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Highlights

• weak quadrupole S(2) 2-0 line in self-perturbed D2 is
measured

• collisional line-shape effects and energy of this rovibra-
tional transition are calculated

• the velocity-changing collisions are handled with the hard-
sphere collisional kernel

• the experimental and theoretical pressure broadening and
shift are consistent within 5

• we observe 3.4 sigma discrepancy between experimental
and theoretical line position
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Abstract
We present an accurate measurement of the weak quadrupole S(2) 2-0 line in self-perturbed D2 and theoretical ab initio calculations
of both collisional line-shape effects and energy of this rovibrational transition. The spectra were collected at the 247 - 984 Torr
pressure range with a frequency-stabilized cavity ring-down spectrometer linked to an optical frequency comb (OFC) referenced to a
primary time standard. Our line-shape modeling employed quantum calculations of molecular scattering (the pressure broadening
and shift and their speed dependencies were calculated, while the complex frequency of optical velocity-changing collisions was fitted
to experimental spectra). The velocity-changing collisions are handled with the hard-sphere collisional kernel. The experimental
and theoretical pressure broadening and shift are consistent within 5% and 27%, respectively (the discrepancy for shift is 8% when
referred not to the speed averaged value, which is close to zero, but to the range of variability of the speed-dependent shift). We use
our high pressure measurement to determine the energy, ν0, of the S(2) 2-0 transition. The ab initio line-shape calculations allowed
us to mitigate the expected collisional systematics reaching the 410 kHz accuracy of ν0. We report theoretical determination of ν0
taking into account relativistic and QED corrections up to α5. Our estimation of the accuracy of the theoretical ν0 is 1.3 MHz. We
observe 3.4σ discrepancy between experimental and theoretical ν0.

Keywords: Molecular deuterium, Molecular collisions, Spectral line shapes, Absolute frequency measurements, Cavity ring-down
spectroscopy, Quantum electrodynamics in molecules

1. Introduction

Molecular hydrogen in its ground electronic state, the sim-
plest neutral chemically bound system, constitutes the most
suitable platform for testing quantum electrodynamics (QED)
for molecules and for searching for new physics beyond the
standard model [1], such as new forces [2] or extra dimensions
[3]. However, direct experimental studies on the rovibrational
structure of H2 are difficult to perform because of the absence of
strong dipole coupling between the levels. Typical Doppler-free
saturation spectroscopy is not applicable to weak quadrupole
molecular transitions. Two independent experimental strategies
have been advanced to reach the megahertz level of accuracy in
the determination of the frequencies of rovibrational lines. The
first one [4–8] is based on Doppler-free two-photon spectroscopy
of electronic transitions in molecular beams. Two different
vibrational levels in the ground electronic state were coupled
to the same excited electronic level. This allowed the energy
difference between the (v = 1, j = 0) and (v = 0, j = 0) ground
electronic states to be determined with an accuracy of 2.8 MHz
[7]. This approach has great potential for improvements because
of recent progress in Ramsey-comb spectroscopic techniques [9].
The second strategy operates in the Doppler-limited regime. It
takes advantage of ultra-high finesse cavities to directly measure
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the weak quadrupole lines and has already achieved the kilohertz
level of accuracy [10–12] typical for Doppler-free techniques.
However, in the case of molecular hydrogen, the collisional
line-shape effects are very pronounced and untypical [13–15].
As a result, the line position does not scale linearly with pressure
[16]; this phenomenon usually is not taken into account [17]. To
avoid such systematic errors, Mondelain et al. [18] measured
the D2 S(2) 2-0 line at very low pressure, where collisions are
negligible, reaching an accuracy of 0.50 MHz.

In this article, we present experimental and theoretical stud-
ies on the shape of the D2 S(2) 2-0 line, which allowed us to
bring the previous measurements of the line position into the
high-pressure range and reach (despite a twenty times shorter
effective optical path) the same sub-megahertz level of accuracy
as the Doppler-regime measurements [18]. The spectra were
recorded with a frequency-stabilized cavity ring-down spectrom-
eter linked to an optical frequency comb (OFC) referenced to
a primary time standard. The experiment was carried out at
room temperature and pressures varying from 247 to 984 Torr.
In contrast to most of the works devoted to the analysis of
the shapes of experimental molecular lines, where simple phe-
nomenological models (such as hard- [19, 20] or soft-collision
[21] models of the velocity-changing collision and quadratic or
hypergeometric approximations of the speed dependence) are
applied, we employ an approach originating from first principles
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[14, 15, 22, 23]. We performed fully quantum calculations of
molecular scattering to obtain the pressure broadening and shift
and their speed dependencies. The complex frequency of optical
velocity-changing collisions was fitted to experimental spectra.
The velocity-changing collisions are handled with a collisional
kernel that originates from the hard-sphere approximation of
the potential energy surface [14] (the resulting profile is called
speed-dependent billiard-ball profile [24] with ab initio speed
dependence). Our experimental and theoretical determinations
of the pressure broadening are consistent within 5%. The rel-
ative discrepancy for the pressure shift is 27%. This value is,
however, misleading because for this system the shift is large
and strongly depends on absorber speed, but its speed-averaged
value is close to zero. Therefore to provide better measure of
the relative discrepancy one should refer the difference not to
the speed-averaged value but to the range of the shift variability
and then the relative discrepancy equals to 8%. The real part of
the fitted frequency of the optical velocity-changing collisions is
consistent with the frequency of the velocity-changing collisions
calculated from kinetic theory. We use our measurement to
determine the energy, ν0, of the S(2) 2-0 transition. The ab
initio line-shape calculations allowed us to mitigate the expected
collisional systematics (the line asymmetry originating from
speed dependence of collisional shift) reaching the accuracy of
401 kHz.

We report theoretical determination of ν0 taking into account
relativistic and QED corrections up to α5. Our estimation of
the accuracy of the theoretical ν0 is 1.3 MHz. We observe
3.4σ discrepancy between experimental and theoretical ν0. The
reason for this discrepancy is not known.

2. Ab initio line-shape modeling

2.1. Velocity distribution of an optical coherence at the station-
ary state

The shapes of molecular lines can bemodeled by determining
the velocity distribution of an optical coherence associated with
the considered transition from the transport-relaxation equation
[22, 23, 25–27]

fm (~v) = −i(ω − ω0 − ~k · ~v) f (ω,~v) − Ŝ f (ω,~v), (1)

whereω andω0 are the angular frequency of the electromagnetic
radiation and the unperturbed angular frequency of the molecular
transition. In the experimental data analysis, see Sec. 3, we use
ν = ω/(2π) and ν0 = ω0/(2π). The ~k~v term is the Doppler shift,
where ~v is the velocity of an active molecule and ~k is the wave
vector. fm (~v) = (

√
πvm )−3e(−v/vm )2 is the Maxwell velocity

distribution, where vm =
√
2kBT/m1 is the most probable speed.

kB , T and m1 are the Boltzmann constant, temperature and mass
of the active molecule, respectively. Ŝ is the collision operator
describing the relaxation and dephasing of the optical coherence
as well as its flow between different velocity classes. Since the D2
rovibrational lines are very well separated (the rotational constant
is exceptionally large, about 30 cm−1), we restrict our discussion
to the case of isolated lines, i.e., we neglect line mixing [28].
Having f (ω,~v), which is a scalar function proportional to the

velocity distribution of the optical coherence, the line-shape
function can be calculated as

I (ω) =
1
π
Re

∫
f (ω,~v)d3~v. (2)

The Maxwell distribution is factored out from the solution of
Eq. (1), f (ω,~v) = fm (~v)h(ω,~v); hence, the equation takes the
following form

1 = −i(ω − ω0 − ~k~v)h(ω,~v) − Ŝ f h(ω,~v), (3)

where Ŝ f is defined as Ŝ fm (~v)h(ω,~v) = fm (~v) Ŝ f h(ω,~v). In
the general case, Eq. (3) can be solved by decomposing func-
tions and operators in some basis and hence converting Eq. (3),
which is a multidimensional integral Boltzmann-like equation,
into a set of algebraic equations. If we introduce an orthonor-
mal basis,

{
φs (~v)

}
, and define a scalar product, 〈φs′ |φs〉 =∫

d3~v fm (~v)φs′ (~v)φs (~v), then Eq. (3) can be written as [27]

b = (−i(ω − ω0)1 + iK − S f )c(ω), (4)

where column c(ω) is cs (ω) = 〈h(ω,~v) |φs (~v)〉, matrix K is
[K]s′,s = 〈φs′ |~k~v |φs〉, 1 is the identity matrix, b is a column
defined as [b]s = δs,0 (δs′,s is the Kronecker delta), and matrix
S f is defined as

[
S f

]
s′,s
= 〈φs′ | Ŝ f |φs〉. In practice, the infinite

system of coupled linear equations (4) is reduced to a system
of at most a few thousand equations. If the first element of the
basis is a constant function, i.e., φ0(~v) = 1, then the line-shape
function, Eq. (2), can be written as [27]

I (ω) =
1
π

Re〈φ0(~v) |h(ω,~v)〉 = 1
π

Re [c0(ω)] . (5)

In this work, we use the Burnett functions basis defined as

ψnlm (~v/vm ) =
√
2π3/2n!/Γ(n + l + 3/2)·
· (v/vm )l Ll+1/2

n ((v/vm )2)Ylm (θ, φ),
(6)

where Ll+1/2
n ((v/vm )2) is an associated Laguerre polynomial,

Ylm (θ, φ) is the usual spherical harmonic function, and {v,θ,φ}
are spherical coordinates of ~v.

2.2. The collisional operator Ŝ f

The collisional operator, Ŝ f , can be arbitrarily divided into
two components [29]:

Ŝ f = Ŝ f
D + Ŝ f

VCD, (7)

where the Ŝ f
D operator describes the relaxation of the internal

motion of the molecule, i.e., the damping and dephasing of the
optical coherence. The Ŝ f

VCD operator describes the remaining
part of Ŝ f , i.e., the flows of the optical coherence between
different velocity classes affected by its simultaneous damping
and dephasing.

In the idealized case when the changes in the molecule
velocity are completely independent from (uncorrelated with)
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Figure 1: Generalized spectroscopic cross sections for the S(2) 2-0 transition in
D2 as a function of collisional kinetic energy. Pressure-broadening cross sections
(PBXS) and pressure-shift cross sections (PSXS) are shown as solid and dashed
lines, respectively. For readability, we show the results for three rotational states
of perturbing molecules (out of six used in our calculations, i.e., j2 = 0 to 5).
The blue, yellow and green colors correspond to j2 = 0, 1 and 4, respectively.

the damping and dephasing, then Ŝ f
VCD is equal to the usual

Boltzmann collisional operator Ŝ f
VC [25, 30, 31]

Ŝ f
VCh(ω,~v) = n2

∫
d3~v2

∫
dΩ̃

(
dσ

dΩ̃

)
|~v − ~v2 |·

· fm2 (~v2)
(
h(ω,~v′) − h(ω,~v)

)
,

(8)

where n2 is the concentration of perturbers, Ω̃ is the scattering
solid angle, dσ/dΩ̃ is the differential elastic cross section, ~v′
is the velocity of an absorber after collision, ~v2 is the velocity
of a perturber, and fm2 (~v2) is the velocity distribution of the
perturbers. The Ŝ f

VC operator can also be expressed in terms of
the collision kernel f (~v ← ~v′) describing probability rates of
velocity changes from ~v′ to ~v:

Ŝ f
VCh(ω,~v) =
∫

d3~v′
[

fm (~v′)
fm (~v)

f (~v ← ~v′)h(ω,~v′) − f (~v′ ← ~v)h(ω,~v)

]
.

(9)

To quantify the frequency of the velocity changes, we also define
a normalized form, M̂ , of this operator

Ŝ f
VC = νVCM̂ f , (10)

where νVC is the effective frequency of the velocity-changing
collisions, which can be calculated as

νVC =
v2m
2D

, (11)

where D is the mass diffusion coefficient.
Equations (8) to (11) are valid when there is no correlation

between the velocity-changing and damping/dephasing collisions,
which is not the case for realistic systems. The correlations are

accounted for in the generalized Hess method (GHM) [32–
34]. Within the GHM framework, the Ŝ f

D operator is simply
a complex number, −(Γ0 + i∆0), where Γ0 and ∆0 are speed-
averaged collisional broadening and shift, respectively. The
GHM allows the Ŝ f

VCD operator to be identified with νoptM̂ f
HC,

where M̂ f
HC is the normalized Boltzmann collisional operator,

see Eqs. (9) and (10), for the case of the simple hard-collision
kernel

f (~v ← ~v′) = νopt fm (~v). (12)

Therefore, the GHM allows us to write the full collision operator
Ŝ f as

Ŝ f = −Γ0 − i∆0 + νoptM̂
f
HC. (13)

The νopt parameter is called frequency of optical velocity-
changing collisions; it has to be emphasized that it is a complex
number. The real part of it, νropt, is smaller than νVC. The reason
for this is that some part of the optical coherence, which could
flow to different velocity classes, is damped or dephased. The
nonzero imaginary part, νiopt, results from the fact that during the
velocity-changing collision, the phase of the optical coherence
is changed as well. Within GHM, the Γ0, ∆0 and νopt parameters
are calculated from first principles as

Γ0 + i∆0 =
1

2πc
p

kBT

∑

j2

pj2ω
00
0 (q, j2), (14)

νopt =
1

2πc
p

kBT
M2

∑

j2

pj2

[
2
3
ω11
1 (q, j2) − ω00

0 (q, j2)

]
, (15)

where the collision integral ωs,s′
λ (q, j2) is given by the following

expression [35, 36]:

ωs,s′
λ (q, j2) =

〈vr 〉
∞∫

0

dxx (s+s′+2)/2e−xσq
λ (vi jiv f j f j2; Ekin = xkBT ),

(16)

where 〈vr 〉 =
√
8kBT/πµ and µ is the reduced mass of the

colliding partners. q is the tensor rank of the spectral transition
operator (for the quadrupole line considered here q = 2). T ,
kB and p are the temperature, Boltzmann constant and pressure,
respectively. The 1/(2π) factor appears in Eqs. (14) and (15)
because the horizontal axis of the spectrum is expressed in terms
of frequency, ν, and not angular frequency, ω, as it is in Eq. (1).
The 1/c factor converts the frequency unit into wavenumbers.
M2 = m2/(m1 + m2), where m1 and m2 are the masses of the
active and perturbing molecules. In the self-perturbed case, as it
is in this paper, M2 = 1/2. pj2 is the population of the j2 state
of the perturber molecule at temperature T ( j2 is the rotational
quantum number of the perturbing molecule before the collision)

pj2 = w j2 (2 j2 + 1)e−E j2 /(kBT )/Z (T ), (17)

where Z (T ) is the corresponding partition function

Z (T ) =
∑

j2

w j2 (2 j2 + 1)e−E j2 /(kBT ) . (18)

3
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The w j2 weight arises from the symmetry condition for the total
wavefunction of the D2 molecule (the deuterium atom is a boson)
and the degeneracy in the total nuclear spin I. For even j2, the
total nuclear spin can be I = 0 or 2; hence, w j2 = 6 for ortho-
states. For odd j2, the total nuclear spin is I = 1; hence, w j2 = 3
for para states. E j2 is the energy of the j2 state (E j2=0 = 0).
σ
q
λ (vi jiv f j f j2; Ekin ) is a generalized spectroscopic cross sec-

tion, where vi ji and v f j f are vibrational and rotational quantum
numbers for the initial and final spectroscopic states (for the 2-0
S(2) line vi = 0, ji = 2, v f = 2 and j f = 4). Ekin is the initial rel-
ative center-of-mass kinetic energy. The σq

λ (vi jiv f j f j2; Ekin )
cross sections are calculated from the scattering S-matrices.
The explicit expression for σq

λ (vi jiv f j f j2; Ekin ) is given in
Refs. [34] and [35]; see Eq. (34) in Ref. [34] and Eq. (2) in
Ref. [35]. Note that our σq

λ (vi jiv f j f j2; Ekin ) has dimensions
of area, while that in Ref. [34] is dimensionless. The conver-
sion factor is π/k2, where k2 = 2µEkin/~

2. Note that σq
0 is a

standard generalized spectroscopic cross section [37–39]. In
Fig. 1, we present illustrative examples of calculated values of
σ2
0 (vi = 0, ji = 2, v f = 2, j f = 4, j2; Ekin ) for j2 = 0, 1 and 4.

We refer to the real and imaginary parts of σq
0 as the pressure-

broadening cross-section (PBXS) and the pressure-shifting cross-
section (PSXS), respectively. We truncated the summation over
j2 at 5. At the considered temperature, T = 294.9 K, the cu-
mulated population of the j2 > 5 states is 0.6 % of the total
population (the j2 dependence is weak, and therefore, the cor-
responding error of the cross sections will be much smaller).
Dynamical calculations were performed on Hinde’s PES [40],

and the S-matriceswere determined by solving the close-coupling
equations using the MOLSCAT code [41].

The hard-collision model is insufficient for a proper descrip-
tion of the velocity-changing collisions in the modeling of the
shapes of molecular resonances, in particular, the shapes of
molecular hydrogen lines [15, 16, 42–44]. The phenomenolog-
ical hard-collision kernel, Eq. (12), obeys the basic thermody-
namic requirements (at equilibrium, the velocity distribution
converges to theMaxwellian distribution and the detailed balance
relation is satisfied), but it is not based on the interaction poten-
tial. The physical meaning of the hard-collision kernel, Eq. (12),
is that the velocity of the molecule is completely thermalized
after each collision regardless of the pre-collisional velocity.
The line-shape effects are physically better described when the
VC collisions are obtained from the interaction potential of the
colliding pair [14]. In panel (b) in Fig. 2, we show the isotropic
part of the D2-D2 potential (black line) and its hard-sphere
approximation (blue line). As a reference, we also show the
Maxwell-Boltzmann collision energy distribution in panel (a).
It has been demonstrated, by a direct comparison with the ab
initio classical molecular dynamics simulations [42], that the
hard-sphere approximation very well describes the dynamics of
the velocity-changing collisions for the case of self-perturbed
hydrogen [14]. In contrast to the HC kernel, the hard-sphere
kernel (also called the billiard-ball kernel, and hence, we refer to
it as the BB kernel) depends on the velocity before the collision
and the scattering angle θ [14, 45]

fBB(~v ← ~v′) = ν(0) 1
v2m

3
32π

√
1 + α(1 + α)2

α2
1√

v2 − 2vv′ cos θ + v′2
×

× exp
(
− (1 − α)2

4α
v′2

v2m
− (1 + α)2

4α
v2

v2m
− (α + 1)(α − 1)

2α
vv′

v2m
cos θ +

αv2v′2 sin2 θ
v2m (v2 − 2vv′ cos θ + v′2)

)
,

(19)

where

ν(0) = (8/3)
√
π(α−1 + 1)−1/2vmn2d2 (20)

is the first-order effective frequency of velocity-changing colli-
sions [24, 46], α is the perturber-to-active-molecule mass ratio,
d is the mean hard-sphere diameter of the colliding particles,
and n2 is the density number of perturbers. The relation with
frequency of the velocity-changing collisions, νVC, is

νVC = ν
(0)/ fD, (21)

where the α-dependent coefficient, fD , can be determined from
Eq. (19); see Refs. [14, 24, 46]. For the self-perturbed D2,
α = 1, fD ≈ 1.01895. In Fig. 2, panels (c) and (d), we compare
the HC and BB kernels. It is clearly observed that the simple
phenomenological HC kernel does not account for the angle
and initial velocity dependencies and can differ from the real
kernel by more than one order of magnitude. These unphysical

properties of the HC kernel are clearly observed in experimental
spectra analysis as an inability to properly reproduce the shapes
of molecular hydrogen rovibrational lines in a wide range of
pressures [15, 16, 42–44]. It should be emphasized that the
BB kernel also correctly handles the strong mass dependence
of the kernel, whereas the HC kernel does not even depend on
α. We denote the normalized operator of the velocity-changing
collisions arising from the BB kernel as M̂ f

BB. The direct
expression for the decomposition of M̂ f

BB in the Burnett basis is
given in Refs. [24, 46].

For the case of molecular hydrogen (and all of its isotopo-
logues), the speed dependence of the collisional broadening,
Γ, and shift, ∆, is very pronounced and cannot be ignored
in the experimental spectrum analysis. Therefore, the simple
expression for Γ0 and ∆0, Eq. (14), has to be replaced with
its speed-dependent counterpart. Introducing the conditional
probability, fm2 , of having a relative speed vr when the active

4
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Figure 2: (a) Maxwell-Boltzmann collisional energy distribution at T = 294.9 K.
(b) Isotropic part of the D2-D2 potential. The blue line is the hard-sphere
approximation whose diameter is set by choosing the intersection point at the
mean collision energy, i.e., ε/kB = 442.4 K. (c) and (d) Collision kernel for the
D2-D2 hard-sphere approximation at T = 294.9 K and nH2 = 1 amg. The black,
blue, and red colors correspond to scattering angles θ = 36◦, 90◦ and 144◦,
respectively. Charts (c) and (d) were plotted for initial speeds v′ = 1563 m/s and
2657 m/s. For comparison, the hard-collision kernel is plotted as a gray dashed
line. The θ angle element sin θ∆θ = ∆(− cos θ) = 0.2, and the speed element
∆v = 200 m/s.

molecule speed is v at the temperature T , the speed dependent
collisional width and shift reads [47–49]:

Γ(v) + i∆(v) =

1
2πc

p
kBT

∑

j2

pj2

∫
d3~vr fm2 (~v + ~vr )vrσ

q
0 (vi jiv f j f j2; vr ).

(22)

The integrals over the angle coordinates of ~vr can be performed
analytically [47–49]:

Γ(v) + i∆(v) =

1
2πc

p
kBT

∑

j2

pj2

2√
πvpv

∞∫

0

dvr v
2
r e
− v2+v2r

v2p ·

· sinh *,
2vvr
v2p

+-σ
q
0 (vi jiv f j f j2; vr ),

(23)

Figure 3: Ab initio speed dependences of the broadening, γ (black solid), and
shift, δ (red solid), parameters for the deuterium S(2) 2-0 line at 294.9 K. These
parameters are determined from fully quantum scattering calculations separately
for each rotational state of perturbing D2 and averaged over a proper nuclear spin
statistic. As a reference, the gray curve shows the corresponding Maxwellian
speed distribution (arbitrary units). The black and red dashed lines are the
speed-averaged collisional broadening, γ0, and shift, δ0, respectively.

where vp is the most probable speed of the perturber distribution
(in the self-perturbed case, vp = vm). In Fig. 3, we show our ab
initio Γ(v) and ∆(v) for the 2-0 S(2) line. A direct expression for
the decomposition of the Γ(v) and ∆(v) functions in the Burnett
basis is given in Ref. [24].

To account for the unphysical properties of the HC kernel and
the speed dependence of Γ and ∆, following Refs. [24, 29, 50],
we extend Eq. (13) to

Ŝ f = −Γ(v) − i∆(v) + νoptM̂
f
BB. (24)

Depending on the pressure range, the transport-relaxation equa-
tion, Eq. (3), with the collisional operator given by Eq. (24)
is solved either with a simple diagonalization method (at high
pressures) [50, 51] or with an iterative method [52] in the full
pressure range. The line shape originating from this approach,
Eqs. (4), (5), (15), (23) and (24), is called the speed-dependent
billiard-ball profile [24] with ab initio speed dependence and ab
initio correlations between decoherence and velocity changes
(SDaiBBP).

3. Experimental spectra analysis

In this section, the details of the analysis of our experimental
spectra are presented. We discuss the importance of employing
a proper description of collisions in order to accurately describe
the molecular line shapes. We also discuss the difficulties related
to some technical issues such as the presence of etalons and the
systematic errors resulting from numerical correlations between
some parameters of the model.

3.1. Experimental setup
We measured the S(2) line from the 2-0 band of D2 at

four pressures (247.2, 471.3, 743.8 and 984.4 Torr) and at a
temperature of 294.9 K. We used a deuterium sample having a
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purity of 99.96%. The spectra were collected with a frequency-
stabilized cavity ring-down spectrometer (FS-CRDS) linked to an
optical frequency comb (OFC) [53]. The OFC was referenced to
a primary time standard, the UTC(AOS) (Coordinated Universal
Time from the Astro-Geodynamic Observatory in Borowiec,
Poland). The length of the cavity was 74 cm, which corresponds
to the free spectral range of 204 MHz. The cavity finesse was
approximately 40000. The experimental setup is described in
details in Ref. [54]. The collected spectra are shown in Fig. 4;
see the red dots in the top panel. To achieve high signal-to-noise
ratio (8500 at the highest pressure), approximately 85 spectra
were averaged at each pressure.

3.2. Simple pressure-by-pressure fitswithVoigt and hard-collision
profiles

The simplest approach to determine the unperturbed position
of the line, ν0, is to fit the spectra independently, pressure by
pressure, with some simple symmetric profile and use a linear
extrapolation of the pressure-dependent line position, νp (p),
to the zero-pressure limit. We tested this approach with two
models: the Voigt profile (VP) and the hard-collision profile
(HCP). The residuals are shown in Fig. 4, panels (a) and (b),
and the retrieved values of the parameters are shown in Table 1,
rows (a) and (b). For the case of the VP, the values of the
line-shape parameters are completely unphysical since the VP
does not account for Dicke-narrowing, which is exceptionally
strong in the case of D2. The Dicke-narrowed shape is artificially
reproduced by significant diminishing of ΓD and enlarging of
γ0; compare ΓD and γ0 retrieved with the VP with the ab initio
values, rows (a) and (f) in Table 1. In the case of the VP, the ΓD
parameter was fitted and not constrained to the value determined
from the temperature (otherwise, the shape of the VP does not
fit the experimental spectra at all). The values of the line-shape
parameters are more reasonable when the HCP is employed since
it considers Dicke-narrowing (in this case, ΓD is fixed to the
value determined from temperature). Nevertheless, the fitted
parameters remain far from the real values, compare with rows
(c) and (f) in Table 1, and the residuals are almost as bad as in
the case of the VP; see panel (b) in Fig. 4. The shapes of the
two models, the VP and the HCP, are different, but since both
of them are symmetric, the pressure-dependent line positions,
νp , determined with them are almost the same; see Fig. 5. The
shapes of the D2 lines are asymmetric due to collisional effects,
and the degree of this asymmetry depends on the pressure (the
asymmetry vanishes at low pressures and saturates at some
constant pressure-independent level in the high-pressure limit).
Consequently, νp determined with a symmetric-profile fit does
not scale linearly with pressure (see the top panel in Fig. 2 in
Ref. [16]), which is usually neglected in the line-shape analysis.
We show this nonlinear behavior in the bottom panel of Fig. 5.
The linear extrapolation of νp to the zero-pressure limit leads
to a systematic error in ν0 at the level of 0.18 · 10−3 cm−1 or
5 MHz; see δν0 for the VP and the HCP in Table 1.

It should be noted that the residuals from the HCP, shown in
panel (b) in Fig. 4, would be much larger if the multi-spectrum
fitting approach would be applied and a more physical behavior
would be enforced (for instance, enforcing the linear pressure

dependence of at least one of the collisional parameters or fixing
some of these parameters to their real values).

3.3. Ultimate multi-spectrum fit with ab initio line-shape model
We eliminate the above-mentioned systematic error in the

determination of ν0 by employing the ab initio line-shape model
(SDaiBBP; see Sec. 2) in the analysis of our experimental spectra.
To avoid numerical correlations between some parameters of
the line-shape model and hence systematic errors in the retrieval
of their values (in particular, in the value of ν0), we use the
multi-spectrum fit approach, and we fix the speed dependence
of the broadening and shift to the ab initio values. A detailed
discussion on the influence of the numerical correlations is given
in Sec. 3.4. To quantify the strength of the speed dependence
of the broadening and shift and to have the ability to adjust its
magnitude in the fitting routines (see Sec. 3.4) while preserving
the ab initio shape of these functions (see Fig. 3), we introduce
two parameters, γSD and δSD, defined by the following equations:

γ(v) = γ0 + γSDbγ (v), (25)

δ(v) = δ0 + δSDbδ (v). (26)

To ensure the uniqueness of the choice of the γSD and δSD
parameters, an additional normalization-like condition has to be
implied in the dimensionless functions bγ (v) and bδ (v):

d
dv

bγ (v)
�����v=vm =

d
dv

bδ (v)
�����v=vm =

2
vm

. (27)

It should be noted that since γ0 and δ0 are speed-averaged
values of γ(v) and δ(v), the average of bγ (v) and bδ (v) over
the Maxwell velocity distribution is zero. Direct expressions for
calculating γSD and δSD from ab initio γ(v) and δ(v) functions
are

γSD =
vm

2
d
dv
γ(v)

�����v=vm , (28)

δSD =
vm

2
d
dv
δ(v)

�����v=vm . (29)

Our best determination of the line position and the line-shape
parameters, retrieved with SDaiBBP, are given in row (c) in
Table 1. The broadening parameter, γ0, agrees with the ab initio
value within approximately 5 %; compare with row (f) in Table 1.
Much worse agreement, approximately 27 %, is observed for
the shift parameter δ0. The discrepancy is caused by the PES
[40] inaccuracy (the line shift is substantially more sensitive to
PES imperfections than the line broadening). A new H2-H2 PES,
which is under development [55], will allow us to reduce this
discrepancy considerably. It has to be emphasized that for the
determination of the line position, ν0, the inaccuracy of the ab
initio line shift, δ0, is not that crucial because we fit the value
of this parameter to experimental spectra. The critical part of
our analysis is the ab initio value of δSD since we keep it fixed in
the multi-spectrum fit procedure. This is one of the parameters
determining the asymmetry of the line (see the discussion in
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Sec. 3.4); hence, if not correctly handled, it may be responsible
for the systematic error in the retrieved line position ν0. The
systematic error of ab initio δSD is substantially smaller than the
mentioned error of the ab initio δ0. One of the reasons is that
the δ(v) function (red line in Fig. 3) is almost symmetrically
distributed around zero shift, and consequently, the average value,
i.e., δ0 (the red dashed line in Fig. 3), is close to zero. The
relative error of δ0 is as large as 27 % because the reference value
(i.e., the value of δ0) is close to zero. If we refer the absolute
difference between the ab initio and experimental δ0 not to the
value of δ0 but to the range of variability of δ(v) then the relative
error is much smaller. This is why we expect a substantially
smaller relative error of δSD, i.e., the error of the slope of the δ(v)
function. To give a reliable estimation of the uncertainty of our
ab initio δSD, we take advantage of the recent measurements [56]
of the temperature dependence of δ0 for the same line. It should
be noticed that both the speed and temperature dependencies of
δ0 have the same physical origin, i.e., the energy dependence
of the spectroscopic cross-section. Therefore, one of them
automatically gives information about the other. Zaborowski et
al. [56] recently measured the temperature dependence δ0(T ) =
δ0(TREF)(TREF/T )n , with δ0(TREF) = −1.69(1) ·10−3 cm−1/atm,
n = 6.4(2) and TREF = 296 K, whereas our ab initio calculations
gave δ0(TREF) = −1.23 · 10−3 cm−1/atm and n = 7.7. Assuming
a quadratic approximation of δSD (see Appendix A), the relation
between δSD and n is given by a simple analytical formula:
δSD(T ) ≈ δ2(T ) = δ0(T )(1 − n)/3 [44, 57, 58]. Using this
expression, we estimated the uncertainty of our ab initio δSD as
the difference between the ab initio and experimental δ2, which
gives an absolute uncertainty σ(δSD) = 0.25 · 10−3 cm−1/atm
or relative uncertainty of 7 % (the value reported in Table 1 is
expressed in terms of 1σ uncertainty). To estimate the influence
of this uncertainty on the determined value of the line position
ν0, we repeated the multi-spectrum fit procedure while changing
the fixed value of δSD by a more conservative 10 %. The
resulting uncertainty of ν0 constitutes a dominant contribution
to the uncertainty budget; see row (3) in Table 2. It has to be
emphasized that a more accurate PES will allow the uncertainty
of δSD to be reduced considerably - we have already demonstrated
this [59] for the case of He-perturbed H2, for which a highly
accurate PES is already available [60]. The theoretical value of
νropt reported in Table 1 is a classical frequency of the velocity-
changing collisions from the hard-sphere approximation, which
is consistent (at room temperature) with the more realistic value
calculated from amass diffusion coefficient within approximately
3 % [44]. A larger contribution to the uncertainty originates
from the fact that νropt may differ from the usual frequency of the
velocity-changing collisions by as much as γ0. Therefore, we
estimate the 1σ uncertainty of νropt at 2.3 · 10−3 cm−1/atm. One
should note that this quantity serves here as a reference only and
it does not influence the uncertainty of the ν0 determination.

The fitted line area, within its statistical uncertainty, does not
exhibit any deviations from linear scaling with pressure and the
intercept value is consistent with zero; hence, the influence of
the pressure gauge accuracy on the ν0 determination is negligi-
ble. We estimated the influence of the temperature instability
on ν0 by examining the correlation between the temperature

Table 2: Estimated contributions to the standard uncertainty budget of our
experimental determination of the frequency of the S(2) 2-0 transition in D2, ν0
= 187 104 300.038 (401) MHz.
Uncertainty source (type) u(ν0) / kHz
1) Statistics, 1σ (A) 132
2) Optical frequency comb (A+B) < 1
3) Line-shape analysis (B) 357
4) Instrumental systematic shift (B) 47
5) Relativistic asymmetry (B) < 3
6) Pressure gauge nonlinearity (B) < 1
7) Etalons (B) 59
8) Temperature instability (A+B) 100
Standard combined uncertainty 401

and pressure. Note that for small temperature deviations the
temperature dependence of the pressure shift is linear, hence
instead of checking the pressure dependence of the temperature
variations of the line shift we can check the pressure dependence
of temperature. The difference between the mean temperature
and its extrapolation to zero pressure is 0.11 K. The temperature
dependence of δ0, determined from our ab initio calculations and
validated with experiment, is smaller than 1 MHz/K at 1 atm and
294.9 K, which allows us to estimate the temperature instability
contribution as 100 kHz; see Table 2.

3.4. Numerical correlations between the parameters of the line-
shape models and influence of the etalons

In the previous section, we noted that the main source of the
uncertainty of our determination of ν0 is the uncertainty of the
fixed ab initio magnitude of the speed dependence (mainly, δSD).
One may wonder whether this uncertainty can be reduced simply
by fitting the γSD and δSD parameters (together with all the other
line-shape parameters) to experimental spectra. In this section,
we show that this straightforward approach is very problematic
and does not provide good control over the systematic errors.
The reason for this is a strong numerical correlation between
the line-shape parameters, i.e., several line-shape parameters
have very similar influences on the shape of the molecular line,
and instead of retrieving their real values, the fitting algorithm
reconstructs the shape of the line in a geometrical sense by
adjusting unphysical values of the line-shape parameters. For
us, particularly unwanted is a correlation between the line-
shape parameters responsible for the asymmetry of the line, i.e.,
δSD and νiopt, and the parameters effectively determining the
position of the line, i.e., ν0 and δ0. To some extent, they can
be decorrelated by employing the multi-spectrum fit approach,
i.e., fitting the spectra at all the pressures simultaneously and
constraining a proper pressure dependence of the parameters
at the same time [63, 64]. It turns out, however, that this is
insufficient. In row (d) of Table 1, we show the results of the
same analysis as in our ultimate fit, which can be observed in
row (c), but also adjusting the parameters γSD and δSD. Clearly,
the retrieved values of the line-shape parameters suffer from
much larger systematic errors, and some of them are completely
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Figure 4: Rovibrational 2-0 S(2) line of D2 recorded at 247.2, 471.3, 743.8 and 984.4 torr. Panels (a) to (e) show the residuals from fits obtained with different
approaches. For additional details, see Table 1. The (a)-(e) denotation is the same for the above panels and the rows in Table 1. In panel (e), we show the two etalons
retrieved from our ultimate multi-spectrum fits. The blue and green lines are the etalons with fixed periods of 5.4 and 11.4 GHz, respectively, whose phases and
amplitudes were fitted.
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Figure 5: Pressure dependence of the collision-shifted line position, νp , for
the pressure-by-pressure fits with the Voigt profile (black triangles) and the
hard-collision profile (green circles). The black and green lines are linear
fits to the Voigt and hard-collision profile positions, respectively (the green
line is covered by the black one). The red line is the linear pressure shift,
ν0 + pδ0, determined with the speed-dependent billiard-ball profile with ab
initio speed dependence (here, we do not have points for every pressure since
the multi-spectrum fit approach was employed), where ν0 = 6241.127655 cm−1
and δ0 = −1.756 · 10−3 cm−1/atm. The dashed blue and orange horizontal lines
indicate the experimental [18] and theoretical (this work) determinations of ν0.
The lower panel shows the residuals from the linear fit to the green circles.

Figure 6: Comparison of our experimental (red dot) and theoretical (gray
dot) determination of the energy of the S(2) 2-0 line in D2 with the previous
experimental results: Gupta et al. [61] (black dot), Kassi et al. [62] (green dot)
andMondelain et al. [18] (blue dot). The inset shows the last three points zoomed
in on.

unphysical. For instance, the γSD parameter (responsible for
profile narrowing) is strongly correlated with γ0 and νropt because
all these parameters effectively determine the width of the line
(none of them influence the asymmetry of the line). A comparison
of their values with the results in rows (c) and (f) in Table 1 reveals
the unphysical flow of the contributions between them. Larger γ0
and smaller γSD increase the profile width, which is compensated
by a larger value of the Dicke-narrowing parameter. The retrieved
value of γSD is negative. This is completely unphysical because
it implies that, for a large range of D2 speeds, the pressure
broadening is negative, which does not make any physical sense.
Similarly, the considerably overvalued νropt is certainly unphysical
(the presence of the relaxations in the system makes the νropt
parameter smaller than the frequency of the velocity-changing
collisions, but there is no physical mechanism that could make it
larger). The same problems occur in the case of the parameters
responsible for the asymmetry of the line, i.e., δSD and νiopt. The
fitted value of δSD is nearly zero, which strongly contradicts both
our ab initio calculations and the recent experimental temperature
dependence of δ0 [56]. The unphysical asymmetry of the line
shape indispensably results in an unphysical shift in the retrieved
zero-pressure line position ν0 (at the 1 MHz level in this case).
Concluding, when all the line-shape parameters are fitted, due
to the strong numerical correlations, the retrieved values are
completely unphysical. Within this approach, we do not have
a tool to estimate the systematic error of ν0; therefore, this
approach is useless from the point of view of the ultra-accurate
spectroscopy of the rovibrational structure in weakly interacting
molecules. Finally, one should also note that when all the line-
shape parameters are fitted, the residuals are obviously smaller;
see panel (d) in Fig. 4. However, despite that, the uncertainties
in the retrieved parameters are considerably larger (including the
ν0 parameter); see Table 1. This is a direct manifestation of the
strong numerical correlations (the residuals are smaller, but the
correlations are effectively present in the covariance matrix).

In our experimental setup, two weak etalons [65] are present
with periods of 5.4 GHz and 11.4 GHz; see the green and
blue lines in panel (f) in Fig. 4 (they originate from unwanted
reflections from the vacuumchamberwindows and aremanifested
in the spectra as an additional sinusoidal contribution). These
periods well correspond to the distances between the highly
reflective surfaces of the cavity mirrors and the surfaces of the
vacuumchamberwindows, which are approximately 3 and 1.5 cm,
respectively. We have been measuring the periods of the two
etalons with an empty cavity in a wide frequency range. These
periods are stable over the course of at least six months. To avoid
introducing additional fitted parameters numerically correlated
with ν0, the periods of the etalonswere fixed, and only their phases
and amplitudes were fitted. The strong side of our approach is
that we enforce the correct physical behavior of the line shape as
a function of pressure by not only employing the multi-spectrum
fit but also fixing the experimentally validated [56] ab initio
speed dependence. This allows us to avoid situations wherein
some unphysical combination of the line-shape parameters and
etalons phases and amplitudes is fitted. To illustrate the necessity
of employing the two etalons in our analysis, we show in panel
(e) in Fig. 4 the residuals from the same fit as in our ultimate
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approach but without fitting the etalons; the retrieved values of
the line-shape parameters are given in row (e) in Table 1. The
fitted line-shape model was slightly perturbed to compensate
the lack of the etalons in the spectrum model. This effectively
leads to a systematic error in the ν0 determination at the level
of 2 MHz. In our ultimate fit, row (c) in Table 1, we estimated
the etalons’ contribution to the uncertainty budget to be 59 kHz
by varying the fixed values of their periods by a conservative
amount of 10 %; see row (7) in Table 2. It has to be emphasized
that in future experiments aiming at kilohertz accuracy of ν0,
the contribution of the etalons does not constitute a fundamental
limitation because their influence can be considerably reduced
in a few independent ways. For instance, the vacuum chamber
windows can be covered with antireflection coatings and wedge
mounted. The residual etalon structure can be better decorrelated
from the line-shape structure by measuring the spectrum across a
wider range (including very far wings where etalons dominates).

3.5. Experimental determination fo the line position
The value and uncertainty budget of the determined line

position are given in Table 2. Figure 6 shows a comparison with
the previous experimental determinations of ν0. Our result agrees
with the value recently reported by the group from Grenoble
[18], which has only slightly larger uncertainty. The dominant
component of the uncertainty budget is the inaccuracy in the
ab initio calculations of the speed dependence of the collisional
shift. It determines the asymmetry of the line; hence, it can be
responsible for the systematic error in the retrieved line position
ν0. The total combined standard uncertainty of the measurement
is 401 kHz. Despite the twenty-times-shorter effective optical
path, we achieved the same sub-megahertz level of accuracy as
the previous Doppler-regime measurements [18] (σ = 500 kHz
in Ref. [18]).

4. Ab initio calculations of rovibrational splitting

In this section we describe our theoretical determination of
ν0, which takes into account relativistic and QED corrections
up to α5 (α is the fine-structure constant). The experimental
value of the energy of the S(2) 2-0 transition in D2 reported
here differs from our theoretical determination by 3.4σ; see
Table 3. The reason for this discrepancy is not known. We
suppose that it is most probably caused by underestimation of
the combined relativistic nonadiabatic effects and not by the loss
of numerical precision. The nonrelativistic energy is obtained
here via a fully nonadiabatic approach with explicitly correlated
exponential functions using octuple precision arithmetics [66].
The relativistic corrections E (2) and E (4) , taken from [67, 68],
were obtained using explicitly correlated Gaussian functions
that exactly satisfy the interelectronic cusp condition, thus en-
suring high numerical precision. Only the QED correction E (3)

[69], calculated using the standard explicitly corrected Gaussian
functions, exhibits some numerical uncertainty of relative order
10−3. The higher order correction E (5) is only estimated using
the known atomic hydrogen results and assuming that it scales

Table 3: Contributions to the theoretical determination of the energy of the S(2)
2-0 transition in D2. E (2) , E (3) , E (4) , and E (5) are calculated in the Born-
Oppenheimer (BO) approximation; therefore, they contain the uncertainty due to
nonadiabatic corrections, denoted by ()na, while the other uncertainty corresponds
to approximate numerical evaluation. Lack of the specified uncertainty means
that it is negligible. EFS is the finite nuclear size correction. In the bottom part
of the table, we compare the recent experimental determination [18] with our
measurement. The last row is the combined value of these two experimental
energies.

Contribution cm−1
E (0) (nonrelativistic) 6241.120920(1)
E (2) (α2 relativistic) 0.040057(20)na
E (3) (α3 QED) -0.03315(3)(2)na
E (4) (α4 QED) -0.000299
E (5) (α5 QED) 0.000019(10)
EFS -0.000032
Total theor. 6241.127515(42)
Expt.a 6241.127637(17)
Expt.b 6241.127655(13)
Combined expt. 6241.127647(11)
aRef. [18]
bThis work

proportionally to the square of the electron wave function at
the nuclei. However, all the relativistic contributions have been
calculated within the Born-Oppenheimer approximation and
thus neglect the combined relativistic nonadiabatic corrections.
These corrections usually scale with the ratio of the electron to
the reduced nuclear mass, resulting in a 5 × 10−4 factor. For the
considered here S(2) line, it gives a quite small uncertainty of
2 × 10−5. The problem is that the leading relativistic correction
E (2) is anomalously small; as a result, this reduced mass scaling
may not be valid in this particular case. Indeed we observed
in Ref. [68] similar discrepancies for other transitions in H2
and D2. In conclusion, the present discrepancy is most likely
caused by the underestimated combined nonadiabatic-relativistic
correction.

5. Conclusion

In this article we presented accurate measurements of the
weak quadrupole S(2) 2-0 line in self-perturbed D2 in a pressure
range from 247 - 984 Torr. We performed a detailed analysis
of the collisional line-shape effects, which originates from fully
quantum calculations ofD2-D2 scattering. The velocity-changing
collisions are handled with the collisional kernel based on hard-
sphere approximation of the potential. The experimental and
theoretical pressure broadening and shift are consistent within
5% and 8%, respectively (the discrepancy for the shift is referred
not to the speed averaged value, which is close to zero, but to the
range of variability of the speed-dependent shift). We use our
high pressure measurement to determine the energy, ν0, of the
S(2) 2-0 transition. The ab initio line-shape calculations allowed
us to mitigate the expected collisional systematics reaching the
410 kHz accuracy of ν0. We report theoretical determination of ν0
taking into account relativistic andQEDcorrections up toα5. Our
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estimation of the accuracy of the theoretical ν0 is 1.3 MHz. We
observe 3.4σ discrepancy between experimental and theoretical
ν0 which, most likely, is caused by underestimation of the
combined relativistic nonadiabatic effects. The presentedmethod
of employing the ab initio line-shape modeling in determination
of the energies of weak molecular transitions has a large potential
for further improvements (considerable improvement can be
reached by using more accurate PES or by using optical cavity
with higher finesse), hence it potentially could be used for
addressing the problems of the proton radius [70–72] and its
mass [73] or for searching for new physics [1] with the help of
very accurate calculations of the molecular levels [67].
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Appendix A. Quadratic approximation of the speed depen-
dence of γ and δ

The definition of γSD and δSD introduced in Sec. 3.3, namely,
in Eqs. (25-29), is very convenient for practical purposes because,
in the case of the widely used quadratic approximation,

γ(v) ≈ γ0 + γ2
(
v2

v2m
− 3
2

)
, (A.1)

δ(v) ≈ δ0 + δ2
(
v2

v2m
− 3
2

)
, (A.2)

the γSD and δSD parameters are simply equal to γ2 and δ2,
respectively. Then, the physical meaning of this approximation
is that the slopes of the quadratic and ab initio speed dependences
are the same at the most probable speed vm .
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