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In this paper, we propose a new simple and learning-free deep learning network named MomentsNet, whose convolution layer, nonlinear processing layer and pooling layer are constructed by Moments kernels, binary hashing and block-wise histogram, respectively. Twelve typical moments (including geometrical moment, Zernike moment, Tchebichef moment, etc.) are used to construct the MomentsNet whose recognition performance for binary image is studied. The results reveal that MomentsNet has better recognition performance than its corresponding moments in almost all cases and ZernikeNet achieves the best recognition performance among MomentsNet constructed by twelve moments. ZernikeNet also shows better recognition performance on a binary image database than that of PCANet, which is a learning-based deep learning network.

Convolutional neural networks (CNNs) with backpropagation process have shown its great success in various image classification tasks [START_REF] Lecun | Gradientbased learning applied to document recognition[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Sermanet | Overfeat: Integrated recognition, localization and detection using convolutional networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF]. However, backpropagation process has very high computational complexity. To address this issue, convolutional networks without backpropagation have been proposed by many researchers. Chan et al. [START_REF] Chan | PCANet: A simple deep learning baseline for image classification?[END_REF] proposed a lightweight and learning-based convolutional network named principle component analysis network (PCANet), who extracts the feature of the input images by using cascaded PCA filter, binary hashing, and block-wise histogram successively. PCANet does not use the backpropagation process but works unexpectedly well in most image classification tasks. Due to the success of PCANet, many researchers try to modify and extend this network in recent years [START_REF] Ng | DCTNet: A simple learning-free approach for face recognition[END_REF][START_REF] Feng | DLANet: A manifold-learning-based discriminative feature learning network for scene classification[END_REF][START_REF] Yang | Canonical correlation analysis networks for two-view image recognition[END_REF][START_REF] Zeng | Color image classification via quaternion principal component analysis network[END_REF][START_REF] Qin | DeepFish: Accurate underwater live fish recognition with a deep architecture[END_REF]. Ng and Teoh [START_REF] Ng | DCTNet: A simple learning-free approach for face recognition[END_REF] proposed a discrete cosine transform network (DCTNet) for face recognition. Feng et al. [START_REF] Feng | DLANet: A manifold-learning-based discriminative feature learning network for scene classification[END_REF] proposed a discriminative locality alignment network (DLANet) for scene classification. Yang et al. [START_REF] Yang | Canonical correlation analysis networks for two-view image recognition[END_REF] proposed a canonical correlation analysis network (CCANet) for two-view image recognition.

On the other hand, image moments [START_REF] Teague | Image analysis via the general theory of moments[END_REF][START_REF] Mukundan | Image analysis by Tchebichef moments[END_REF][START_REF] Yap | Image analysis by Krawtchouk moments[END_REF][START_REF] Zhu | Image analysis by discrete orthogonal dual Hahn moments[END_REF][START_REF] Yap | Two-dimensional polar Harmonic transforms for invariant image representation[END_REF][START_REF] Hoang | Generic polar harmonic transforms for invariant image representation[END_REF][START_REF] Mukundan | Fast computation of Legendre and Zernike moments[END_REF][START_REF] Shu | Fast computation of Tchebichef moments for binary and grayscale images[END_REF][START_REF] Asli | Fast computation of Krawtchouk moments[END_REF][START_REF] Teh | On image analysis by the methods of moments[END_REF][START_REF] Liao | On image analysis by moments[END_REF] are widely used in binary image recognition due to their invariant representations of images. The image moments have a wide range of orthogonal and nonorthogonal basis functions and are simple to compute whatever the order requires. The image sampling can be either rectangular or polar, based on uniform or nonuniform lattices. The researchers conducted on various moment families which showed the efficiency of the moments. Geometric moments are the simplest moments but they are not orthogonal. Teague [START_REF] Teague | Image analysis via the general theory of moments[END_REF] introduced the continuous orthogonal moments (COTs) for which Legendre moments and Zernike moments are two typical representatives. To overcome the discretization error problem of the COTs, researchers proposed various discrete orthogonal moments, including Tchebichef moments [START_REF] Mukundan | Image analysis by Tchebichef moments[END_REF], Krawtchouk moments [START_REF] Yap | Image analysis by Krawtchouk moments[END_REF] and dual Hahn moments [START_REF] Zhu | Image analysis by discrete orthogonal dual Hahn moments[END_REF], etc. In order to get a more invariant image representation, Yap et al. [START_REF] Yap | Two-dimensional polar Harmonic transforms for invariant image representation[END_REF] produced a set of polar harmonic transforms (PHTs), including polar complex exponential transform (PCET), polar cosine transform (PCT), and polar sine transform (PST). Hoang and Tabbone [START_REF] Hoang | Generic polar harmonic transforms for invariant image representation[END_REF] then presented a set of generic PHTs (GPHTs), including generic PCET (GPCET), generic PCT (GPCT), and generic PST (GPST). Note that many fast algorithms for example, [START_REF] Mukundan | Fast computation of Legendre and Zernike moments[END_REF][START_REF] Shu | Fast computation of Tchebichef moments for binary and grayscale images[END_REF][START_REF] Asli | Fast computation of Krawtchouk moments[END_REF] are proposed for moments due to their learning-free (or independence of input data) properties, while deriving the fast algorithms for learning-based PCA is very difficult. For more references on moments, we refer to [START_REF] Shu | Moment-based approaches in imaging Part 1: basic features[END_REF][START_REF] Mukundan | Moment Functions in Image Analysis: Theory and Application[END_REF][START_REF] Flusser | Moments and Moment Invariants in Pattern Recognition[END_REF].

In this paper, we propose a novel simple and learning-free deep learning network named MomentsNet for extracting the features of the input images. Learning-free deep learning network means that all the three layers (the convolution layer, nonlinear processing layer and pooling layer) of the network are independent of input data.

The rest of the paper is organized as follows. In Section 2, various moments are briefly introduced. The architecture of MomentsNet is described in Section 3. The recognition performance of MomentsNet is analyzed with respect to various parameters and also compared to moments, and PCANet in Section 4. Section 5 concludes the paper.

The general definition of two-dimensional (n+m)th order moment is given by , where ( , ) nm x y and ( , ) nm r are moments kernels in Cartesian coordinates and in polar coordinates, respectively. f(x,y) and f(r, ) are image values in Cartesian coordinates and in polar coordinates, respectively. A summary of the moments used in this paper is given in Table 1.

The architecture of the proposed MomentsNet is summarized in Fig. 1. We then take the MomentsNet-2, in which the first two convolutional layers are constructed by moments, as an example to describe in details. The moments feature maps extracted from the second stage are binarized, weighted, and summed to reduce the redundancy features.
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Firstly, each element in {Ii,j,h, i=1,2,…,N1; j=1,2,…,L1; h=1,2,…,L2} is binarized by using a modified Heaviside function defined as 0, ( ) Since different moment features can capture different variations of the original images, the binarized features should be weighted to form new single moments features as: 
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The feature vector is then sent to a SVM classifier [START_REF] Fan | LIBLINEAR: A library for large linear classification[END_REF] to get the final recognition results.

The database used in the following experiments is a set of binary images of 9 classes, including bird, camel, children, elephant, fork, hammer, key, ray and turtle. Each class contains 144 images and all the images are rotated from 0 to 330 with an increment of 30 . Some image samples are shown in Fig. 2. All the images are then scaled to 32×32 to reduce the computational complexity in the experiments. In this subsection, we focus on the selection of various parameters. We take ZernikeNet as an example to show the impact of the parameters in the following.

(a) (b) Fig. 3 The impact of threshold t. (a) the recognition rate versus the threshold t. (b) the "result" versus the threshold t. Note that the "result" denotes the recognition rate for the curve above and the percentage of 1 after binarization for the curve below.

The impact of threshold t:

From our experiments, the threshold t in modified Heaviside function has a major effect on the final recognition result. To discuss the effect of threshold t, we firstly set the number of filters, patch size, block size and overlapping ratio to 9, 11×11, 8×8, and 0.5, respectively. The experiments are carried out on the one-layer Zernike Moments networks (ZernikeNet-1) for simplicity. Fig. 3(a) shows the recognition rates vary with the change of threshold t. We can see that there is a dramatic change in the recognition rate as the threshold t changes and the recognition rate is relatively good when 0.1 t 0.2. A question is raised: Is there any other parameters that help to choose the threshold value t? Since t decides the proportion of the number of 1 and 0 in the image after the binarization, we thus additionally record the percentages of the number 1. Fig. 3(b) is the recognition result or the percentage of 1 after binarization vary with the threshold changes from 0 to 0.2 with step 0.01. From the figure, we can find that when the percentage of 1 is in the range of [0.3, 0.5], the thresholds correspond to good recognition results. This is in fact a good guidance for the choice of threshold value t not only for ZernikeNet-1 but also for ZernikeNet-2. For ZernikeNet-1, we set the threshold t to 0.1.

The impact of the number of filters Ll, patch size k1×k2, block size h1×h2, and overlapping ratio R:

Fig. 4 shows the recognition results as the parameters change. It is apparent that the recognition rate tends to be better with the increase of the number of filters L1, but the performance does not improve greatly when L1>13. The recognition rate tends to first rise and then fall with the increase of the patch size k1×k2 and the block size h1×h2. ZenikeNet-1 can get the best performance when the patch size and the block size are 11×11 and 4×4, respectively. Comparing with other parameters, the overlapping ratio R has little impact on the recognition rate. We simply set R=0.5. ZenikeNet-1 achieves the recognition accuracy of 96.72% with the aforementioned parameter setting. We compare the performance of the proposed MomentsNet with the moments and also the PCANet [START_REF] Chan | PCANet: A simple deep learning baseline for image classification?[END_REF]. The best recognition rates and their corresponding parameter settings are shown in Table 2. Note that the comparison results are averaged over 5 independent experiments. Note also that the accuracy of moments is obtained by extracting the features by using various moments and then feed the features into the SVM classifier [START_REF] Fan | LIBLINEAR: A library for large linear classification[END_REF].

From Table 2, we can see that MomentsNet has better recognition performance than its corresponding moments in almost all cases and ZernikeNet performs the best and GeometryNet performs the worst in terms of the recognition performance among MomentsNet constructed by twelve moments. Most learning-free MomentsNet shows better recognition performance than that of PCANet [START_REF] Chan | PCANet: A simple deep learning baseline for image classification?[END_REF], which is a learning-based deep learning network. We also find that the recognition performance of some MomentsNet-1 outperforms its corresponding MomentsNet-2, for example, TchebichefNet. We think the reason is that the descriptive powers of these moments tend to its upper limit when they are used in the construction of one-stage network, therefore, adding more stage is not helpful for improving the recognition performance. In this paper, we propose a simple and learning-free deep learning network named MomentsNet in which 12 different moments are explored in detail. The impact of various parameters on the recognition performance is analyzed in MomentsNet. MomentsNet has better recognition performance than its corresponding moments in almost all cases and also shows better recognition performance than that of PCANet in a typical binary image recognition task.

Fig. 1

 1 Fig. 1 The Architecture of MomentsNet-2

  …,N1; j=1,2,…,L1. The pixel values of Ti,j are integers in the range of use a block of size h1×h2 to slide each of the L1 images Ti,j, j=1,2,…,L1, with overlap ratio R. Then, the features are divided into B boxes and we compute the histogram of the decimal values for each box and denote it as hist(B)d, d=1,2,…,B. After this pooling process, we concatenate all the histograms of B boxes into one vector

Fig. 2

 2 Fig. 2 Some Samples of Binary Image Database We randomly pick up half of the images in each class as the training set and the others left as the testing set.

Fig. 4

 4 The recognition rates versus various other parameters. (a) the recognition rate versus the number of filters; (b) the recognition rate versus the patch size; (c) the recognition rate versus the block size; (d) the recognition rate versus the overlap ratio.
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Table 2 .

 2 The best recognition rates of different methods. Quintets (L1, k1, h1, R, t) whose elements denote the number of filters, patch size, block size, overlap ratio, threshold, respectively. Note that we always set L2=L1, k2=k1, and h2=h1, in this paper.

		The	The accuracy of	The accuracy of
	Moment	accuracy of	MomentsNet-1	MomentsNet-2
	s	Moments	(%)	(%)
		(%)		
	Geometr	12.11±1.01	68.09±3.51	67.32±3.98
	y	(n+m=4)	(9, 13, 3, 0.5, 0)	(9, 13, 3, 0.5, 0)
	Legendr	35.03±1.54	90.97±2.55	91.98±2.62
	e	(n+m=16)	(11,11,3,0.6,-0.02)	(11, 11, 3, 0.5, 0)
	Zernike	80.48±2.39	±1.97	
		(n+m=16)		
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