model plant Arabidopsis thaliana, accumulating 

evidence supports the involvement of six multigenic families in the activation, metabolizing, 

storage or excretion of xenobiotics: cytochrome P450s (CYPs), alpha/beta hydrolases, 

glycosyltransferases (GTs), glutathione transferases (GSTs), malonyltransferases (MTs) and 

ATP-binding cassette (ABC) transporters (Edwards et al. 2010; Fig. 1a). In the cell, 

xenobiotics are first activated by cytochrome P450s (CYPs) or alpha/beta hydrolases. 

Activated xenobiotics may be moved out of the cell, or conjugated with low molecular 

weight molecules such as glucose (via GTs) or the tripeptide glutathione (via GSTs). 

Glycosylated xenobiotics are excreted or conjugated with malonate (via MTs). Finally, 

xenobiotics are stored in the vacuole via ABC-transporters (El Amrani et al. 2015). Although 

studies have investigated the xenome response of A. thaliana exposed to one component of 

crude oil, phenanthrene (Weisman et al. 2010; Dumas et al. 2016), the xenome response to 

complex crude oil has not been quantified either in controlled conditions or in situ. Further, 

we know of no investigation of the xenome in non-model plants. However, targeted gene 

expression assays in S. alterniflora have identified several oil responsive candidate genes, 

including cell wall proteins and regulatory genes, which may participate in the detoxification 
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process more broadly (RamanaRao et al. 2012). The degree to which detoxification and 

tolerance pathways are conserved across evolutionary divergence remains understudied. 

Species-specific xenome features may reflect the differential ability to respond to challenging 

conditions under the selective pressure of toxic molecules (El Amrani et al. 2015). Therefore, 

measuring xenome and stress-response activity in non-model species under complex, natural 

conditions is critical to understanding the evolution of the xenome. 

To understand the mechanisms of response and resilience to oil stress in S. 

alterniflora, we assessed (1) differential gene expression in individuals from natural S. 

alterniflora populations exposed to the DWH oil spill, (2) the xenome and stress response of 

the oil-resilient S. alterniflora compared to that of PAH-sensitive A. thaliana, and (3) the 

phenotypic effects of four candidate oil response genes. Because native S. alterniflora 

populations harbor high levels of genetic diversity (Richards et al. 2004; Hughes & Lotterhos 

2014; Foust et al. 2016; Robertson et al. 2017), we expected expression differentiation 

among populations. However, we also anticipated that large differences in expression due to 

oil exposure, particularly in the xenome and in genes involved in stress response pathways, 

would allow us to identify novel candidate genes since complex environments have exposed 

novel transcript behaviors in other studies (Colbourne et al. 2011; Whitehead et al. 2012), 

and S. alterniflora has a complex hexaploid genome (Ainouche et al. 2012) with potential for 

diversification of duplicated gene copies (Fortune et al. 2007; Roulin et al. 2013; Boutte et al. 

2016). 
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 Methods 

Study species and population 

In August 2010, four months after the DWH oil spill, we collected plant material from 

four intertidal locations near Grand Isle, Louisiana and two locations in Bay St. Louis, 

Mississippi. These sites were naturally highly variable in conditions, but all sites supported 

monocultures of S. alterniflora and were moderately protected, as S. alterniflora grows 

predominantly in areas that are not exposed to full energy coastal conditions. In each of three 

contaminated and three uncontaminated populations of S. alterniflora, we collected leaf 

tissue from nine individuals spaced 10 meters apart (Fig. 2a). Contamination was confirmed 

by the visual presence of oil on the sediment in populations with substantial above ground 

dieback of S. alterniflora on the leading edge of the marsh. Nearby uncontaminated 

populations did not have any visual signs of the presence of oil or noticeable dieback of the 

above ground portions of S. alterniflora. From each plant, we collected the 3
rd

 fully expanded

leaf to standardize age and minimize developmental bias in sampling. Leaf samples were 

immediately frozen in liquid nitrogen to prevent RNA degradation, and kept frozen during 

transport to the University of South Florida for processing and analysis. 

RNA extraction and microarray hybridization 

We extracted total RNA from each of nine plants separately per population from 

homogenized leaf tissue using RNeasy Plant Mini Kits (QIAGEN). The Interdisciplinary 

Center for Biotechnology Research at the University of Florida standardized RNA 

concentrations and created three pools of three randomly chosen individuals from within each 

population: a total of 54 samples were combined into 18 population-specific RNA pools. 

Pooling is a common strategy in ecological research that sacrifices measures of individual-
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level variation to increase sample size and capture population-level response (Alvarez et al. 

2015). We reverse transcribed twenty RNA pools (18 sample pools and 2 technical replicates) 

into cDNA and hybridized them to custom 4x44k Agilent DNA microarrays containing 

17,049 unique 60-mer probes corresponding to 16,608 unique annotations and 441 

unannotated contigs. Of these, 9,356 probes were designed from the S. alterniflora Roche-

454 reference transcriptome (Ferreira de Carvalho et al. 2013), 7170 probes from the co-

assembly of 5 Spartina species transcriptomes (A. Salmon, J. Ferreira, H. Chelaifa & M. 

Ainouche, unpublished), and 523 from the Spartina maritima Roche-454 reference 

transcriptome (Ferreira de Carvalho et al. 2013). The reference transcriptomes used in this 

study were assembled with a minimum of 90% identity to account for the redundancy due to 

recent genome duplication events in these species, and were functionally annotated with 

sequence and protein homology searches using complementary datasets from Poaceae 

sequenced species, and A. thaliana (Ferreira de Carvalho et al. 2013). The samples used to 

create the transcriptome did not include plants exposed to oil, and therefore genes that are 

specifically up- or down-regulated during this stress response may be under-represented on 

the array. Probes were designed using the e-array web-portal 

(https://earray.chem.agilent.com/earray/) following the manufacturer requirements and 

printed on 4*44k chips with 2 sets of probes per 44k array. The microarray was designed to 

maximize the capture of overall expression of a transcript regardless of how many functional 

copies there are in the genome, which may have resulted in the collapse of homeologs into 

single probes. 
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Microarray data analysis 

We imported expression data into the statistical program JMP/Genomics (Version 6 

for Windows; SAS Institute, Cary, NC, USA) for analysis after initial image processing by 

Agilent. We log-transformed the data and filtered out intensity values less than two and 

subsequent probes that appeared in less than half of the pools (<10). Of the total 17,049 

probes, 15,950 passed our filtering protocol. Despite the potential for environmental variation 

in field studies, as well as possible variation introduced during the pooling process, our 

technical replicate pools were highly correlated with each other (r=0.995). We median 

normalized the raw data prior to downstream analysis, and visualized differences between 

individuals and populations using multidimensional scaling, implemented in the metaMDS 

function of the Vegan package (Oksanen et al. 2017). 

We visualized the relative contribution of oil exposure, state (Louisiana or 

Mississippi), population, and slide using a principal variance components analysis (PVCA) 

on the probe-level data. This strategy uses a principal components analysis (PCA) to reduce 

the dimensionality of the data before calculating variance components via a linear model for 

each principal component (Richards et al. 2012). To understand the effects of oil exposure, 

population and state on gene expression, we fit a mixed-model analysis of variance 

(ANOVA) to these data using a model that incorporated oil exposure, state, population, and 

microarray slide, with population nested within oil exposure and designated as a random 

effect (expression = oil + state + population-within-oil + slide). Populations were nested 

within oil because, due to the nature of the oiling event, we were not able to collect 

individuals affected by oil stress and individuals unaffected by oil stress from the same 

populations. State was included to model the effects of the comparatively large geographic 

distance between the four Louisiana populations and the two Mississippi populations, which 

also separated out on a visualization of the PCA of the expression data (Fig. S1). We 
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corrected for false discovery using q-values (Storey et al. 2015), and used values of less than 

or equal to 0.05 to identify significantly differentially expressed transcripts. 

Technical confirmation of microarray 

Using the same RNA as we used in the microarray hybridization, we reverse 

transcribed total RNA using RetroScript kits (Ambion) to create cDNA for qPCR 

confirmation of the microarray. We generated primers with the primer3 program (Rozen & 

Skaletsky 2000) for three target genes as well as for a-tubulin, which has been validated as an 

endogenous control (Baisakh et al. 2008, RamanaRao et al. 2012). We ran the qPCR 

reactions in duplicate using template from three individuals from each population (for a total 

subsample of 18).  We quantified differential expression using the delta-delta Ct method with 

corrections for primer efficiency (Schmittgen & Livak 2008), and confirmed the expression 

results of our DNA microarray for all three genes, which were up- or down-regulated in the 

same direction as they were in our microarray (Fig. S2). 

Enrichment, stress annotation, and xenome comparison 

To explore the functionality of genes differentially expressed in response to oil 

(Q<0.05), we used five different techniques based on both previous annotations and 

previously identified hydrocarbon-responsive genes. First, we performed a Gene Ontology 

(GO) enrichment test in JMP/G based on annotation data from the model species A. thaliana 

(TAIR 10), as measured by the Fisher exact test, to identify overrepresented GO terms within 

the oil-responsive genes (Q<0.05). Second, we searched for enriched Pfam annotations (Finn 

et al. 2016) via a Fisher’s exact test in R (Q<0.05) using HMMER (Finn et al. 2011) and 

custom R scripts (github.com/AlvarezMF/DWHoilspill_transcriptome). 
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Third, we compared transcriptome-wide response to crude oil in S. alterniflora to 

transcriptome-wide response to the PAH phenanthrene in two previous studies of A. thaliana. 

Weisman et al. (2010) germinated seeds in phenanthrene and harvested the plants at 21 days, 

which identified 1074 genes that responded to phenanthrene. Dumas et al. (2016) ran a time 

series experiment exposing 15 day old seedlings to phenanthrene for 30 minutes, 2, 4, 8 and 

24 hours identifying 467 genes that responded to phenanthrene in at least one of these time 

points. Combined, these studies captured gene expression response to phenanthrene that was 

affected in either the short term or the long-term in 1426 genes. While these two studies 

differed somewhat in their approach, plants were grown under similar abiotic conditions, and 

both assessed the response to phenanthrene of the same genotype of A. thaliana (Col-0). We 

looked for enrichment of gene categories with GO analysis on the 1426 differentially 

expressed genes in these two A. thaliana studies using the BioMaps function in Virtual Plant 

with a Fisher’s exact test (FDR<0.05; Katari et al. 2010; File S1). We also looked for overlap 

between genes that were differentially expressed in S. alterniflora and homologs that were 

differentially expressed in either the Weisman et al. (2010) study or the Dumas et al. (2016) 

study. To facilitate the comparison with S. alterniflora, we only used genes that appeared on 

the custom S. alterniflora microarray and on either the ATH1 or CATMA chips. In total, we 

used 7,566 out of the 15,950 Spartina probes, all of which were homologous to A. thaliana 

loci and were represented on either the ATH1 or CATMA chips (Fig. S3). 

Fourth, we compared the A. thaliana xenome with the putative S. alterniflora xenome 

by examining loci found in the six xenome gene families in Spartina (our study) and A. 

thaliana (Weisman et al. 2010; Dumas et al. 2016; i.e. represented on either ATH1 or 

CATMA chips). We defined a list of putative A. thaliana xenome genes, which was 

composed of 945 A. thaliana candidate loci (191 α/β hydrolases, 53 GST, 319 GT, 130 ABC 

transporters, 245 CYP450 and 7 related-malonyltransferases), based on published studies 
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(Edwards et al. 2010; Weisman et al. 2010; Skipsey et al. 2011; Dumas et al. 2016). Large 

families (GST, GT, ABC transporters and CYP450) were downloaded from the TAIR10 

database (http://www.arabidopsis.org/browse/genefamily), whereas loci coding for α/β 

hydrolases protein superfamily were directly retrieved from the TAIR10 A. thaliana genome 

annotation file, and related-malonyltransferases from Taguchi et al. (2010). The in silico 

survey of the whole putative genes set of the xenome revealed that 239 candidate loci were 

represented in A. thaliana arrays (including 61 α/β hydrolases, 13 GST, 87 GT, 49 ABC 

transporters, 29 CYP450 and 0 related-malonyltransferases) related to 437 candidate loci in 

our S. alterniflora array (99 α/β hydrolases, 18 GST, 193 GT, 92 ABC transporters, 35 

CYP450 and 0 related-malonyltransferases). We identified the phenanthrene responsive A. 

thaliana xenome by combining differentially expressed xenome genes in the Weisman et al. 

(2010) and Dumas et al. (2016) studies. We then compared only the loci whose homologs 

were present on the Spartina array and were also represented on either the ATH1 or 

CATMA. Hence, 22 loci met these criteria in A. thaliana (3 α/β hydrolases, 4 GSTs, 7 GTs, 4 

ABC transporters, 4 CYP450 and 0 related-malonyltransferases) and 99 in S. alterniflora (26 

α/β hydrolases, 6 GST, 49 GT, 14 ABC transporters, 3 CYP450 and 0 related-

malonyltransferases, Table S1). We used χ² and Fisher exact tests (R Core Team 2015) to 

compare differentially expressed genes in A. thaliana and S. alterniflora by gene families. 

Finally, to understand the relationship between oil-responsive genes in S. alterniflora 

and stress response genes in general, we compared oil-responsive genes to a previously 

generated list of environmental stress annotations for A. thaliana (Richards et al. 2012). The 

stress annotation identified whether genes were previously shown to respond to abiotic or 

biotic stresses, including high light (Rossel et al. 2002), cold, drought, heat, osmotic stress, 

oxidative stress, salt, genotoxins, UV-B exposure, wounding (Kilian et al. 2007), infection by 

RNA virus (Whitham et al. 2003; Babu et al. 2008), bacterial pathogens, fungi and 
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herbivores (De Vos et al. 2005). Across these data sets, more than half of the genes on the 

ATH1 array had been associated with at least one stress (13,153 of 22,800 genes). For this 

comparison, we only used genes that appeared on both the custom S. alterniflora microarray 

and the ATH1 array on which the stress annotation was based (6770 genes). 

Gene interaction networks 

We used two forms of gene networks to identify specific genes that may be involved 

in crude oil response in S. alterniflora. First, we used a weighted gene co-expression network 

analysis (WGCNA; Langfelder & Horvath 2008) to assess relationships between genes and 

identify co-expressed clusters of genes that respond to crude oil exposure. To do this, we 

used the same filtered and normalized expression values that we used for our gene-by-gene 

linear mixed modeling (n = 15,950) and further filtered the gene set using the function 

goodSamplesGenes to remove 83 additional genes missing in exactly 50% of samples, which 

ensured that an adjacency matrix could be calculated for subsequent coexpression analysis (n 

= 15,867). We used the function pickSoftThreshold to quantify and plot values of scale 

independence and mean connectivity across a vector of possible soft thresholds in order to 

identify the optimal value of the soft threshold that minimized spurious noise within our 

network (Fig. S4a). Our scale-free topology index remained below 0.8 for all assessed values 

and we therefore used a soft threshold of 6 as recommended by the WGCNA creators. Next, 

we created a weighted adjacency matrix with the blockwiseModules function using biweight 

midcorrelation to represent the relationships between genes (Fig. S4a). The blockwiseModule 

function clustered the adjacency values into a dendrogram (Fig. S4b), which was separated 

using a dynamic cut algorithm to yield co-expressed clusters (File S2). For each cluster, the 

blockwiseModules function performed a PCA on the gene expression values for each cluster 
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and defined the first principal component of each cluster as the cluster eigengene, which 

represented the average expression of that cluster. The relationship of clusters to crude oil 

response was assessed using the generalized linear mixed model (eigengene = oil + state + 

population nested within oil) and corrected for multiple testing using a Holm correction. For 

this model, we removed the term for slide because it explained very little of the variance. We 

assessed Gene Ontology enrichment for each cluster with TopGO (Alexa & Rahnenfuhrer 

2010), using genes with A. thaliana homologs as a background for Kolmogorov-Smirnov 

(KS) tests. We then summarized the most highly enriched GO term for each module, along 

with its corresponding q-value for a KS test (Table S2), and examined the protein sequences 

of genes within any oil-responsive clusters using HMMER (Finn et al. 2011) and custom R 

scripts (github.com/AlvarezMF/DWHoilspill_transcriptome). Finally, we used binomial tests 

to assess for enrichment of differentially expressed genes in each cluster. 

We created a second gene interaction network using the software Virtual Plant (Katari 

et al. 2010). We used the 1410 differentially expressed genes (Q<0.05) with homologs in A. 

thaliana, after removing duplicates and genes with no known connection (File S3). 

Interactions, or edges, were parameterized with data on microRNA binding populations, 

protein-to-protein interactions, transcriptional regulation (which includes transcription 

factors, enhancers, and repressors), and transport interactions. The Virtual Plant software 

created additional edges using data from the metabolic interaction databases Aracyc and 

KEGG, and using published literature interactions (Katari et al. 2010). Although these edges 

were parameterized with data from A. thaliana, we hypothesized that interactions between 

highly connected genes may be conserved, allowing us to identify important genes and 

pathways among the oil responsive genes in S. alterniflora. We visualized the resulting 

network using Cytoscape (Shannon et al. 2003) and counted the number of connections using 

Virtual Plant without additional ranking. We used information from the WGCNA and Virtual 
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Plant networks to identify four genes that might be hubs, important regulators, or otherwise 

key genes in orchestrating the response to crude oil. 

Functional confirmation in Brachypodium distachyon 

We attempted to confirm the function of four genes in controlled experiments using 

the model grass Brachypodium distachyon. We chose four lines that were altered in target 

genes whose expression was correlated to hydrocarbon exposure in S. alterniflora with the 

understanding that these genes may represent the function of one or more potential 

homeologs within the S. alterniflora genome. We selected three genes (homologs of KCS11, 

ATMCB1, and ATTPS21) that were highly connected within our Virtual Plant interaction 

network, as measured by number of connections. Two of these genes, KCS11 and ATMCB1, 

were also part of the co-expression cluster that was correlated with oil exposure in our co-

expression analysis (File S2). For the fourth gene, we identified an epigenetic regulator 

(SUVH5) that was correlated with oil exposure in the gene-by-gene analysis. SUVH5 was not 

part of the Virtual Plant interaction network or our oil-responsive co-expression cluster, but 

may participate in oil response by regulating gene expression. 

We obtained seeds for wild-type (B21-3) and four previously generated and sequence-

confirmed T-DNA insertion lines (Fig. 3a) from the Western Regional Resource Center 

(Bragg et al. 2012), and stored seeds in ambient conditions before stratifying them for two 

weeks. We then sowed one replicate each of wild-type and T-DNA insertion lines in each of 

five oil treated trays, and five untreated trays, which were all grown in a single growth 

chamber. After all seeds had bolted, each treatment tray received 500ul of 2.5% crude oil in 

tap water every other day, which is a sub-lethal concentration that we found induced 

phenotypic response in S. alterniflora and in B. distachyon. Untreated trays received 500ul of 
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only tap water every other day. We grew seedlings for 27 days until a majority of plants had 

flowered and senesced. On the 27
th

 day, we measured the height and number of leaves and

stems of each plant as proxies for above-ground biomass. We also measured the number of 

inflorescences as a component of fitness. Finally, we used a LI-6400 portable photosynthesis 

system (LI-COR) to measure photosynthetic rate and stomatal conductance, and to derive 

instantaneous water use efficiency (WUE). 

Because treatment is applied at the level of trays, this design was a split plot and we 

modeled the effects of genotype and treatment on gene expression with a linear mixed model 

implemented in R (R Core Team 2015): (Response ~ Treatment + Genotype + (Treatment * 

Genotype) + Error (Block*Treatment)), with block as a random effect (Richards et al. 2008). 

We assessed effects using a Type II Wald Chi-squared test implemented in the Car package 

(Fox & Weisberg et al. 2011) in R. We interpreted significant genotype by treatment 

interactions to indicate that manipulation of the gene of interest affected the response to crude 

oil. 

Results 

Oil-contaminated populations were differentiated from uncontaminated populations 

Despite substantial differences among populations, oil exposure explained 25% of the 

variance in overall gene expression (Fig. 2b). In our principal components analysis, PC1 

separated samples from the two uncontaminated sites in Louisiana from the samples collected 

in the uncontaminated Mississippi site and all samples exposed to oil (Fig. S1). The 

association of the uncontaminated Mississippi site with the contaminated sites in PC1 may be 

due to unobserved contamination, historical exposure, or underlying population structure. In 

fact, our principal variance components analysis indicated that differences among populations 
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explained the greatest proportion of variation in gene expression (32%, Fig. 2b). Using a 

gene-by-gene linear mixed model, we found that the expression of 3334 genes significantly 

differed by oil exposure, and 2287 genes significantly differed by state (869 genes overlapped 

the two main effects; Q< 0.05, Fig. 2c). We did not assess the significance of the random 

effect (population nested within oil). 

Enrichment and comparison to PAH response in A. thaliana 

Through gene set enrichment, we found three overrepresented categories among oil-

responsive genes: “plant-type primary cell wall biogenesis”, “sucrose biosynthetic process”, 

and “coumarin biosynthetic process” (Q<0.05). Our Pfam enrichment test found three 

significantly overrepresented families among the oil responsive genes: “leucine-rich repeat”, 

“Spc7 kinetochore protein”, and “Cellulose synthase” (Q<0.05). 

 Of the common A. thaliana loci that were represented on our Spartina chip and either 

the ATH1 or CATMA chips (Fig. S3), 3063 (2417 unique A. thaliana genes) were responsive 

to the DWH oil spill in S. alterniflora and 526 were responsive to phenanthrene in A. thaliana 

(Fig. 4a). We found only 187 genes (224 homology-based S. alterniflora loci) that overlapped 

between these two species, including 12 genes annotated as involved in photosynthesis and 

46 genes generally annotated as involved in biosynthetic processes (File S4). The discrepancy 

of the common number is due to the fact that multiple probes in S. alterniflora may be 

annotated with the same A. thaliana gene. Among these 187 genes, only 42 (22%) showed 

similar patterns of expression in S. alterniflora and A. thaliana, while most (78%) showed 

divergent expression patterns in S. alterniflora and A. thaliana (Fig. 4b), indicating little 

overlap between the two species’ response. We found no significant overrepresentation of 

GO categories among genes expressed in the same direction, although we note that several 



A
cc

ep
te

d
 A

rt
ic

le

. 

hydrolases and genes involved in oxidative stress appear among them. We also found that 

2839 of the 3063 (93%) oil responsive transcripts in S. alterniflora (corresponding to 2230 of 

2417 or 92% of the unique A. thaliana transcripts) were not responsive in either of the two 

previous studies of PAH response in A. thaliana. 

 When we assessed the overlap between the A. thaliana xenome and oil-responsive 

genes in S. alterniflora, we found six A. thaliana loci (seven homology-based S. alterniflora 

loci) that were differentially expressed in both A. thaliana and S. alterniflora (Fig. 1b,c), 

indicating that A. thaliana shares only 7.6% of the differentially expressed transcripts of the 

S. alterniflora xenome following PAH exposure. Again, the discrepancy of the common 

number is due to the fact that multiple probes in S. alterniflora may be annotated with the 

same A. thaliana gene. χ² comparisons by gene families revealed significant enrichment in 

α/β hydrolases and GT genes in the S. alterniflora xenome (P < 0.001, Table S1). 

In a comparison of oil-responsive S. alterniflora genes to a previously generated 

“stress annotation” in A. thaliana, we found that our custom microarray had homologs for 

3907 genes that were previously annotated for response to stress in A. thaliana, including 356 

“super responsive” genes that responded to more than four stressors in the A. thaliana studies 

(File S5). Of these “super responsive” A. thaliana genes, 85 gene homologs (including six 

from the xenome) in S. alterniflora were also responsive to the DWH crude oil, highlighting 

the potential importance of this small subset of genes in a diverse array of responses that may 

be functionally conserved across taxa. Additionally, 149 “stress annotation” genes responded 

in at least one of the previous A. thaliana phenanthrene studies, including 18 “super 

responders”, all of which also responded in S. alterniflora (File S5, Weisman et al. 2010, 

Dumas et al. 2016). 
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Gene interaction networks identify targets for confirmation 

Using weighted gene co-expression network analysis (WGCNA; Langfelder & 

Horvath 2008) with the expression of 15,867 genes across the 18 replicate pools, we 

identified 39 co-expressed clusters of genes, ranging in size from 36 to 3974 genes (Table S2; 

File S2). Of the 39 co-expressed clusters, the value of the eigengene from one cluster (#3 in 

File S2) was significantly predicted by oil exposure after a Holm multiple testing correction. 

This cluster contains 2054 genes, which were significantly enriched for differentially 

expressed genes (665/2054, P<0.001).  The only enriched GO category in this gene cluster 

after Q-value correction is “biological process”. However, the cluster also contains genes 

with GO annotations that include RNA splicing, response to osmotic stress, response to salt 

stress, and plant-type cell wall organization (Fig. S5). This gene cluster is also enriched for a 

single protein family: RNA polymerase Rpb1 C-terminal repeat (PF05001, Q<0.05). 

In Virtual Plant (Katari et al. 2010), 6 of the top 20 most highly connected genes were 

part of the co-expressed cluster (#3) that was significantly associated with response to oil in 

our WGCNA analysis. However, many highly connected genes from our Virtual Plant 

interaction network did not fall within this cluster. For example, a gene homologous to 

ATMCB1 had 116 connections in our interaction network, but was part of a WGCNA 

module that was not significantly correlated with oil exposure. 

T-DNA insertion genotypes differ in phenotypes from wild-type plants, and in 

response to oil 

After exposing replicates of each of the T-DNA insertion lines to crude oil, we found 

overall treatment effects for height, number of leaves, number of stems, number of 

inflorescences, photosynthetic rate and water use efficiency (WUE), but not stomatal 
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conductance. We also found a significant effect of T-DNA insertion line for number of 

leaves, number of inflorescences, photosynthetic rate and WUE (Table 1). Using post-hoc 

assessments of significance for individual lines, we found a significant effect of a SUVH5 

homolog (Bradi3g35330) overexpression on photosynthetic rate, and a KCS11 homolog 

(Bradi3g07730) overexpression on stomatal conductance and WUE (Table 2). 

Finally, we compared response to oil in each line to the wild-type line and found 

significant T-DNA insertion line-by-treatment effects for two genes. We found that 

Bradi3g35330, which overexpresses a homolog of SUVH5, resulted in increased number of 

inflorescences in response to oil compared to the wild type (Fig. 3b; Table 2). We also found 

that Bradi1g62540, which overexpresses a homolog of ATTPS21, increased the number of 

leaves produced under crude oil exposure compared to wild-type lines in B. distachyon (Fig. 

3c, Table 2). 

Discussion 

Large-scale anthropogenic impacts, such as crude oil spills, can be leveraged as 

natural “treatment and control” designs to understand molecular function in ecologically 

relevant settings (Whitehead et al. 2012; Reid et al. 2016). We found 3334 genes that 

responded to crude oil exposure in S. alterniflora, including 2230 genes that were not 

previously responsive in the model plant A. thaliana exposed to the PAH phenanthrene. We 

found that most (78%) of the shared, differentially expressed transcripts showed divergent 

expression patterns between S. alterniflora and A. thaliana. While the two species may share 

a broadly defined set of stress-responsive genes (including but not limited to the more 

narrowly-defined xenome), the specific oil-responsive transcriptional pathways in S. 

alterniflora, and the xenome in particular, diverge from those in A. thaliana. 
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Transcriptional hydrocarbon response in S. alterniflora may be species specific 

Plants may adapt to cope with toxic molecules (Antonovics & Bradshaw 1970), which 

may be reflected in the fine-tuning of metabolic detoxification pathways that are 

transcriptionally activated under challenging toxic conditions (El Amrani et al. 2015; Dumas 

et al. 2016). In the Gulf of Mexico, natural oil seeps create the possibility of repeated 

hydrocarbon exposure in coastal species like S. alterniflora over evolutionary time 

(MacDonald et al. 1996). We used the framework of the xenome to compare the regulation of 

metabolic pathways involved in organic xenobiotic detoxification in S. alterniflora and A. 

thaliana. We hypothesized that comparison of the xenome of S. alterniflora, which shows 

hyper tolerance in the presence of phenanthrene (Cavé-Radet & El Amrani, unpublished) and 

crude oil exposure in laboratory conditions and in the field (Alvarez 2016), to that of the 

PAH-sensitive model plant species A. thaliana exposed to hydrocarbons, would provide 

insight into the conserved mechanisms that underlie tolerance in plants, as well as non-

overlapping divergent components of tolerance. We found remarkably little overlap in 

genome-wide as well as xenome response between S. alterniflora and A. thaliana. Only 42 

(22%) of the shared, differentially expressed transcripts showed similar direction of 

expression in S. alterniflora and A. thaliana, while most (78%) showed divergent expression 

patterns between S. alterniflora and A. thaliana. Less than 100 of the 3334 differentially 

expressed genes in S. alterniflora were among the six multigenic families that make up the A. 

thaliana xenome as strictly defined. Gene set enrichment on oil-responsive genes in S. 

alterniflora identified functional categories involved in metabolism (plant-type primary cell 

wall biogenesis, sucrose biosynthetic process) and defense (coumarin biosynthetic process) 

that were not enriched in previous A. thaliana studies, but may participate in the 

detoxification process more broadly (Edwards et al. 2010, El Amrani et al. 2015). 
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Highly connected genes are expected to evolve more slowly when they exhibit 

pleiotropic effects on phenotype (Cork and Purugganan 2004). We expected that highly 

connected stress-responsive genes would be functionally conserved and potentially play 

important roles in the response to crude oil. Therefore, we hypothesized that genes that are 

highly connected in A. thaliana, would appear within gene clusters that are most responsive 

to crude oil exposure, allowing us to identify genes that are more likely to modulate 

phenotype during crude oil response. However, we found little concordance between highly 

connected genes in our Virtual Plant network and oil-responsive genes identified in our 

coexpression analysis. In combination with the lack of overlap in our xenome survey, these 

results suggest that S. alterniflora has a substantially divergent genomic architecture 

underlying hydrocarbon response relative to A. thaliana. 

The differences between the two species could be partly because of differences 

between the response to complex crude oil and response to phenanthrene. In the DWH oil 

spill, Napthalene was the dominant PAH (64% of the total PAHs) while phenanthrene made 

up only 17% (Liu et al. 2012). Additionally, the DWH contamination included other toxic 

compounds, such as methylnaphthalene and dispersants (Liu et al. 2012), which may induce 

different transcriptional responses. However, although there were differences between the 

field and laboratory conditions, including xenobiotic composition, the hyper-tolerant 

phenotype of S. alterniflora may also be in part due to the fact that S. alterniflora 

detoxification involved more genes for detoxification than were identified in A. thaliana. The 

enrichment of S. alterniflora xenome response with more alpha/beta hydrolases and GTs may 

be related to the fact that, as a hexaploid, S. alterniflora has potentially many more functional 

or subfunctionalized copies of xenome genes (Fortune et al. 2007; Boutte et al. 2016). The 

increased copy number of functional genes may also partly explain the overrepresentation of 

genes annotated as being responsive to cell wall biogenesis among oil-responsive genes in S. 
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alterniflora. However, enrichment of functional categories in S. alterniflora, particularly 

those involved in cell wall biogenesis in the GO analysis and cellulose synthase in the Pfam 

analysis, may be also related to a separate, species-specific detoxification process, which 

includes incorporation of the xenobiotic into cell wall polymers such as lignin (El Amrani et 

al. 2015) as well as the involvement of regulatory elements such as the Rpb1 protein family 

and CHH methylation, which may modulate gene expression (as discussed below). This 

behavior, to our knowledge, has not been documented outside of this study, and highlights 

both limitations in previously published annotations like Gene Ontology as well as the 

potential for novel behavior in non-model species or in natural settings (Colbourne et al. 

2011; Whitehead et al. 2012). We emphasize, however, that our study compares the response 

of only two species, one of which is quite tolerant and the other sensitive to hydrocarbons, 

and which also differ in both physiology and evolutionary history. For example, monocots 

like S. alterniflora differ substantially from dicots, such as A. thaliana, in the composition of 

both primary and secondary cell walls (Vogel 2008), which may contribute to the observed 

enrichment of these genes in response to crude oil exposure. Ideally, experiments that include 

a gradient of hydrocarbon-tolerant and hydrocarbon-sensitive species across a broad 

phylogeny would assess the conservation of hydrocarbon response mechanisms across plant 

species. 

Two candidate genes modulate conserved response to hydrocarbon stress 

In our candidate gene screen using knockout lines of B. distachyon, we found that 

overexpression of a homolog of SUVH5 (Bradi3g35330), which was down-regulated in oil 

exposed S. alterniflora, resulted in increased number of inflorescences in response to oil 

compared to the wild type. SUVH5 is a methyltransferase that broadly contributes to non-CG 

methylation patterning in A. thaliana (At2G35160, Stroud et al. 2014). Non-CG methylation, 

in particular CHH methylation, may be dynamically regulated in response to specific 
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stressors and may contribute to the regulation of transcription under stress or novel 

environments (Dowen et al. 2012; Dubin et al. 2015). CHH methylation is enriched near 

transposable elements (TE), and the maintenance of TE silencing may prevent deleterious 

insertions in protein-coding regions of the genome (Matzke and Mosher 2014). Alternatively, 

CHH methylation within TEs can also regulate nearby genic regions (Matzke and Mosher 

2014), which would allow SUVH5 to function as a global regulator of stress response. 

Although the putative S. alterniflora SUVH5 was downregulated in response to crude oil 

compared to uncontaminated conditions in the field, our study suggests that individuals that 

can maintain relatively higher SUVH5 expression may display increased reproduction, and 

perhaps fitness, under oil stress compared to lines that do not. Alternatively, overexpression 

of SUVH5 may increase number of inflorescences, but reduce a more downstream 

component of fitness, such as germination success. Further tests with additional mutants will 

be useful in resolving this ambiguity, particularly with concurrent assessment of TE activity, 

and increased understanding of the function of DNA methylation variation. For example, 

manipulation of methylation variation, either through methylation inhibitors or the selective 

silencing of other methyltransferases, may help resolve the relationship between DNA 

methylation and fitness during crude oil stress (Richards et al. 2017). 

We also found that overexpression of a homolog of ATTPS21 (Bradi1g62540), which 

was up-regulated in oil exposed S. alterniflora, increased the number of leaves produced 

under crude oil exposure compared to wild-type lines in B. distachyon. ATTPS21 is a terpene 

synthase gene involved in the production of volatiles in flower petals in A. thaliana (Liu et al. 

2015). Plant volatiles are often activated during stress, and may play a role in relieving 

oxidative stress (Holopainen & Gershenzon 2010). Although the mechanism for this 

relationship remains unclear, the overrepresentation of the coumarin synthesis pathway 

among differentially expressed genes provides additional evidence for an interaction between 
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the maintenance of the production of volatiles and fitness during crude oil exposure in both B. 

distachyon and S. alterniflora. 

Conclusions 

While these findings show novel patterns of response to hydrocarbon stress, and our 

experimental results support a role for SUVH5 and ATTPS21 in regulating the response to 

crude oil, the divergence between S. alterniflora, B. distachyon, and A. thaliana limits the 

conclusions that we can draw. The Spartina genus (Chloridoideae subfamily) diverged from 

Brachypodium (Pooideae subfamily) more than 40 million years ago (Rousseau-Gueutin et 

al. 2015), and from Arabidopsis approximately 150 million years ago (Kumar et al. 2017). 

During that time, the Spartina genus has undergone several hybridization and 

polyploidization events
 
(Ainouche et al. 2004) that have increased chromosome number and 

ploidy level from 2n=4x=40 (tetraploid) to 2n=12x=120-124 (dodecaploid). Genome 

duplication and copy number variation can complicate our understanding of the role of 

specific genes, and increase the proportion of false positive matches (Fortune et al. 2007; 

Ferreira de Carvalho 2013; Primmer et al. 2013; Boutte et al. 2016; Ferreira de Carvalho et 

al. 2017). Although we characterized gene function using B. distachyon homologs, 

confirmation of gene function in S. alterniflora would require detailed forward and reverse 

genetic screens, using both transcriptome-wide and single-mutant assays in both field and 

controlled conditions, to fully characterize gene function in response to crude oil exposure. 

However, leveraging the genetic resources of model organisms provides a useful baseline and 

comparison to describe gene function during oil exposure in S. alterniflora. Additionally, 

genomic assays in non-model species that inhabit diverse ecologies will be insightful in the 

effort to characterize the behavior of genes in natural settings, providing a more complete 
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“ecological transcriptome” or “ecological annotation” (Landry & Aubin-Horth 2007; 

Richards et al. 2009; Alvarez et al. 2015; Kudoh 2016). 

Although we characterize gene function in this manuscript, further dissection of the 

genomic mechanisms of oil resilience within S. alterniflora will be required for 

understanding the evolutionary fate of oil-exposed populations of S. alterniflora. Our field 

sites possess an unknown ecological history, and latent, unaccounted-for effects may 

confound and bias our gene expression assays, making controlled follow-up studies important 

to accurately characterize the functional genomic response to crude oil. We found genetic 

differentiation among these same populations (Robertson et al. 2017), which may explain 

some of the observed response to oil in gene expression patterns observed in our study. 

Additionally, the observed variation in gene expression between oil-exposed and unexposed 

populations may be modulated by epigenetic regulators like SUVH5, which can exert effects 

in concert with or in addition to the effects of genetic variation (Robertson & Richards 2015; 

Richards et al. 2017). Finally, we note that our sample pooling strategy may miss a number 

of subtle or cell-specific transcriptional behaviors involved in hydrocarbon response. Future 

efforts to catalog gene expression variation using RNAseq and additional cell types 

(including rhizomes and roots) will enhance our capacity to understand the functional 

response to an increasingly common anthropogenic stressor in this foundation marsh species. 

Considering that the resilience of S. alterniflora may attenuate many types of anthropogenic 

damage in salt marshes, understanding the molecular underpinnings of oil stress response 

may provide valuable information for the conservation and management of these ecosystems, 

as well as a novel understanding of the mechanisms of phenotypic plasticity. 
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Tables 

Table 1: Results of linear mixed models and generalized linear mixed models for phenotypes 

assessed. Height, photosynthetic rate, stomatal conductance, and water use efficiency were 

modeled separately with a normal distribution, while number of leaves, number of stems, 

and number of inflorescences were modeled with a Poisson distribution. Effects were 

assessed through Wald type II chi squared tests. Marginal and conditional R2 values were 

assessed through the piecewiseSEM R package. df indicates degrees of freedom.  

 

 Oil 

treatment 

Line Line x Oil 

treatment 

 df = 1 df = 4 df = 4 

  Marg. 

R2 

Cond. 

R2 

Chi Sq Chi Sq Chi Sq 

Final height 0.27 0.42 6.55 * 3.45  4.32 NS 

Leaf number 0.43 0.56 9.15 ** 11.14 * 7.08 NS 

Stem number 0.33 0.42 8.26 ** 5.51  3.59 NS 

Infl number 0.35 0.54 8.27 ** 1.46  5.41 NS 

Photosynthesis 0.38 0.65 4.87 * 21.65 *** 7.13 NS 

Stom conduct 0.23 0.48 0.14 18.29 ** 2.43 NS 

WUE 0.25 0.34 4.80 * 6.54 3.87 NS 

 

 * P < 0.05;  ** P < 0.01;  *** P < 0.001;  NS P > 0.05.
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Table 2: Significant terms in pairwise comparisons of T-DNA insertion lines to wild type, and 

interaction of line x treatment with T values (for linear mixed effects models) and Z values 

(for generalized linear mixed effects models) using Satterthwaite approximations to estimate 

degrees of freedom. 

 

Effect Phenotype Estimate t/z 

Line (Bradi3g07730) Stomatal conductance -0.24 -2.15* 

 WUE 15.10 0.013* 

Line (Bradi3g35330) Photosynthetic 

rate 

5.74 2.54* 

Interaction of Line x  

Treatment (Bradi1g62540) 

Leaf number 0.45 2.10* 

Interaction of Line x  

Treatment (Bradi3g35330) 

Inflorescence number 0.53 1.97* 
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Figures 

 

  

Fig. 1: Xenome comparison between Spartina alterniflora and Arabidopsis thaliana. (a) Simplified 

scheme of metabolic pathways of xenobiotic (X) detoxification in plant cells: the thick line indicates 

the cell membrane, xenome components are indicated in red. (b) The total number of xenome genes 

expressed in S. alterniflora in response to oil contamination in the field, compared to those observed 

for Col-0 shoot tissue in response to the PAH phenanthrene (Weisman et al. 2010; Dumas et al. 

2016). (c) Graphical matrix depicting differentially expressed xenome loci in response to 

phenanthrene in A. thaliana (Weisman et al. 2010; Dumas et al. 2016), and in response to the DWH 

oil spill in S. alterniflora. Arabidopsis thaliana based gene IDs are categorized by the five xenome 

gene families on the left. Changes in gene expression were scored as a binary trait: no significant 

response to PAH are indicated in black, differentially expressed genes are indicated in red. 

(a) (c)

Arabidopsis  locus Arabidopsis  locus

AT3G59140 AT1G75270

AT4G04770 AT1G78380

AT5G02270 AT2G02390

AT5G64840 AT5G16710

AT1G03905 AT1G10360

AT1G04120 AT1G59700

AT1G15520 AT1G77290

AT1G17840 AT5G41210

AT1G64550

AT1G70610 AT1G05680

AT3G10670 AT1G26810

AT3G47740 AT2G43820

AT4G33460 AT3G62720

AT5G14100 AT1G55850

AT5G58270 AT2G36770

AT5G60790 AT4G18240

AT1G19710

AT4G24160 AT1G78280

AT1G52510 AT1G78580

AT5G25770 AT2G20810

AT1G47480 AT2G35710

AT1G52700 AT2G36850

AT1G73480 AT2G37090

AT3G19970 AT2G38650

AT3G23540 AT3G07020

AT3G23570 AT3G07170

AT3G30380 AT3G11540

AT3G48090 AT3G11670

AT3G49050 AT3G16520

AT3G51000 AT3G27540

AT4G10030 AT3G43190

AT4G19860 AT3G45100

AT4G24760 AT3G48820

AT4G31020 AT4G00550

AT4G34310 AT4G02280

AT5G18640 AT4G03550

AT5G19850 AT4G18780

AT5G20520 AT4G32410

AT5G36210 AT5G03760

AT5G38220 AT5G03770

AT5G50890 AT5G05170

AT5G51180 AT5G05880

AT5G20280

AT2G45550 AT5G20410

AT3G14620 AT5G64740

AT3G26280

AT5G05690

AT1G31800

AT3G26330

D
E

 lo
cu

s 
in

 

A
ra
bi
do
ps
is

Sp
ar
ti
na

 D
E

 p
ro

be
(s

) 

ho
m

ol
og

y 
ba

se
d 

an
no

ta
ti

on
s 

to
 A

T
 

lo
cu

s

D
E

 lo
cu

s 
in

 

A
ra
bi
do
ps
is

Sp
ar
ti
na

 D
E

 p
ro

be
(s

) 

ho
m

ol
og

y 
ba

se
d 

an
no

ta
ti

on
s 

to
 A

T
 

lo
cu

s

A
B

C
 tr

an
sp

or
te

rs

G
ST

s
G

T
s

C
Y

PP
45

0
α/
β-

H
yd

ro
la

se
s 

su
pe

rf
am

il
y 

pr
ot

ei
n

(b) 

	7.6%	



A
cc

ep
te

d
 A

rt
ic

le

. 

 

Fig. 2: Response to the DWH oil spill in S. alterniflora across Gulf of Mexico study sites. (a) Green 

markers represent sites with no visible oil and red markers represent sites with visible oil in the 

sediment and substantial dieback of above ground Spartina alterniflora stems. (b) The percent of the 

transcriptional variance explained by oil, state, population, slide and the residual. (c) The number of 

genes that significantly differ between populations exposed to oil or not, and location (State). 

Population was modeled as a random effect and not estimable.  
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Fig. 3: Brachypodium distachyon T-DNA insertion lines used for confirmation of candidate genes. (a) 

T-DNA lines are listed as the catalog numbers from the WRRC with corresponding S. alterniflora 

contigs from our custom microarray and the closest A. thaliana homolog. Modification type 

represents the effect of the T-DNA insertion, either knocking out the function of the particular gene or 

tagging the promoter region to induce overexpression. Expression response in S. alterniflora is listed 

along with the justification for choosing each line. Reaction norms for (b) number of inflorescences, 

and (c) number of leaves for each T-DNA knockout line, referenced by its homolog in A. thaliana, in 

oil treatment and control. 
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Fig. 4: Comparison of oil responsive genes across studies in S. alterniflora and A. thaliana. (a) From a 

consistent set of genes surveyed (represented either on the Spartina array and either the ATH1 or 

CATMA arrays), the total number of genes expressed in S. alterniflora in response to oil 

contamination in the field, compared to those observed for Col-0 shoot tissue in response to the PAH 

phenanthrene (Weisman et al. 2010; Dumas et al. 2016). (b) Direction of difference in expression in 

187 genes that respond to hydrocarbon stress in both S. alterniflora and A. thaliana. 

 

(a) 
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Supporting Information 

Table S1: Comparison of differentially expressed xenome genes in A. thaliana and the 

custom S. alternflora. 

Table S2: List of 39 co-expressed gene clusters identified by WGCNA, with the number of 

genes in each cluster and the most significant enrichment category from Gene Ontology 

analysis (For clusters with equally significant GO categories, all most significant categories 

are shown). 

Fig. S1: Multidimensional scaling (MDS), showing MDS axes 1 and 2. MSN and MSO 

represent Mississippi uncontaminated and contaminated sites, respectively. LN1 and LN2 

represent Louisiana uncontaminated sites, while LO1 and LO2 represent Louisiana 

contaminated sites. 
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Fig. S2: Average change in expression in both qPCR and microarray for target confirmation 

genes. 

Fig. S3: Comparison of transcripts represented on two A. thaliana arrays (ATH1 and 

CATMA) and the custom Spartina array. 

Fig. S4: Unique gene expression patterns identified through WGCNA. (A) Scale 

independence and mean connectivity, as a function of the soft thresholding power β. (B) 

Clustering dendrogram of dissimilarity showing thirty nine unique clusters represented by 

different colors. 

Fig. S5: A directed acyclic graph of the high-association GO terms to show the relationships 

between 26 Gene Ontology (GO) categories of genes with A. thaliana homologs in cluster #3. 

This cluster contains 2,054 genes identified through WGCNA, and is correlated to oil 

exposure. Higher associations (uncorrected P-values) are colored red. 

 

File S1: Results of Gene Ontology analysis of all differentially expressed genes (n=1426) in 

response to phenanthrene in A. thaliana in either Weisman et al. (2010) or Dumas et al. 

(2016). 

File S2: Normalized gene expression values for 15,867 genes in WGCNA and corresponding 

module assignment. 

File S3: Number of connections for each of the 1410 highly differentially expressed genes 

with homologs in A. thaliana in the Virtual Plant network. 

File S4: Identity and description of 187 oil responsive genes (224 homology-based S. 

alterniflora loci) that overlapped between A. thaliana (Weisman et al. 2010 and Dumas et al. 

2016 combined), and S. alterniflora (present study). 

File S5: Stress-responsive genes (n = 3907) across stresses, the A. thaliana xenome and S. 

alterniflora oil responsive genes. 


