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Abstract

Ventricular arrhythmias in Brugada syndrome (BS) typically occur at rest and especially dur-

ing sleep, suggesting that changes in the autonomic modulation may play an important role

in arrhythmogenesis. The autonomic response to exercise and subsequent recovery was

evaluated on 105 patients diagnosed with BS (twenty-four were symptomatic), by means of

a time-frequency heart rate variability (HRV) analysis, so as to propose a novel predictive

model capable of distinguishing symptomatic and asymptomatic BS populations. During

incremental exercise, symptomatic patients showed higher HFnu values, probably related to

an increased parasympathetic modulation, with respect to asymptomatic subjects. In addi-

tion, those extracted HRV features best distinguishing between populations were selected

using a two-step feature selection approach, so as to build a linear discriminant analysis

(LDA) classifier. The final features subset included one third of the total amount of extracted

autonomic markers, mostly acquired during incremental exercise and active recovery, thus

evidencing the relevance of these test segments in BS patients classification. The derived

predictive model showed an improved performance with respect to previous works in the

field (AUC = 0.92 ± 0.01; Se = 0.91 ± 0.06; Sp = 0.90 ± 0.05). Therefore, based on these

findings, some of the analyzed HRV markers and the proposed model could be useful for

risk stratification in Brugada syndrome.

Introduction

Brugada syndrome (BS) is an inherited disease presenting a typical pattern on the electrocar-

diogram (ECG), characterized by a distinct ST-segment elevation in right precordial leads,

associated with a high risk for unexpected sudden cardiac death (SCD), secondary to ventricu-

lar fibrillation (VF) in absence of any apparent structural cardiopathy [1, 2]. Since its initial

description in 1992 as a new cardiac syndrome [3], BS has raised a great interest due to its high

incidence, especially in far eastern countries, and its association with sudden death in young
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adults and, less frequently, in infants and children. It has been estimated that BS is responsible

for 4–12% of the total amount of SCD and for 20% of SCD in patients with structurally normal

hearts [4, 5].

Although several methods have been evaluated for the prediction of VF occurrence, studies

based on the largest clinical series including BS patients only proved two consistent and reli-

able predictors of major cardiac events: documented symptoms and spontaneous type 1 Bru-

gada-like ECG pattern [5, 6]. As a consequence, risk stratification in order to determine the

best treatment approach for these patients still remains challenging, especially for asymptom-

atic individuals without documented VF episodes.

Ventricular arrhythmias (VA) in BS typically occur at rest and especially during sleep, sug-

gesting that parasympathetic activity may play a relevant role in the arrhythmogenesis of the

disease [7, 8]. Moreover, a sympathetic autonomic dysfunction on BS patients has been

reported in previous works on cardiac autonomic nervous system (ANS) analysis based on

positron emission tomography [8–11]. Thus, changes in the autonomic modulation captured

by heart rate variability (HRV) analysis may provide useful information for the prediction of

VA in these patients. Indeed, the autonomic function has already been studied in BS, but most

previously reported autonomic markers are based on long-term measurements, being time-

consuming and leading to contradictory results [12–18]. The evaluation of the autonomic

response can be better characterized by stimulating the ANS in a controlled and repeatable

fashion, by applying standardized maneuvers such as physical stress testing, pharmacological

stimulations or the head-up tilt test. Physical exercise induces an increase in sympathetic activ-

ity and a parasympathetic withdrawal, resulting in higher heart rates (HR). Conversely, post-

exercise cardio-deceleration is mediated by a progressive rise in vagal activity [19], as well as a

continued sympathetic recession [20]. Indeed, previous works have reported the potential of

exercise testing to predict VA in patients suffering from BS [21–25]. Nevertheless, we are not

aware of any study having analyzed the temporal progression of the autonomic response

under conditions of exercise and recovery in this population.

In this work, a time-frequency approach was applied on 105 BS patients at different levels

of risk (symptomatic and asymptomatic) so as to characterize the temporal evolution of several

HRV features in response to exercise. Then, a multivariate approach based on a step-based

machine learning method was implemented to identify those extracted HRV features best dis-

tinguishing between populations. Based on the hypothesis that changes in the autonomic func-

tion could improve prognosis interpretation in BS, the main objective of the study was to build

a multivariate classifier capable of identifying patients at high risk.

Materials and methods

Study population

The standard 12-lead ECG recordings from 118 consecutive patients diagnosed with Brugada

syndrome who took part in a physical stress test were collected during a prospective, multi-

centric study conducted between 2009 and 2013 in the Cardiology department of the Rennes

University Hospital (CHU de Rennes), in France. Participants were enrolled in 6 French hos-

pitals located in Rennes, Saint Pierre de la Réunion, Nantes, Bordeaux, Brest and La Rochelle.

The study protocol was approved by the respective local ethics committees: Comité d’Éthique

du CHU de Rennes, Comité d’Éthique du CHU Saint-Pierre, Comité d’Éthique du CHU de

Nantes, Comité d’Éthique du CHU de Bordeaux, Comité d’Éthique du CHU de Brest and

Comité d’Éthique du Centre Hospitalier de La Rochelle. All patients provided their written

informed consent before participation. Nevertheless, only 105 recordings met the quality crite-

ria to be included in the analysis.

Brugada syndrome classification based on autonomic response to exercise testing
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In accordance with the current guidelines [1, 2], BS was diagnosed when a coved ST-seg-

ment elevation (� 0.2 mV) was recorded in at least one right precordial lead (V1 and/or V2)

located in the 2nd, 3rd or 4th intercostal space, in the presence or absence of sodium-channel-

blocking agent.

In order to characterize populations with different levels of risk, patients were classified as

symptomatic and asymptomatic, based on their medical history. Twenty-four patients pre-

sented documented symptoms of ventricular origin: syncope (50%), cardiac arrest (41.7%),

dizziness (12.5%) and, less frequently, palpitations and nocturnal convulsions (4.2%). The

remaining 81 patients were considered as asymptomatic.

Participant ages ranged from 19 to 74 years old (45.17 ± 13.62 years old) and 76.2% were

males. ICDs had been implanted in 18 of 81 (22.2%) asymptomatic patients, based on a posi-

tive EPS (Electrophysiological Study) test, whereas all symptomatic patients had ICDs

implanted. Among 76 patients (19 were symptomatic) in whom genetic analysis was per-

formed, an SCN5A mutation was found in 27 (35.5%). Table 1 summarizes the clinical charac-

teristics of patients included in the study.

The cardiac response to exercise is influenced by the complex interaction of many factors

including age, gender, physical conditioning, sympathetic drive, baroreceptor reflexes and

venous return [26]. Nevertheless, since no significant differences in age, gender and

SCN5A-mutation presence between symptomatic and asymptomatic groups were noted

(p-value>0.05), similar baseline characteristics were assumed between populations.

Data acquisition and test

Patients underwent a triangular exercise test recommended by the American Heart Associa-

tion [27] where the load was increased until it reached the 80% of the theoretical maximum

heart rate of each patient, defined by the formula MHR = 220 − age [28]. The test was per-

formed in a cyclo ergometer (Ergoline 900 Egamed, Piestany, Slovakia) and divided in the fol-

lowing phases:

• Exercise phase:

• Warm-up phase: for men, initial load of 50 watts (W); for women, initial load of 30 W,

both for 2 minutes.

• Incremental exercise phase: for men, initial load of 80 W for 2 minutes and then incre-

menting 20 W every 2 minutes; for women, initial load of 50 W increasing load 20 W

every 2 minutes.

• Recovery phase:

• Active recovery: for men, fixed load of 50 W; for women, fixed load of 30 W, both for 3

minutes.

Table 1. Clinical characteristics of BS patients.

All patients

(n = 105)

Symptomatic

(n = 24)

Asymptomatic

(n = 81)

p-value

Age, years old 45.17 ± 13.62 46.25 ± 15.23 44.85 ± 13.20 0.852

Male sex, n (%) 80 (76.2%) 60 (74.1%) 20 (83.3%) 0.352

ICD implantation, n (%) 42 (40%) 24 (100%) 18 (22.2%) < 0.001

SCN5A mutation, n (%) 27 (35.5%) 6 (31.6%) 21 (36.8%) 0.680

https://doi.org/10.1371/journal.pone.0197367.t001
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• Passive recovery: total cessation of effort for 3 minutes.

The standard 12-lead ECG recordings sampled at 1000 Hz from each patient were collected

and analyzed by the central board (Rennes University Hospital).

Proposed classification methodology

Fig 1 illustrates the global methodology proposed in this paper in order to differentiate symp-

tomatic and asymptomatic BS patients. This methodology is based on a general machine learn-

ing approach built from the following four main steps:

A. Feature extraction. The standard 12-lead ECG signals acquired during exercise testing

were analyzed to detect each QRS complex and extract the RR and ECG-Derived Respira-

tion (EDR) series of each patient. A time-frequency (TF) method based on the smoothed

Fig 1. General diagram of the proposed classification methodology. Data processing is composed of four major steps. A) Feature extraction is

focused on the estimation of a matrix of time-frequency HRV markers (RNM , withN = 105 patients andM = 60 different HRV features), using a time-

varying frequency band that depends on the estimated instantaneous respiratory rate. B) Feature conditioning consists on standardizing and balancing

RNM , leading to matrices FNM and FNbM , respectively, whereNb refers to the 160 observations after class balancing (79 symptomatic and 81 asymptomatic

samples). C) Feature selection, which starts by randomly defining patient subsets for training, (Ntr, 75% of patients, 59 symptomatic and 60

asymptomatic) and testing (Nte, the rest of patients, 20 symptomatic and 21 asymptomatic), followed by the estimation of a minimal feature dimension

Mw<M, that maximizes classification performance, using filtering and wrapper methods. D) The final step is dedicated to classification and

performance evaluation.

https://doi.org/10.1371/journal.pone.0197367.g001
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pseudo Wigner-Ville distribution (SPWVD) of RR series that adapts frequency bands to

respiratory information resulting from EDR signals was applied to estimate the evolution

of different spectral HRV markers. Estimated features include the LF, LFnu,HF,HFnu and
LF
HF mean values at different time periods of the exercise test. The output of this step is

matrix RNM , which contains the calculated raw features, with M = 60 HRV markers for the

N = 105 patients available on the whole database.

B. Feature conditioning. In order to handle the impact of markers measured at different

scales, all features of RNM were standardized, leading to matrix FNM . Then, in order to reduce

the effect of imbalanced classes, 55 synthetic symptomatic patients were generated and

included in the analysis by a class balancing approach, resulting in matrix FNbM , with Nb =

160 observations.

C. Feature selection. After balancing all standardized HRV features, FNbM was divided in a

training subset FNtrM (Ntr = 119, 75% randomly selected patients) and the remaining testing

subset FNteM (Nte = 41). Then, a two-step feature selection process including a filter and a

wrapper method was applied in order to capture the most relevant HRV features. In Fig

1C, FNtrMf
and FNtrMw

indicate the standardized training subsets kept after applying filter (Mf =

45) and wrapper (Mw = 22) methods, respectively. Based on the Mw selected features after

training, a new standardized testing subset FNteMw
was defined.

D. Classification. In the final step, a linear discriminant analysis classifier was applied to

both training and testing subsets, to distinguish symptomatic vs. asymptomatic patients.

After training the classifier with FNtrMw
, its performance was evaluated and quantified based

on FNteMw
.

A more detailed description of each step is presented in the following sections.

Feature extraction

RR series extraction. From the standard 12-lead ECG recordings of each patient, RR-

interval and R-peak amplitude series were extracted by using a noise-robust wavelet-based

algorithm for QRS complex detection and subsequent R-peak location [29]. After performing

manual corrections when necessary, a cubic-spline interpolation was applied to RR-interval

time series, to obtain uniformly sampled data at a rate of 4 Hz. A representative example of RR

series observed during each phase of the exercise test is shown in Fig 2.

Time-frequency HRV analysis. According to the Task Force on HRV [30], classic spec-

tral HRV indices require stationary data to provide accurate estimates of ANS modulation. As

illustrated by an increasing heart rate (decreasing RR series) in proportion to exercise work-

load in Fig 2, given that signals on a physical stress test are typically non-stationary, spectral

characteristics associated with HRV were analyzed using a time-frequency (TF) approach.

First, in order to remove the very low frequency component, RR series were high-pass fil-

tered at 0.03 Hz with a 4th order Butterworth filter applied in both forward and backward

directions so as to remove phase distortion. Then, a smoothed pseudo Wigner-Ville distribu-

tion (SPWVD) transform from the Time-Frequency toolbox [31] was employed since it has

proved its usefulness for the analysis of cardiovascular signals [32].

The Wigner Ville distribution is a quadratic time-frequency method defined as the Fourier

transform of the instantaneous autocorrelation function [33]. However, since it is affected by

significant interference terms, the SPWVD introduces a smoothing kernel function C(τ, υ),

Brugada syndrome classification based on autonomic response to exercise testing
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defined in Costa et al [34], that attenuates interferences while maintaining a suitable time-fre-

quency resolution. Being ARR(τ, υ) the Ambiguity Function of the RR series, xRR(t), the

SPWVD is defined as:

ARRðt; uÞ ¼

Z1

� 1

xRR t þ
t

2

� �
x�RR t �

t

2

� �
e� j2putdt ð1Þ

cðt; uÞ ¼ exp � p
u

uo

� �2

þ
t

to

� �2
" #2l( )

ð2Þ

CRRðt; f Þ ¼
Z Z

cðt; uÞARRðt; uÞe
j2pðtu� tf Þdudt ð3Þ

Kernel parameters were adjusted to υ0 = 0.06 and τ0 = 0.03, obtaining temporal and spectral

resolutions of 16.7 seconds and 0.033 Hz, respectively. Among all the analyzed combinations,

this one led to the most efficient interference terms cancellation for the lowest TF filtering.

Then, HRV was measured as the total power in LF and HF bands (noted as LFb and HFb),

obtained from the SPWVD:

LFðtÞ ¼
Z

LFb
CRRðt; f Þdf ð4Þ

HFðtÞ ¼
Z

HFb
CRRðt; f Þdf ð5Þ

Assuming that sympathetic activity always lies within the standard LF band, this band was

fixed between 0.04 and 0.15 Hz for the whole stress test. However, the total power in the HF

band captures parasympathetic activity, closely related to respiratory sinus arrhythmia (RSA).

Since respiratory frequency during exertion is not restricted to the classic HF band (0.15–0.4

Fig 2. Representative example of RR series. Exercise testing was divided in four phases: warm-up, incremental exercise, active recovery and passive

recovery. HRV time series estimated from the RR sequence were averaged in the following 1-minute windows: both minutes of warm-up (WU1 and

WU2), first 3 minutes of incremental exercise (EX1, EX2, EX3), last minute of exercise before peak effort (PE), 3 minutes of active recovery (AR1, AR2,

AR3) and 3 minutes of passive recovery (PR1, PR2, PR3).

https://doi.org/10.1371/journal.pone.0197367.g002
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Hz) and can increase up to 0.7 Hz, HRV analysis within the standard frequency band would

lead to unreliable measures of the parasympathetic activity. In order to overcome this limita-

tion, we defined a time-varying HF band, based on an estimation of the respiratory activity

from the ECG signal, by applying an ECG-Derived Respiration (EDR) method [35].

Time-varying respiratory frequency estimation. The applied EDR method estimates

respiratory information from the amplitude modulation of R-wave peaks [36]. Cubic-spline

interpolation at a rate of 4 Hz was also applied to the obtained series. Then, a band-pass 4th

order Butterworth filter between 0.15 and 0.7 Hz was applied in both forward and backward

directions to remove frequencies out of the respiratory range. The same SPWVD transform

used for RR series was then applied to EDR filtered signals to estimate the instantaneous respi-

ratory frequency.

The simplest estimation method consists in finding the frequency presenting the largest

peak in the spectrum at each time instant f̂ ðtÞ. However, in order to avoid spurious peak detec-

tions, for each time instant tk, the search interval was limited to frequencies between 2δHz,

centered around a reference frequency fr(tk): [fr(tk) − δ, fr(tk) + δ]. This reference frequency

was defined as an exponential average of previous estimates:

frðtkÞ ¼ bfrðtk� 1Þ þ ð1 � bÞf̂ ðtk� 1Þ; ð6Þ

where β is the forgetting factor. As in [37], a value of β = 0.7 was used, based on real respiratory

patterns during exercise testing and δ = 0.01, since respiratory frequency variations are not

supposed to be faster than 0.01 Hz per 0.25 s. Moreover, to reduce the risk of spurious fre-

quency detections in the initialization of the reference frequency, the first instantaneous respi-

ratory frequency fr(t0) was selected within the standard HF band (0.15 − 0.4 Hz).

Once the estimated respiratory frequency series fr(t) was obtained, the time-varying HF

band for HRV analysis was defined as HFb(t) = [fr(t) − 0.125, fr(t) + 0.125] Hz, with t covering

the whole test.

Final HRV features extraction. Unlike classic autonomic indices, SPWVD leads to time-

frequency HRV estimates that are indeed time series that vary during the exercise testing.

These markers, accounting for the sympathetic and parasympathetic influences of the ANS on

heart rate, were normalized and expressed as percentages of the total power (TP), defined as

the sum of both spectral bands (TP(t) = LF(t) + HF(t)), leading to the time series LFnu(t) and

HFnu(t):

LFnuðtÞ ¼
LFðtÞ
TPðtÞ

� 100 ð7Þ

HFnuðtÞ ¼
HFðtÞ
TPðtÞ

� 100 ð8Þ

From this definition of normalization, it should be noted that LFnu(t) = 100 −HFnu(t) and,

thus, statistical results for both time series are identical. LFHF ðtÞ was also calculated from dividing

LF(t) byHF(t), so as to obtain the global sympathovagal balance.

Finally, all HRV estimates were averaged in temporal non-overlapped windows of 1 minute

for each patient, leading to LFi , LFinu , HFi ,HFinu and LF
HF

i
, which stand for each time series intra-

patient mean for the following time periods: i 2 {WU1,WU2, EX1, EX2, EX3, PE, AR1, AR2,

AR3, PR1, PR2, PR3}. Since each test differed in the incremental exercise phase duration and

the shortest case lasted less than 5 minutes, in order to compare the same time periods between

groups of patients, only the first 3 minutes of incremental exertion (EX1, EX2 and EX3), as

Brugada syndrome classification based on autonomic response to exercise testing
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well as the last minute before peak effort (PE), were assessed. In addition, the entire warm-up

(WU1 and WU2) and both active (AR1, AR2 and AR3) and passive recovery (PR1, PR2 and

PR3) phases were compared between symptomatic and asymptomatic patients. Fig 2 displays

the analyzed periods along the different phases of the exercise test on a representative example

of RR-interval series, indicating the peak effort instant.

From each HRV series, 12 intra-patient 1-minute means were calculated, leading to 60 fea-

tures per patient that, after being compared between populations, were included in the multi-

variate classification approach described herein. Data in S1 Table include the resulting HRV

features for the whole clinical series.

Although the autonomic response to exercise significantly depends on test conditions [38],

since no statistically significant differences in workload at peak effort were observed between

populations (symptomatic: 175.4 ± 56.6 W; asymptomatic: 175.1 ± 55.3 W; p-value: 0.957),

similar exercise intensities in both groups of patients were assumed.

Statistical comparison. Comparisons between symptomatic and asymptomatic patients

at each analyzed minute of the physical stress test were evaluated by Mann-Whitney U non-

parametric tests. In order to compare the last minute of exertion and recovery, all patients had

to be synchronized with respect to the peak effort instant. The analysis was made using the

commercially available software MatLab (Mathworks Inc., MI, USA) and setting the level of

significance at p< 0.05.

Feature conditioning

All features extracted from HRV analysis were considered as candidates for the construction

of a model classifying symptomatic and asymptomatic BS patients. The initial feature subset

RNM was composed of N = 105 observations (24 symptomatic and 81 asymptomatic patients) by

M = 60 features (5 HRV markers for 12 analyzed minutes of test).

In order to equalize the contribution of all features to multivariate analysis, each raw HRV

marker j for each patient i was standardized as follows:

Fij ¼
Rij � mj

sj
; ð9Þ

where μj is the mean and σj the standard deviation of a specific feature j, taking into account

the data from all patients i = 1, � � �, N. The new standardized dataset is defined in matrix FNM .

Then, to attenuate the impact of imbalanced classes, synthetic symptomatic samples were

generated by applying the ADASYN approach [39]. Since this method randomly chooses

examples from the minority class to generate new samples, the algorithm was applied 50 times

and the mean from all realizations was kept as the final balanced dataset FNbM , where Nb = 160

observations. Fig 3 illustrates the feature conditioning process.

Feature selection

To reduce the number of attributes included in the model so as to decrease its computational

cost, we applied a two-step feature selection approach that identified the most relevant features

in distinguishing between symptomatic and asymptomatic patients. As previously mentioned,

Fig 1 specifies the methodology followed for feature extraction and posterior feature selection,

only applied to a randomly selected sample of 75% of the feature database (FNtrM : training sub-

set). The remaining 25% (FNteM : testing subset) was then used for model validation.

Brugada syndrome classification based on autonomic response to exercise testing
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ReliefF filter method. The first step in the feature selection process was a simple filter

method based on the ReliefF algorithm [40]. Since this approach ignores the effects of attri-

butes on classification, it can rapidly remove some irrelevant and redundant features.

The algorithm estimates feature weights W according to their capability of distinguishing

between data from different classes, here symptomatic and asymptomatic patients, based on a

k-Nearest Neighbors (k-NN) approach. The extension of the original Relief method used in

this study, ReliefF, not only deals with multiclass problems but it is also more robust with

incomplete and noisy data.

Hence, the algorithm assigns a relevance weight ranged from −1 to 1 to each feature, with

large positive weights allocated to significant attributes. However, it should be noted that,

since this method is based on a k-NN approach, feature weights usually depend on k. For small

values of k, the estimates can be unreliable for noisy data; while for k values comparable with

Fig 3. Feature conditioning. The raw feature dataset extracted from HRV analysis RNM is standardized, leading to FNM . Then, a class balancing method is

repeated 50 times, so the final value for the balanced dataset FNbM is obtained as the mean from all realizations.

https://doi.org/10.1371/journal.pone.0197367.g003

Fig 4. Filter feature selection based on the ReliefF algorithm. In this step, the complete training dataset FNtrM is employed. For each iteration i, a

random subset composed of 60% of the training data (35 symptomatic and 36 asymptomatic observations) is defined. The weight of all featuresWi
M in

this subset is computed as the averaged weight along k = 10, � � �, 19. This process is repeated 50 times and the final weight of each feature is obtained as

the median from all realizations. Finally, theMf = 45 most relevant features are selected and FNtrMf
is kept as input for the wrapper feature selection step.

https://doi.org/10.1371/journal.pone.0197367.g004
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the number of observations, the algorithm can fail to find significant attributes. Thus, ReliefF

was computed for k = 10, � � �, 19 and W was defined as the average of all weights.

Moreover, since HRV feature values significantly vary over patients, a bootstrap technique

was applied [41]. The algorithm was run 50 times on different randomly chosen subsets

including 60% of the training dataset FNtrM (35 symptomatic and 36 asymptomatic observa-

tions), here represented as FNtriM . Then, the relevance of each feature was obtained as the median

of the 50 realizations analyzed. Fig 4 displays the methodology followed to selectMf as the 75%

most relevant attributes (45 best ranked out of 60 features) that were kept for further analysis.

LDA-based wrapper method. For final feature selection, a second step was applied on

the reduced subset of attributes resulting from the previous stage. It consisted in a wrapper

algorithm with both forward and backward search strategies (floating method), using a Linear

Discriminant Analysis (LDA) classifier as a black box. Since this approach is based on classifi-

cation performance, the final subset is only optimized for this particular classifier [42].

Fig 5 represents the wrapper feature selection process in more detail. As in the previous

step, it was repeated 50 times on different randomly chosen subsets of training data FNtriMf
.

Those features appearing more than L times, among the 50 realizations, formed the final subset

FNtrMw
. The value of L was optimized, based on performance metrics, so as to find the best selec-

tion of features Mw leading to the finest classifier distinguishing between symptomatic and

asymptomatic BS patients.

LDA-based classifier

After selecting the best set of features, an LDA classifier [43] was implemented using a 5-fold

cross-validation approach in order to reduce classification error. This technique divides the

entire training subset FNtrMw
into 5 blocks where each classifier is firstly trained on 4 portions and

then tested on the 5th block. This is performed for the 5 different possible combinations of

blocks for training/testing so the outputs of each solution are then averaged.

In addition, to estimate the mean performance variability of the classifier when applied to

testing data, 5-fold cross-validation was run 10 times on differently divided subsets of training

data. Fig 6 illustrates the steps followed to train and test the LDA classifier. As specified in

Fig 5. Wrapper feature selection based on the floating method and an LDA classifier. Starting from the training set obtained from the filter feature

selection step FNtrMf
, for each iteration i, a subset with 75% of the data FNtriMf

is chosen (45 symptomatic and asymptomatic samples) to tune and train an

LDA-based classifier, then evaluated with the remaining 25% of the random subset FNteiMf
(15 symptomatic and asymptomatic). The strategy is repeated

50 times and those attributes appearing more than L times among all realizations are kept for the final feature subset FNtrMw
.

https://doi.org/10.1371/journal.pone.0197367.g005
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previous sections, 75% of the data FNtrMw
were used for training, and the remaining 25% FNteMw

for

testing.

Performance evaluation

Model performance evaluation was based on the resulting confusion matrix, which specifies

the number of true positives (TP), true negatives (TN), false positives (FP) and false negatives

(FN), when comparing true and predicted labels and considering symptomatic patients as

positives.

First, the AUC or area under the ROC (Receiver Operating Characteristic) curve was com-

puted to quantify the classifier performance. This measure was also assessed in order to opti-

mize the threshold L that led to the best performing classifier after wrapper feature selection.

Moreover, classical sensitivity (Se = TP/(TP + FN)) and specificity (Sp = TN/(TN + FP))

measures, associated with the optimal operating point in the ROC curve, were calculated to

quantify the classifier capability of correctly detecting symptomatic and asymptomatic

patients, respectively.

Results

Single-patient representation

Given that all patients presented similar tendencies in RR and HRV series, the following repre-

sentative example illustrates changes induced by exercise testing on those time series involved

in HRV features extraction.

The upper panel of Fig 7 displays an example of EDR series. Below, the SPWVD spectral

power of respiration is shown, along with its estimated instantaneous respiratory frequency

fr(t), represented with a dashed red line. Note that, in this example, as the patient approaches

the peak effort (dashed vertical line), respiratory frequency exceeds the standard HF band

upper limit of 0.4 Hz.

Based on this respiratory information, the time-varying patient-specific HF band was iden-

tified. Fig 8 displays the RR series and its associated SPWVD spectral power for the same

patient, where the LF and respiration-centered HF bands are represented in dashed white lines

(second panel).

Although certain stationarity can be observed during the first two minutes corresponding

to the warm-up phase, the RR series displays a significant non-stationarity represented by a

Fig 6. Scheme for LDA classifier training and testing, based on a 5-fold cross-validation strategy. After feature extraction, conditioning and

selection, a 5-fold cross-validation was run 10 times in order to assess the classifier performance, tuned using the training subset FNtrMw
and evaluated on

the testing subset FNteMw
.

https://doi.org/10.1371/journal.pone.0197367.g006
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progressive decrease during incremental exercise and a continuous increase at recovery. As

previously reported by [44], the cardiovascular response properly balanced the performed

physical activity intensity. Moreover, it should be noted the non-negligible power centered in

the HF band as a result of respiration. Since HF exceeds the standard band, the use of classic

spectral limits would have led to unreliable measures of the parasympathetic activity in this

patient.

The third panel shows the time series LF(t) and HF(t) extracted from TF analysis, then nor-

malized and expressed as percentages of the total power. Finally, the last panel displays the

obtained HFnu(t) series, where the 1-minute window to calculate the mean value of HFnu dur-

ing the first minute of active recovery (HFAR1
nu ) is indicated. The results show a progressive

increase in HFnu(t) during exercise, as well as a decrease at recovery. Although not represented

in Fig 8, due to the normalization step applied to LF(t) and HF(t), the complementary effect

was observed for LFnu(t).

Inter-group comparison

HRV features extracted during exercise and recovery were compared between symptomatic

and asymptomatic patients. Apart from warm-up and recovery phases, since exercise duration

was highly variable among subjects, only the first 3 minutes and the last minute of incremental

exertion were analyzed.

During the second minute of incremental exercise, statistically significant differences were

found in mean normalized HF (HFEX2
nu , p = 0.041) and thus in LFEX2

nu . Symptomatic patients

showed an increased HFnu , and a reduced LFnu , in this time period with respect to

Fig 7. Representative example of respiration information. The upper panel represents an example of EDR series, calculated from the R-wave peak

amplitudes of a specific patient. The SPWVD spectral power associated is displayed in the second panel, along with the instantaneous respiratory

frequency fr(t) estimated from a corrected version of the frequencies presenting the maximum spectral powers at each time instant (dashed red line).

Vertical dashed lines indicate peak effort before recovery.

https://doi.org/10.1371/journal.pone.0197367.g007
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asymptomatic patients. However, no significant differences between groups were noted after

exertion, during active or passive recovery.

Table 2 summarizes the mean, standard deviation and associated p-values for LF , LFnu ,HF ,

HFnu and LF
HF obtained during the warm-up phase, the first 3 minutes of incremental exercise

and the last minute before peak effort.

Classification

After feature conditioning, feature selection was performed by a two-step approach. Filter

selection was followed by the repeated application of a wrapper method to the selected fea-

tures. The final subset contained those features appearing more than a specific number of

times L among realizations, optimized based on the performance metric AUC. Fig 9 displays

the mean and standard deviation of the AUC associated with each value of L.

Based on these results, the final classifier placed the threshold at L = 18, where a maximum

AUC using the minimum number of features was found. When only those parameters

Fig 8. Representative example of heart rate information. From the RR series, the normalized SPWVD spectral power is calculated. Dashed white lines

in the second panel indicate LF and HF bands. In the third panel, the total power in LF (blue dashed line) and HF (black solid line) bands at each time

instant are represented. Then, an example of normalized time series (HFnu) accounts for the parasympathetic contribution along the exercise test. A

vertical dashed line in all panels refers to the peak effort instant. In the last panel, the time period used to calculateHFAR1
nu is indicated.

https://doi.org/10.1371/journal.pone.0197367.g008
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Table 2. Mean ± standard deviation, for symptomatic and asymptomatic patients, and associated p-values of HRV markers during exercise.

Warm-up Incremental exercise

Minute 1 Minute 2 Minute 1 Minute 2 Minute 3 Last minute

LF [ms2/Hz]

Symptomatic 2245.6±4063.2 1749.2±2321.6 738.95±801.84 228.93±302.24 129.69±199.10 10.39±28.69

Asymptomatic 1392.7±1605.4 1202.4±1330.0 635.19±685.42 442.88±772.15 250.03±509.18 35.90±205.70

p − value 0.746 0.298 0.985 0.161 0.113 0.894

LFnu [%]

Symptomatic 75.08±18.08 76.21±16.97 70.48±17.58 65.82±17.97 65.46±17.98 49.68±21.09

Asymptomatic 77.98±11.56 77.95±11.33 78.09±11.30 74.45±12.56 71.55±13.86 52.04±20.67

p − value 0.918 0.852 0.062 0.041� 0.173 0.728

HF [ms2/Hz]

Symptomatic 1343.1±4819.3 421.62±779.60 227.66±491.88 209.78±738.12 144.06±509.70 41.44±175.75

Asymptomatic 399.37±842.57 309.40±401.34 180.57±366.29 133.22±292.49 71.84±124.47 11.23±44.85

p − value 0.499 0.519 0.221 0.804 0.728 0.781

HFnu [%]

Symptomatic 24.92±18.94 23.80±16.97 29.52±17.58 34.18±17.97 34.54±17.98 50.32±21.09

Asymptomatic 22.02±11.56 22.05±11.33 21.91±11.30 25.55±12.56 28.45±13.86 47.96±20.67

p − value 0.918 0.852 0.062 0.041� 0.173 0.728

LF=HF [unitless]

Symptomatic 7.96±8.11 8.78±9.38 6.87±9.43 3.75±3.61 3.09±2.33 1.71±1.73

Asymptomatic 5.89±4.11 5.90±5.72 6.00±5.29 4.90±3.91 4.11±2.87 4.32±21.53

p − value 0.816 0.763 0.157 0.053 0.122 0.661

�p< 0.05, Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0197367.t002

Fig 9. Mean and standard deviation of AUC for each value of L. Performance evaluation with features appearing more than L times.

https://doi.org/10.1371/journal.pone.0197367.g009
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appearing more than 18 times were kept, the final subset contained 22 features (listed in

Table 3), leading to an AUC = 0.92 ± 0.01, Se = 0.91 ± 0.06 and Sp = 0.90 ± 0.05.

Fig 10 displays the mean ROC curves resulting from each 5-fold cross-validation, as well as

the global ROC curve and its optimal operating point, for the proposed classifier.

Table 3. Selected features from wrapper method.

1 2 3 4 5 6 7 8 9 10 11

HFWU1
nu HFEX3

nu HFPEnu HFAR1
nu HFAR3

nu HFPR1
nu

LF
HF

AR2 LFEX1 LFEX2 LFEX3 LFAR3

12 13 14 15 16 17 18 19 20 21 22

LFPR2 LFPR3 HFPE HFAR3 HFPR2 HFPR3 LFEX3
nu LFPEnu LFAR1

nu LFAR2
nu LFAR3

nu

https://doi.org/10.1371/journal.pone.0197367.t003

Fig 10. ROC curves and associated AUC values for L = 18. Mean ROC curves for each cross-validation and global ROC, when features appearing

more than 18 times are kept.

https://doi.org/10.1371/journal.pone.0197367.g010
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Discussion

In this study, the autonomic response to exercise testing was analyzed in 105 BS patients.

Although many previous studies have already assessed the autonomic function in BS, only a

few have exploited the potential of exertion to predict cardiac events [22–25]. Moreover, since

symptoms have been related to VF occurrence on this population [5, 6], our aim was to com-

pare, according to symptomatic status, the time-varying HRV changes induced by effort and

subsequent recovery. To our knowledge, this work presents the first time-frequency HRV

analysis under conditions of physical activity in BS. Furthermore, due to the complexity of

distinguishing between symptomatic and asymptomatic patients by means of univariate analy-

ses, a multivariate classifier based on the combination of the extracted HRV features was

proposed.

Most reported approaches assessing the autonomic response of BS patients are based on

measurements obtained from 24-hour recordings that lead to controversial conclusions. In a

clinical series of 17 patients with BS, of whom 10 were asymptomatic subjects with Brugada

ECG, and 45 controls, Krittayaphong et al [12] concluded that BS patients presented a lower

HRV and a lower vagal tone at night compared to controls, as well as lower diurnal and higher

overnight heart rates compared to asymptomatic subjects and controls. Likewise, Hermida

et al [13] reported a significantly lower HRV at night in 21 symptomatic, with respect to 26

asymptomatic BS patients. Pierre et al [14] also asserted in a clinical series of 46 BS patients

and 46 controls that HRV in the first group was significantly lower with respect to healthy sub-

jects. Tokuyama et al [15] results showed a significantly lower HRV in BS patients when ana-

lyzing a series of 12 symptomatic, 17 asymptomatic and 16 healthy individuals. The results

also reflected a significant reduction in both sympathetic and parasympathetic tones in BS

patients, as well as a decreased circadian variation of the autonomic function over 24 hours,

with respect to controls. Kostopoulou et al [17] examined autonomic disorders in 20 patients

with BS and 20 age-matched controls. In that case, HRV analysis did not reveal any significant

difference between groups, but a high susceptibility to vasovagal syncope was observed in BS

patients, possibly being a disease-related symptom. Nakazawa et al [18] analyzed, using a

24-hour continuous ECG monitoring, the autonomic properties of 27 BS patients (10 of them

had a history of VF and 17 did not) and of 26 healthy subjects, finding higher vagal and

reduced sympathetic tones in symptomatic BS patients. Likewise, in a recent work from our

group where the 24-hour Holter recordings from 118 BS patients were analyzed, symptomatic

subjects showed an increased parasympathetic activity during both daytime and nighttime

[16]

Subramanian et al [23] proved the usefulness of some electrocardiographic markers

extracted during exercise testing for risk stratification in BS. Moreover, our group has recently

reported significant differences in heart rate complexity between symptomatic and asymptom-

atic patients, during periods of recovery after exertion [24]. Nevertheless, Amin et al [22] pub-

lished the first work measuring the autonomic function of 50 BS patients and 35 controls

during exercise, finding a higher parasympathetic reactivation during early recovery in

patients with prior VF events. Likewise, Makimoto et al [21] analyzed the autonomic function

of 93 BS patients and 102 controls during recovery from treadmill exercise testing. They stud-

ied parasympathetic reactivation by computing the Heart Rate Recovery (HRR) after peak

exercise, concluding that a higher vagal activity was related to the occurrence of cardiac events

in BS.

In our study, as illustrated in Fig 8, all patients displayed a progressive increase in the mean

normalized HF (HFnu ) during incremental exercise, as well as an HFnu decrease at recovery.

Although data on direct sympathetic nerve recording and plasma catecholamines
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measurements have reported that a decreased parasympathetic and an increased sympathetic

activity play a major role in the autonomic response to exercise, many studies on cardiac auto-

nomic function based on HRV analysis have failed to represent this response, even in healthy

subjects [38]. Indeed, the LF component does not provide an index of sympathetic tone but

rather reflects a complex interplay among many factors including the sympathetic and para-

sympathetic contributions to ANS. Similarly, just as parasympathetic neural activity influences

LF values, sympathetic activation also modulates the HF component [45]. Moreover, since an

increasing power can be noted at the HF band center corresponding to the respiratory fre-

quency (second panel in Fig 8), the gradual increase observed inHFnu during incremental

exercise may be significantly influenced by respiration. Thus, LF and HF indices should not be

analyzed as accurate representations of, respectively, the sympathetic and parasympathetic

tones. They should be interpreted as estimates of the autonomic function that may capture rel-

evant tendencies in HR modulation, potentially useful for the detection of differences between

BS patients at different levels of risk.

According to the inter-group comparison of HRV markers, statistically significant differ-

ences were observed during the second minute of incremental exercise inHFnu , and thus LFnu ,

between groups. Since no significant differences were found in terms of spectral power at the

respiratory frequency, HFnu differences between populations might mostly be due to vagal

activity. Thus, as previously reported [15, 16, 18], symptomatic patients seem to experience an

increased parasympathetic modulation with respect to asymptomatic patients, supporting the

idea that higher vagal responses could be related to a worse prognosis in BS. These results may

be explained by the dysfunction on presynaptic norepinephrine (NE) recycling and the reduc-

tion in the concentration of NE at the synaptic cleft found on previous works based on posi-

tron emission tomography on BS patients [8–11].

The lack of significant results in univariate analysis reveals the difficulty of distinguishing

between symptomatic and asymptomatic groups. Therefore, a multivariate approach following

a step-based machine learning method was designed in order to improve classification perfor-

mance. The proposed solution significantly reduced the final subset of features included in the

predictive LDA-based model to one third of the total amount of HRV features, leading to a

mean AUC of 92.1%. First, a filter feature selection method discarded the least relevant and

most redundant features, holding the 75% of the initial features subset, to which the LDA-

based wrapper algorithm was applied. On the one hand, the results after filtering show that all

autonomic markers during the last minutes of incremental exercise and recovery were kept,

evidencing the relevance of these test segments in classifying BS patients. On the other hand,

althoughHFEX2
nu led to significant results in univariate analysis, the applied filter method identi-

fied this marker as a redundant feature and only kept LFEX2
nu for further analysis.

Since classification performance significantly depends on the number of chosen features

after wrapper feature selection, the algorithm was optimized to obtain the best AUC using the

minimum number of features. Thus, when selecting only those features appearing more than

18 times after wrapper application, an optimal classifier containing 22 parameters was imple-

mented. Among the final subset of features, only one LF
HF marker was kept, acquired during the

second minute of active recovery. The remaining parameters equally belonged to LF and LFnu
orHF and HFnu measures. Regarding test phases, only one feature came from the warm-up

phase (HFWU1
nu ) and other 5 markers were acquired during the passive recovery stage. Most

parameters were measured during incremental exercise and active recovery, and more specifi-

cally during the last minutes of both phases.

Recent studies have also proposed prediction models for VA risk stratification in BS

patients using non-invasive parameters [46]. However, our model outperformed previous
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approaches, evidencing the interest of analyzing HRV features during exercise testing to better

understand VF risk in this population. Indeed, the results from our previous study, where the

classification potential of these markers was already presented [47], were also improved by

enlarging the clinical series under study and applying a more robust feature selection

approach.

This study presents some relevant limitations that should be noted. The clinical value of

autonomic features can only be proved if a close relationship between HRV markers and ven-

tricular events is established. Since no VF was induced during the test, HRV variations in

symptomatic patients cannot be directly related to this phenomenon. Moreover, a synthetic

oversampling approach was applied in order to overcome complications found when learning

from imbalanced datasets. Thus, the obtained results should be validated by enlarging the

studied population. Finally, since some asymptomatic patients may develop symptoms in the

future and thus present high-risk patterns during the analyzed recordings, a more suitable

clinical database for risk stratification should include follow-up information. Thereby, auto-

nomic changes could have been related to the probability of developing symptoms rather than

to the identification of a high-risk group having already suffered these symptoms.

Nonetheless, previous studies have shown the need of new autonomic markers with higher

predictive values, such as those here presented, to better stratify risk in patients suffering from

Brugada syndrome. According to international guidelines [1], ICD implantation is recom-

mended in BS patients being survivors of a cardiac arrest and/or having documented sponta-

neous sustained ventricular tachycardias (class I) and can be useful in patients with a

spontaneous diagnostic type 1 Brugada-like ECG pattern having a history of syncope caused

by ventricular arrhythmias (class IIa). However, the decision of implanting an ICD on asymp-

tomatic subjects is still contentious, even if they represent around the 60% of diagnosed

patients. Thus, the proposed model is presented as a potential instrument to better identify

those asymptomatic BS patients at high risk who may benefit from an ICD implantation.

Moreover, the proposed model might also be used for processing HRV data acquired from

ICDs on implanted BS patients, in order to control their risk of VF occurrence during follow-

up.

Conclusions

In this study, the autonomic function of 105 BS patients who underwent a standardized physi-

cal stress test was analyzed so as to characterize symptomatic and asymptomatic populations.

Based on the hypothesis that changes in the ANS induced by exercise testing could improve

prognosis interpretation, a classifier capable of identifying patients at high risk was then

designed.

First, the extracted time-varying HRV features were compared between populations. Statis-

tically significant differences were found in LFnu and HFnu during incremental exercise, sug-

gesting that symptomatic patients seem to experience an increased vagal function with respect

to asymptomatic BS patients.

Then, a predictive model based on a two-step feature selection strategy identified the most

discriminant HRV features to distinguish symptomatic and asymptomatic patients. Despite

the difficulty in finding differences between these populations, classification results show the

potential of autonomic markers when identifying symptoms in BS.

Although the present study presents some limitations and is based on a relatively small pop-

ulation of BS patients, the results indicate important trends of clinical relevance that could be

useful for risk stratification in asymptomatic patients for whom the decision to implant a car-

dioverter defibrillator is complex and controversial.
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Supporting information

S1 Table. HRV markers resulting from feature extraction. Estimated features include the

LF, LFnu, HF,HFnu and LF
HF mean values at different time periods of the exercise test, leading to

60 HRV features for the 105 BS patients under study.
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40. Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine

learning. 2003; 53(1–2):23–69. https://doi.org/10.1023/A:1025667309714

41. Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of machine learning

research. 2003; 3:1157–1182.

42. Kohavi R, John GH. Wrappers for feature subset selection. Artificial intelligence. 1997; 97(1):273–324.

https://doi.org/10.1016/S0004-3702(97)00043-X

43. Kuncheva LI. Combining pattern classifiers: methods and algorithms. John Wiley & Sons; 2004.

Brugada syndrome classification based on autonomic response to exercise testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0197367 May 15, 2018 21 / 22

https://doi.org/10.1111/jce.13205
http://www.ncbi.nlm.nih.gov/pubmed/28316113
https://doi.org/10.1088/1361-6579/aa513c
https://doi.org/10.1088/1361-6579/aa513c
http://www.ncbi.nlm.nih.gov/pubmed/28134132
https://doi.org/10.1002/clc.22386
http://www.ncbi.nlm.nih.gov/pubmed/25955277
https://doi.org/10.1161/01.CIR.93.8.1520
http://www.ncbi.nlm.nih.gov/pubmed/8608620
https://doi.org/10.1016/S0735-1097(02)02164-2
http://www.ncbi.nlm.nih.gov/pubmed/12392846
https://doi.org/10.1109/TBME.2008.2002157
https://doi.org/10.1109/TBME.2008.2002157
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1109/79.127284
https://doi.org/10.1109/78.469860
https://doi.org/10.1109/78.469860
https://doi.org/10.1109/TBME.2006.871888
https://doi.org/10.1109/TBME.2006.871888
http://www.ncbi.nlm.nih.gov/pubmed/16830932
https://doi.org/10.3389/fphys.2017.00301
http://www.ncbi.nlm.nih.gov/pubmed/28611675
https://doi.org/10.1023/A:1025667309714
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1371/journal.pone.0197367


44. Mitchell JH. Neural circulatory control during exercise: early insights. Experimental Physiology. 2013;

98(4):867–878. https://doi.org/10.1113/expphysiol.2012.071001 PMID: 23261851

45. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers

in physiology. 2013; 4:26. https://doi.org/10.3389/fphys.2013.00026 PMID: 23431279

46. Kawazoe H, Nakano Y, Ochi H, Takagi M, Hayashi Y, Uchimura Y, et al. Risk stratification of ventricular

fibrillation in Brugada syndrome using noninvasive scoring methods. Heart Rhythm. 2016; 13(10):1947–

1954. https://doi.org/10.1016/j.hrthm.2016.07.009 PMID: 27424075
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