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Pierre-Louis Henaux2,4 · Pierre Jannin4

Abstract

Purpose Surgery is one of the riskiest and most impor-

tant medical acts that are performed today. The need

to improve patient outcomes and surgeon training, and

to reduce the costs of surgery, has motivated the equip-

ment of operating rooms with sensors that record sur-

gical interventions. The richness and complexity of the

data that are collected call for new methods to support

computer assisted surgery. The aim of this paper is to

support the monitoring of junior surgeons learning their

surgical skill sets.

Methods Our method is fully automatic and takes as in-

put a series of surgical interventions each represented by

a low-level recording of all activities performed by the

surgeon during the intervention (e.g., cut the skin with

a scalpel). Our method produces a curve describing

the process of standardization of the behavior of junior

surgeons. Given the fact that junior surgeons receive

constant feedback from senior surgeons during surgery,

these curves can be directly interpreted as learning curves.

Results Our method is assessed using the behavior of

a junior surgeon in anterior cervical discectomy and fu-

sion surgery over his first three years after residency.

They revealed the ability of the method to accurately

represent the surgical skill evolution. We also showed
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that the learning curves can be computed by phases

allowing a finer evaluation of the skill progression.

Conclusion Preliminary results suggest that our ap-

proach constitutes a useful addition to surgical training

monitoring.
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1 Introduction

A learning curve (or experience curve) is a graphical

representation allowing the visual assessment of the in-

crease in skills with time and experience [44]. Learn-

ing curve (LC) definition, calculation and analysis have
been at the center of many research in social sciences

[34], psychology [27] and cognitive sciences [31]. The

aim is to better understand how the Human learn how

to perform a task. The first person to describe LCs

was Hermann Ebbinghaus in 1885. His tests involved

memorizing series of nonsense syllables, and recording

the success over a number of trials. LC was also stud-

ied in economy, such as in the aircraft industry where

the amount of man-hours needed to produce a unit de-

creases as the production increases [43]. LCs generally

follow a power law, from which it is often said that they

conform to “the power law of practice” [34]. As learn-

ing curves have been used to evaluate skill acquisition

in multiple fields, many researchers started working to-

ward defining it in the medical field [13, 15].

For surgical training, it is generally accepted that

practical skills are improving with time after an ini-

tial period of difficulty followed by an improvement and

stabilization of performance [18, 22]. This paradigm is

following the standard Halstedian system “see one, do
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one, teach one” [35]. Monitoring the progression in de-

veloping surgical skills is of major interest from the

teaching perspective. However, evaluating progress in

surgical training is still very challenging because of how

complex surgical processes are, and because of the high

degree of specialization that is required (an average of

eight to nine years after medical school). For example,

while the relative importance of the different factors

that cause surgical error is unknown [36], technical skill

acquisition has been shown to correlate with a reduc-

tion in patient complications [4, 8]: Performing the right

action at the right time in surgery can greatly influ-

ence patient outcome. Training new surgeons is criti-

cal for the quality of care and is an important issue

from the economical perspective. The training is often

provided in a one-on-one scheme between a junior sur-

geon and his or her senior. This process is expensive

and time-consuming, and relies heavily upon the qual-

ity of communication between the junior and his or her

senior. Assessing surgical practice is mandatory to en-

sure a smooth expertise transmission between senior

and junior surgeons. This assessment requires a consis-

tent understanding of surgical processes and has thus

strongly supported the modeling of surgical processes.

In recent years, many techniques have been proposed to

compute LC for specific intervention types like laparo-

scopic colorectal surgery [40] or cardiothoracic and vas-

cular surgery [2]. However, there is no consensus on the

methods and variables that should be used to compute

a LC [18]. Mimicking the aviation industry, a special

interest has been given to create simulation environ-

ments to train surgeon and to use LC to evaluate their

skills on simulators [3, 12, 16]. Alternatively, recording

trajectories of surgical tools on surgical robots [23, 24]

was also considered to assess surgical skills and training

[6, 42].

For example, in [14], the authors propose a system

based on the automatic analysis of laparoscopic training

video to perform an automatic assessment of the trainee

skills. This system allows to compute learning curves

and to provide automatic feedback.

In this paper, we introduce an automatic method

that aims at computing a learning curve from record-

ings of low-level activities performed by a surgeon dur-

ing multiple interventions. We use the deviation of the

practice at the low level as a proxy for progress; we

hypothesize that:

1. At the start of the training of a new junior surgeon,

his or her surgeries will be relatively different to

each other and relatively different to the practice of

senior surgeons.

2. As the training progresses, the surgeries should be

more and more consistent and tend toward the gen-

eral behavior of senior surgeons.

In this paper, we show that there is some evidence sup-

porting this hypothesis and that even low-level descrip-

tions of the surgeries can be used for this assessment.

The only information required by our method is the

input data: a series of surgeries, where each surgery is

represented by a low-level recording of the activities

performed by the surgeon over the course of the surg-

eries (e.g., cut the skin with a scalpel). Our method

outputs a curve that describes the standardization pro-

cess of the junior’s surgical practice over time. Note

that our method can easily be used in conjunction with

any system able to recognize surgical activities [21]. We

carry out experiments on data recorded in operating

room and composed of 26 anterior cervical discectomy

and fusion surgery recorded at the Neurosurgery De-

partment of the Rennes University Hospital, France.

The surgeries were performed by a junior surgeon over

his first 3 years after residency and were all recorded

by the same senior surgeon.

This paper is organized as follows. In Surgical learn-

ing curves section, we present related work on learning

curves for surgery. In Methods section, we introduce

our method for the automatic computation of learn-

ing curves from low-level surgical activities. In Results

section, we conduct experiments that demonstrate the

quality and performance of our approach. Finally, we

conclude this work and describe future research in Con-

clusion section.

2 Surgical learning curves

The concept of learning curve is particularly interesting

in surgery where the skill-set to master is important and

the training generally last for years. It would indeed be

useful to know how many interventions a surgeon have

to perform before reaching an adequate and safe level

of expertise. An important consideration when comput-

ing a LC is the variable that is studied to create the

curve [18]. There are two main types of variables: (1)

measuring the surgical process or (2) measuring patient

outcomes [18]. Measures of surgical process include vari-

ables such as time to complete the procedure, the num-

ber of surgical actions, the success or completion rate

of the procedure, etc. [5]. Measures of patient outcomes

include the length of hospital stay, postoperative com-

plications, mortality, etc. [17].

Operation time is one of the most used variables

to measure the acquisition of skills. Multiple studies

showed that senior surgeons are on average faster than
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Fig. 1: Illustration of a learning curve [7].

junior surgeon [32]; this has led to using time as a proxy

for seniority. However, it is obviously very undesirable

for a junior to try to speed up his or her surgery for

assessment purposes alone, without having reached the

dexterity and experience of senior surgeons. Operation

time is also not well defined [5]; the most standard def-

inition seems to be from the start at the incision to

closure of the wound [1]. The problem of definition is

also present with what variables to use for patient out-

come [18].

Despite the growing number of initiatives in this

field, there is no consensus on the variables to use and

their definition [18]. Furthermore, all these measures

are very general variables that only partially represent

what the surgeon did during the surgery. One way to au-

tomatically assess skills is also to rely on existing evalu-

ation skill methodologies like the Objective Structured

Assessment of Technical Skill (OSATS) [41] test. This

test is composed of scales to score the skills of surgical

trainee who have to be assessed by an observer. Re-

cent works try to automate this evaluation using video

analysis [39]. Once automated, the automatic grading

using OSATS could be use to grade the evolution of the

performance of surgical trainee.

Somewhat surprisingly, only little attention has been

put on the development of automatic methods to com-

pute LC from sensors present in the operating rooms

(ORs). Indeed, more and more ORs are getting equipped

systems with sensing devices that can capture the sur-

geon’s activities and environment. For example, in [38],

the authors extracted descriptions of surgical processes

and identified relationships between the course of a sur-

gical process and the quality of its outcome. In total,

450 training sessions were manually recorded and com-

pared to expert evaluation as per the quality of the

sessions. Video processing has also being investigated

to automatically evaluate surgical processes. For exam-

ple, using cameras in pituitary surgery, both the phases

of the surgery [20] and the low-level surgical tasks [21]

can be detected and recorded automatically. In [21], us-

ing a dataset of 20 cataract surgeries, and identifying

25 possible pairs of activities, a frame-by-frame recog-

nition rate of 64.5% was achieved with the proposed

system. The surgical phases can also be predicted from

low-level activities [11]. The task performed by the sur-

geon can also be automatically inferred by combining

RFID chips on instruments (for identification) with ac-

celerometers [29].

3 Methods

3.1 Surgery as sequence of surgical activities

The data captured in the OR to represent surgery have

a specific granularity level. A granularity level is defined

as the level of abstraction at which the surgical proce-

dure is described. MacKenzie et al. [25] were the first

to propose a model of the surgical procedure that con-

sists of different levels of granularity: the procedure, the

step, the substep, the task, the subtask and the motion.

Later, Lalys and Jannin [19] introduced a terminology

consisting of phase defined as the major types of events

occurring during surgery. Each phase is composed of

several steps. A step is considered to be a sequence of

activities used to achieve a surgical objective. The data

used in this paper capture the activity of both hands

for three different elements: used instrument, performed

action and targeted anatomical structure [28]. Note that

the recordings of the performed activities only partially

represent the process of surgery. As surgery is a complex

task, it involves a difficult decision-making process in-

fluenced by multiple factors. Thus, acquiring data that

represent surgery is very challenging. In this work, we

decided to focus surgical activities as they make possi-

ble the assessment of procedural knowledge. Procedural

knowledge only partially covers the skill-set required to

master surgery, as it also includes conceptual knowl-

edge, cognitive skills, interpersonal skills, etc. However,

monitoring technical or procedural skill acquisition is

important, as these are shown to correlate with a re-

duction in patient complications [8]. One can note that

we currently consider all actions to be of equivalent

importance. While it would be interesting to take into

account the importance, quality or precision of actions,

these characteristics are still very difficult to assess for

a single action in the context of an entire surgery.



4 Forestier et al.

3.2 Proposed method for computing learning curve

The goal of our method is to evaluate how surgical prac-

tice evolves through time. Let S = {S1, · · · , SN} be

the set of N surgeries (i.e., sequences of activities) per-

formed by the same surgeon and ordered by increasing

operating date, and S = 〈s1, · · · , sl〉 be one sequence of

this set. We propose to use the evolution through time

of the heterogeneity inside the set S in order to as-

sess the evolution of surgical practice. The assumption

is that junior surgeons, while learning how to operate,

do not have an homogeneous practice. Indeed, when

learning how to perform a task, the first attempts are

generally different from each other. However, with time

and practice, the tasks as they are repeated tend to

be performed in a similar way. This tendency has been

observed previously while comparing the surgical be-

haviors of junior and senior surgeons [10]. To evaluate

this phenomena, we proposed to study the evolution

through time of the heterogeneity (i.e., the dispersion)

inside a set of surgeries S. The heterogeneity H of a set

of surgeries is defined as:

H(S) =
1

|S|2 − |S|
∑
Si∈S

Sj 6=Si∑
Sj∈S

sim(Si, Sj) (1)

It corresponds to the average similarity between all

pairs of surgery present in the set. A low value will in-

dicates that, on average, the surgeries are similar, while

a high value will indicate that they are different.

In order to compute the heterogeneity (Eq. 1), a

similarity measure sim between surgeries (i.e., sequences

of low-level surgical activities) has to be defined. Follow-

ing previous work on comparing surgical processes [9],

we used DTW (dynamic time warping) [37] to evaluate

the similarity between surgeries. The DTW similarity

measure makes it possible to find the optimal alignment

of two sequences (and thus register them) and provide

an alignment score that we used as an assessment of the

similarity between the sequences. The similarity func-

tion used between two surgical activities weighs each

of the three components (action, anatomical structure

and instrument) equally by 1/3 [9].

To compute a learning curve using this measure, we

create a set of sets of surgeries, S = {S1, · · · ,SM}, by

using the date of the interventions as a partial ordering

in S (i.e., S0 is the oldest recording and SN the most

recent one). The first set, S0, is composed of the two

oldest surgeries: {S0, S1} (i.e., at least two elements

are needed to compute H(S)). Then, new sets are cre-

ated by adding one by one the recordings according

to the intervention dates (i.e., {S0, S1}, {S0, S1, S2},

{S0, S1, S2, S3}, etc.). The last set, SM , contains all N

recordings.

The heterogeneity (Eq. 1) is then computed for each

set of S in order to create the points of the curve. Re-

gression can then be used to compute the learning curve

(e.g., least-squares regression, logarithmic or negative

exponential curves etc.) [33]. The squared residual of

the regression can then be used as a proxy for the cor-

rectness of the learning curve. A low value indicates

that the learning progression is very smooth and pro-

gressive as it means that the polygon is a good approx-

imation.

3.3 Illustrative example of learning curve computation

In this section, we illustrate on a simple example how

the proposed method works. For simplicity, we run this

example on ten simple data points (x, y), each point

representing one surgery. We investigate how the or-

dering of these ten data points influence our method in

building the learning curve. Figure 2a, c, and e illus-

trates three different orderings of the ten data points:

Ordering 1, Ordering 2 and Ordering 3. The number

associated with each point is used to sort the data

points, like the dates are used to sort the surgeries. Zero

(0) indicates the first point, and nine (9) indicates the

last point. In Figure 2a, the data points were randomly

placed. In Figure 2c, the data points were sorted inside

out, while in Figure 2a, the data points were sorted out-

side in. To apply our method and to compute learning

curves, we used the heterogeneity (i.e., Eq. 1) with the

euclidean distance as a dissimilarity metric. In order to

compute the learning curve, the heterogeneity was com-

puted for each set of sets following the three orderings.

Figures 2b, 2d, and 2f show the learning curves for the

three orderings. As one can see, when the ordering is

random (Figure 2b) the learning curve does not have

a distinctive trend. The heterogeneity values increase

and decrease randomly. Figures 2d, and 2f are present-

ing the two extreme cases, in Figures 2d the hetero-

geneity values are continuously decreasing while in 2f

they are continuously increasing. Intuitively, the shape

of Figure 2f is the trend we are targeting to evaluate

the acquisition of skills as its trend correspond to what

it is expected from a learning curve (i.e., as presented

in Figure 1). This simple example shows that depend-

ing on the ordering of the elements, the learning curve

that is produced can have different shapes. Thus, these

curves can be used to assess the fact that the set of surg-

eries tend to be more homogeneous (i.e., if the average

distance between them is decreasing).
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Fig. 2: Illustrative example with 3 orderings (a,c,e) of 10 data points and their corresponding learning curves

(b,d,f). a Ordering 1. b Learning curve for Ordering 1. c Ordering 2. d Learning curve for Ordering 2. e Ordering

3. f Learning curve for Ordering 3.

4 Results

The framework was evaluated using clinical data com-

posed of 26 cervical disc herniation surgeries recorded

at the Neurosurgery Department of the Rennes Univer-

sity Hospital, France. This procedure is very standard-

ized: The same techniques, instruments and synthetic

implants were used for the 26 recordings. The surgeries

involved 15 male and 11 female patients, with a me-

dian age of 52 years. These cervical disc surgeries are

divided into five main steps: (1) approach of the disc,

(2) discectomy. (3) hemostasis, (4) arthrodesis and (5)

closure. Depending on the patient, multiple hemostasis

phases are required. The herniated disc is approached

via a right anterior cervical route. The surgeries were

performed by a junior neurosurgeon over its first 3 years

after residency. The recordings were performed by the

same senior surgeon using the ICCAS surgical work-

flow editor [30]. A total of 693 days passed between the

first and the last recordings. The number of days be-

tween two recordings was on average of 28 days with a

maximum of 119 days.

For this surgery, the list of actions is: cut, swab,

sew, coagulate, install, dissect, irrigate, drill, remove

and hold. The list of anatomical structures is: mus-

cle, vertebra, skin, fascia, disc and ligament. And the
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Fig. 3: Learning curve for 26 cervical disc herniation

surgeries.

list of surgical instruments is: scalpel, needle-holders,

curettes, hooks, rongeurs, high-speed-drill, arthrodesis,

dissectors, drainage, scissors, suction tube, forceps, saline

solution, retractors and cottonoids. Our dataset con-

tains 87 different activities; note that all triples are not

present (Some triples of action, instrument, anatomical

structure are irrelevant.). The decomposition in phases

was decided by the observer during the recording of the

surgical activities.

The Figure 3 presents the learning curve for the

26 cervical disc herniation surgeries. The year and the

month of the operating dates are provided for each

surgery. The specific day in the month was omitted to

preserve anonymity. This curve was computed using the

whole surgeries as input without using the phase infor-

mation. Figure 4 presents the learning curves for 17

surgeries subdivided into surgical phases. These surg-

eries were selected because they had the exact same

number of phases (i.e., only one hemostasis phase). For

each phase, the learning curve was computed by only
using the surgical activities that were performed during

this specific phase. The average number of activities is

44 for the approach phase, 62 for the disectomy phase,

16 for the hemostasis phase, 7 for the arthrodesis phase

and finally 10 for the closure phase.

5 Discussion

The learning curve for the entire produce (Figure 3)

shows a smooth progression before reaching a plateau.

It exhibits the classical LC pattern: an initial period of

difficulty followed by an improvement and stabilization

of performance. Note that only 25 sets were evaluated

from a total of 26 surgeries. Indeed, a set has to con-

tain at least two elements to compute the heterogeneity

(Eq. 1). For visualization purpose, the y-axis has been

inverted as a reduction in the heterogeneity is inter-

preted as a skill progression. The heterogeneity started

from 30.88 and ended at 23.33 which means a reduc-

tion of 24%. The sum of the residuals of the regression

is equal to 8.05. This value is difficult to interpret from

a single curve, but could be used to compare multiple

surgeons to each others.

The Figure 4 presents learning curves according to

the different surgical phases for 17 surgeries. Decom-

posing a learning curve according to phases allows to

perform a more precise analysis of skills progression. In

the following, we analyzed the learning curves phase by

phase.

The LC of the Approach phase (Figure 4 (a)) has

a disrupted trend. Indeed, if we consider all the points

(continuous curve), the regression does not show a clear

increase in the skills and is almost flat. However, if we

focus on the first half (except the first recording) and

the second half by performing two distinct regressions

(dashed curves), we obtain two learning curves with

a very slight trend of skill progression. The approach

phase is very standard and requires less technical skill

than the other phases of the surgery. This can explain

the lack of clear skill progression on the learning curve.

Furthermore, the approach phase is also similar in other

types of surgery that might have been performed by the

trainee (and not used in our study). The flat behavior

of the curve indicates that the surgeon performed all

the approach phase in a similar way.

The LC of the Disectomy phase (Figure 4 (b)) has a

similar behavior than the entire procedure (Figure 3).

The Disectomy phase is the most important and diffi-

cult phase of this type of surgery. It is also the longest

phase and it is known to be the most characteristic

phase of the surgeon technique. The Disectomy learn-

ing curve reveals a smooth progression of the junior

surgeon technique over time. This progression is simi-

lar to the progression witnessed by the senior surgeon

that performed the recordings. The Hemostasis phase

(Figure 4 (c)) has also a similar trend.

The LC of the Arthrodesis phase (Figure 4 (d)) has

a more hectic behavior if we consider all the interven-

tions (continuous curve). If we consider only the first

half (and removing the first two), the learning curve

(dashed curve) exhibits a reduction in the heterogene-

ity. However, the addition of the following surgeries in-

creased the heterogeneity of the set. This result shows

that adding more surgeries to a set does not always

increase its heterogeneity. The specific behavior of the

Arthrodesis learning curve could be explained by the

inner variability of this phase. Indeed, this phase relies

heavily on the scrub nurse skills (not recorded in this

work) who has the responsibility to propose the im-

plant. Furthermore, this phase contains a very limited

number surgical activities (7 on average). Thus, small

variations can have an important influence while com-
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paring the sequences. It is thus difficult to have a clear

explanation for the obtained trends.

Finally, the LC of the Closure phase (Figure 4 (e))

has a similar behavior than the LC of the entire pro-

cedure expect for the two first interventions. We com-

puted the regression with all the interventions (contin-

uous curve) and all but the two first (dashed curve).

This result can be explained by specificities in patient

anatomy for these two interventions.

All these results show that our method is able to

correctly assess the evaluation of surgical skills. Note

that the source code implementing the method is dis-

tributed as an open-source software and is available for

download1. A web application is also available in the

same page to illustrate how the method works.

One can note that getting more experienced can also

mean moving away from homogeneity when required.

This is why we selected the procedures that share com-

mon features (e.g. patient age, difficulty of the cases,

etc.). The goal of our system is to evaluate the acqui-

sition of the core skills that a young surgeon should

master. Thus, we focused this study on evaluating the

1 http://germain-forestier.info/src/ipcai2018/

acquisition of skills as the reduction in the heterogeneity

in a set of performed surgeries. However, differences in

patient anatomy, but also emergencies, complications

and other nonstandard occurrences can make devia-

tion from the standard surgical behavior the right thing

to do. This is not currently handled by the proposed

method, which currently relies on internal evaluation.

It means that we only consider the surgeries performed

by the evaluated surgeon to compute the learning curve.

An alternative would be to compare the behavior of

the trainee with a database of recorded and annotated

surgeries and use the relative distance to ”expert be-

haviors” as a proxy to evaluate the acquisition of skills.

Comparing sequences of surgical activities has already

been investigated in the previous work [9, 10], but never

with the goal of computing learning curves.

As future work, we are planning to acquire addi-

tional datasets with more formal evaluation of the ju-

nior surgeons (e.g. OSATS [26] results) in order to as-

sess the correlation between automatically computed

learning curves and these formal evaluations.

http://germain-forestier.info/src/ipcai2018/
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6 Conclusion

In this paper, we presented a method to automatically

compute learning curves from recordings of low-level

surgical activities. We used the evolution of the het-

erogeneity as a criteria to evaluate the skill progression

of surgical practice. Experiments were performed on 26

anterior cervical discectomy and fusion surgery. They

revealed the ability of the method to accurately rep-

resent the surgical skill evolution. We also showed that

the learning curves can be computed by phases allowing

a finer evaluation of the skill progression.

In future work, we are planing to take into account

the time gap between recordings. We also want to go

further into the analysis in order to identify more pre-

cisely subsequences of activities that influence skill pro-

gression. Finally, we are planning to study the corre-

lation of our results with classical techniques of skill

assessment like OSATS [26].
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39. Sharma Y, Plötz T, Hammerld N, Mellor S, McNaney
R, Olivier P, Deshmukh S, McCaskie A, Essa I (2014)
Automated surgical osats prediction from videos. In:
2014 IEEE 11th International Symposium on Biomedi-
cal Imaging (ISBI), IEEE, pp 461–464

40. Tekkis PP, Senagore AJ, Delaney CP, Fazio VW (2005)
Evaluation of the learning curve in laparoscopic colorec-
tal surgery: comparison of right-sided and left-sided re-
sections. Annals of surgery 242(1):83

41. Van Hove P, Tuijthof G, Verdaasdonk E, Stassen L,
Dankelman J (2010) Objective assessment of technical
surgical skills. British Journal of Surgery 97(7):972–987

42. Varadarajan B, Reiley C, Lin H, Khudanpur S, Hager G
(2009) Data-derived models for segmentation with appli-
cation to surgical assessment and training. In: Medical
Image Computing and Computer-Assisted Intervention–
MICCAI 2009, Springer, pp 426–434

43. Wright TP (2012) Factors affecting the cost of airplanes.
Journal of the Aeronautical Sciences (Institute of the
Aeronautical Sciences) 3(4)

44. Yelle LE (1979) The learning curve: Historical review and
comprehensive survey. Decision Sciences 10(2):302–328


	Introduction
	Surgical learning curves
	Methods
	Results
	Discussion
	Conclusion

