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This work presents a novel method for multimodal medical registration based on histogram estimation of continuous
image representation. The proposed method, regarded as “fast continuous histogram estimation,” employs continuous image
representation to estimate the joint histogram of two images to be registered. The Jensen–Arimoto (JA) divergence is a similarity
measure to measure the statistical dependence between medical images from different modalities. The estimated joint histogram is
exploited to calculate the JA divergence in multimodal medical image registration. In addition, to reduce the grid effect caused by
the grid-aligning transformations between two images and improve the implementation speed of the registration method, random
samples instead of all pixels are extracted from the images to be registered. The goal of the registration is to optimize the JA
divergence, which would be maximal when two misregistered images are perfectly aligned using the downhill simplex method,
and thus to get the optimal geometric transformation. Experiments are conducted on an affine registration of 2D and 3D medical
images. Results demonstrate the superior performance of the proposed method compared to standard histogram, Parzen window
estimations, particle filter, and histogram estimation based on continuous image representation without random sampling.

1. Introduction

Image registration is the task of finding the optimal geometric
transformation between two images. Image registration is
widely used in numerous fields, such as medical imaging,
computer vision, and remote sensing. Medical images from
different modalities can provide various complementary
information.Therefore, the registration of multimodal medi-
cal images is valuable inmultimodal diagnosis and computer-
aided surgery [1–3].

Information-theory-based image registration has become
a popular method for multimodal medical images. In these
methods, mutual information (MI) is a frequently used
similarity measure simultaneously proposed by Collignon et
al. [4], Maes et al. [5], Wells III et al. [6], and Viola andWells
III [7]. These approaches do not require any preprocessing
and have been found to hold for a range of applications.
Many similarity measures based on information theory have
been employed for medical image registration, for example,
normalized MI [8], MI combined with gradient information
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[9], cumulative residual entropy (CRE) [10, 11], and cross-
CRE [12].

The critical element for all these information-theory-
based approaches for image registration is the estimation of
probability density functions (PDFs). Standard histograms
have been themost frequently used for estimating probability
distributions [4], which is a straightforward algorithm and
easily implemented. However, Rajwade et al. [13] pointed
out that the number of histogram bins determines the
estimation of PDFs, and a relatively small number can
provide the preferable PDFs. Standard histogram method
also yields discontinuous probability estimates, and there
are no principle techniques to select the suitable number
of bins for calculating the PDFs of images to be registered.
The Parzen window (PZW) [7] has been exploited for
probability density estimation in image registration. This
method was developed further by Thévenaz and Unser [14].
However, the optimal selection of kernel function and kernel
width is a challenging task when utilizing PZW to estimate
PDFs. Nonparametric (NP) windows [15] were introduced
to compute PDFs more accurately than PZW. However,
the computational and implementation complexity of NP
windows limits the method’s actual application. Joshi et al.
[16] simplified the implementation of NP windows by using
planar interpolation. Standard histogram and PZWmethods
possess one common property; that is, both approaches
regard an image as a set of pixels or samples [17]. Discrete
histogram transform (DHT) was introduced in [18]. This
method averages the estimations from several multivariate
histograms to alleviate the discontinuities in the boundaries
of histogram bins. However, the computational cost of DHT
increases quickly as the number of histograms grows. López-
Rubio andMuñoz-Pérez [19] proposed the use ofmultivariate
frequency polygons (MFP) to reduce computational com-
plexity. By contrast, probability estimations based on DHT
and MFP also rely on training samples and bin width. Maes
et al. [5] introduced the partial volume estimation (PVE)
to calculate probability distributions. Chen and Varshney
proposed the generalized PVE [20] technique, which applies
a general kernel function to determine fractional votes of
each intensity pair. The estimated methods based on par-
tial volume construct joint probability distribution through
continuous image representation (CIR), whereas the PVE
approach still substantially requires the choice of kernel
function [17].

In our earlier work [21], a novel divergence measure
called the Jensen–Arimoto (JA) divergence was presented as
registration criterion for 2D-2D rigidmedical registration. To
calculate the JA divergence, the joint probability distributions
between two images to be registered need to be estimated
using the standard/simple histogram (SH) algorithm, PVE,
or PZW method. Whereas the critical element for SH based
estimation methods is selecting the suitable number of bins,
PVE and PZW both belong to the continuous estimation
of densities. A comparison between these two methods to
density estimation has been introduced in [22]. Darkner and
Sporring [23] also concluded that PZW is algorithmically a
superior estimator for NMI compared to GPV. Nevertheless,
these two approaches both need to select the appropriate

kernel function. In a word, the number of bins for SH and
selection of kernel function for PVE and PZWare the current
challenges and limitations in estimation of densities. To
overcome these problems, we introduce a CIR for estimating
the joint histogram of two images to be registered. Different
from the aforementioned approaches, our method avoids
binning problem and the choice of kernel function.Themost
straightforward strategy to estimate joint histograms by CIR
is to use all voxels from aligned images. However, this way is
time consuming for the images with large sizes. Additionally,
the grid effect caused by grid-aligning transformations and
the discontinuities of similarity measures are two major
problems associated with these information-theory-based
methods [24]. Therefore, to solve these issues, we choose a
certain number of random samples from the images to be
registered, instead of all pixel points, to estimate the joint
histogram. The computation time for histogram estimation
is then reduced by random sampling strategy. Our proposed
histogram estimation method is regarded as “fast contin-
uous histogram estimation” (FCHE). We apply the FCHE
algorithm to estimate joint probability and then calculate
the JA divergence for multimodality medical registration.
Affine transformation models are employed, and the simplex
Nelder–Mead method [25] is used to search the maximum
of the JA divergence. To evaluate the performance of our
registration technique based on FCHE,we implement experi-
ments on 2D and 3Dmedical images.The results demonstrate
that FCHE method can provide better registration accuracy
and improve the implementation efficiency.

The remainder of this paper is organized as follows. In
Section 2, the FCHE method for joint histogram estimations
and a review of the JA divergence measure are introduced.
The subsequent image registration technique is detailed in
Section 3. Section 4 provides our experimental results on 2D
and 3D medical images. This section also compares these
findings with those of the registration strategies based on
continuous histogram estimation (CHE) without random
sampling, SH, PF, and PZW. Concluding remarks and per-
spectives are presented in Section 5.

2. Theory

2.1. FCHEs. In information-theory-based registration ap-
proaches, the joint probabilities between two images to be
registered are the critical element to successfully calculate the
similarity measure. As mentioned above, several algorithms
for computing joint probabilities include SH, PZW, and PVE.
In this work, a spatially continuous representation of an
image is adopted to estimate a joint histogram for obtaining
joint probabilities.

2.1.1. Joint Histogram in 2D. Two images, namely, the refer-
ence image (𝑅) and the floating image (𝐹), are considered
along with their intensity values normalized into a specified
number of bins. For every grid point in each image, around
which the intensity values of four neighborhood points were
estimated by Rajwade et al. [13], here the distances between
the grid point and four neighborhood points are all 0.5 pixels
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Figure 1: Process of joint histogram estimations in 2D. (a) Four neighborhood points around the central point on nongrid locations (cross)
and nine grid points (black dots). (b) Four points on the grid (four dots). (c) The square constituted by four grid points in (b) is divided
into two triangles. (d) The intersection point (black circle) of two isointensity lines. The solid line and dashed line represent the respective
isocurves of two images.

(a) (b) (c)

Figure 2: Process of joint histogram estimations in 3D. (a) Cube. (b) Six tetrahedrons divided from the cube. (c) Intersecting line between two
isointensity surfaces (plotted by the solid and dashed lines) with the distance of two black dots (two crossing points between the intersecting
line and the tetrahedron) of the segment length.

(Figure 1(a)). These intensity values of four neighbors in
nongrid points are estimated through interpolationmethods,
which inevitably increase the computational cost and intro-
duce interpolation error into registration results. To address
this problem, four grid points are used to compose a square
for histogram estimations (Figure 1(b)), and then the square
(a pixel) is split into two triangles (half-pixels).

The intensity values of the three vertices in each triangle
are regarded as linear functions of the vertices’ respective
coordinates. The related equations are as follows:

𝑔𝑟 (𝑥𝑗, 𝑦𝑗) = 𝐴1𝑥𝑗 + 𝐵1𝑦𝑗 + 𝐶1,
𝑔𝑓 (𝑥𝑗, 𝑦𝑗) = 𝐴2𝑥𝑗 + 𝐵2𝑦𝑗 + 𝐶2,𝑗 = {1, 2, 3} ,

(1)

where (𝑥𝑗, 𝑦𝑗) denotes the coordinates of three vertices (no.𝑗) of the triangle shown in Figure 1(d) and 𝑔𝑟(𝑥𝑗, 𝑦𝑗) and𝑔𝑓(𝑥𝑗, 𝑦𝑗) represent the corresponding intensity values of
images 𝑅 and 𝐹, respectively. Additionally, 𝐴 𝑖, 𝐵𝑖, and 𝐶𝑖
are the coefficients obtained by solving the equations defined
in (1). For the values of the three coefficients, the intensity
values of any coordinate (𝑥, 𝑦) within each triangle of two
images are calculated using𝐴 𝑖𝑥+𝐵𝑖𝑦+𝐶𝑖. Conversely, given
a pair of intensity values (one intensity value in 𝑅 and one
in 𝐹, signified as [𝑟, 𝑓]) within the range of specified bins,

we can yield two isointensity lines, 𝑟 = 𝐴1𝑥 + 𝐵1𝑦 + 𝐶1
and 𝑓 = 𝐴2𝑥 + 𝐵2𝑦 + 𝐶2. The joint histogram is updated
if the intersection of two lines (𝑥0, 𝑦0) falls into a pair of
corresponding triangles from two images as shown below:

ℎ (𝑔1 (𝑥0, 𝑦0) = 𝑟, 𝑔2 (𝑥0, 𝑦0) = 𝑓)
= ℎ (𝑔1 (𝑥0, 𝑦0) = 𝑟, 𝑔2 (𝑥0, 𝑦0) = 𝑓) + 1, (2)

where ℎ represents the joint histogram of the entry (𝑟, 𝑓)
between two images 𝑅 and 𝐹. We repeat the aforementioned
process and cover all entries in the range of bins to acquire
the entire joint histograms.

2.1.2. Joint Histogram in 3D. Similar to the joint histogram in
2D, we still account for the CIR when using 3D images. Eight
vertices of a voxel in grid points are selected to constitute
one cube, which is divided into 12 or 24 tetrahedrons
through the cube center [17].The intensity values of the eight
vertices (grid points) can be directly acquired, whereas that
of one center is evaluated through interpolation because of
its location on a nongrid point. Nevertheless, we partition
the cube (or one voxel) into six equal volumes using the
eight vertices of this cube. Hence, we obtain six tetrahedrons
(Figure 2(b)) without the need of the cube’s center. Similar to
the estimation in 2D, the intensity values of the four vertices
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Input: Two images 𝑅 and 𝐹.
Stage 1:The coordinates of sample points of 𝑅 and 𝐹 are obtained by random sampling strategy.
Stage 2: Each sample point is partitioned into two triangles (2D) or six tetrahedrons (3D case).
Stage 3:The isointensity lines or isosurfaces of the corresponding sample points from two images are constructed.
Stage 4:The joint histogram between 𝑅 and 𝐹 is updated using the isointensity lines or isosurfaces. Go to stage 2,
unless all sample points are exhausted.
Output:The joint histogram between 𝑅 and 𝐹.

Algorithm 1: Fast continuous histogram estimation.

of each tetrahedron are deemed as linear functions of the
vertices’ respective coordinates as shown below:

𝑔𝑖 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) = 𝐴 𝑖𝑥𝑗 + 𝐵𝑖𝑦𝑗 + 𝐶𝑖𝑧𝑗 + 𝐷𝑖𝑖 = {1, 2} , 𝑗 = {1, 2, 3, 4} . (3)

Likewise, (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) and 𝑔𝑖(𝑥𝑗, 𝑦𝑗, 𝑧𝑗) are the coordinates
and intensity values of the four vertices of each tetrahedron,
along with 𝑖 of the two images and 𝑗 as the four vertices. In
addition,𝐴 𝑖, 𝐵𝑖,𝐶𝑖, and𝐷𝑖 are the coefficients that determine
the linear equations in (3). The values of these coefficients
are computed through these equations. On the basis of the
coefficients, the two isointensity planes 𝑟 = 𝐴1𝑥+𝐵1𝑦+𝐶1𝑧+𝐷1 and 𝑓 = 𝐴2𝑥+𝐵2𝑦+𝐶2𝑧+𝐷2 are established. For the 3D
case, we first consider the segment of the intersecting line of
two planes.Then, the joint histogram of (𝑟, 𝑓) is accumulated
by measuring the length of the segment within each pair of
homologous tetrahedrons from two respective images. The
related equation is as follows:

ℎ (𝑔1 (𝑥, 𝑦, 𝑧) = 𝑟, 𝑔2 (𝑥, 𝑦, 𝑧) = 𝑓)
= ℎ (𝑔1 (𝑥, 𝑦, 𝑧) = 𝑟, 𝑔2 (𝑥, 𝑦, 𝑧) = 𝑓) + 𝑆length, (4)

where 𝑆length and ℎ denote the segment length and the joint
histogram, respectively. Considering one tetrahedron, the
calculation process for the joint histogram in 3D is shown in
Figure 2(c).

2.1.3. Random Sample. Information-theory-based similarity
measures rely on the computation of a joint histogram
between two images or volumes to be registered.The straight-
forward strategy for calculating the joint histogram is apply-
ing all pixels or voxels. However, the high implementation
cost impedes the application of this strategy for large images
or 3D images. An alternative approach is selecting a subset of
pixels or voxels from an entire image. Generally, the subset is
chosen from a uniform grid or random coordinate. Notably,
random samples can be obtained from the grid points or
the nongrid coordinates [25]. Bhagalia et al. [26] proposed
selecting samples that lie on notable image features.

Press et al. [25] demonstrated that random samples on
nongrid locations can improve the smoothness of MI. They
also compared their experimental results to those obtained
from several sample methods provided by Klein et al. [27].
The random sampling off the grid can reduce the grid

effect and discontinuities of information-theory-based simi-
larity measures. Accordingly, while applying our registration
method, we adopt a subset of samples selected from the
nongrid coordinates in the fixed image to estimate the joint
histogram in 2D or 3D. Finally, under FCHE (Algorithm 1),
the execution time of histogram estimations is substantially
shortened while the registration accuracy is preserved. For
instance, estimating the joint histogram between two 3D
images with dimensions of 41 × 41 × 41 voxels approximately
lasts for 21.7 s without the need of a random sample. By
contrast, the evaluated time under the FCHE strategy is only
about 1.5 s when choosing 5000 random samples from the
fixed image.

2.2. JA Divergence. The Arimoto entropy [28], a generaliza-
tion of Shannon entropy, was introduced by Arimoto and
further developed by Liese and Vajda [29]. Its definition is
given by

𝐴𝛼 (𝑋) = 𝛼𝛼 − 1 [[1 − (𝑀∑
𝑖=1

𝑝𝛼𝑖 )1/𝛼]] 𝛼 > 0, 𝛼 ̸= 1. (5)

Unlike Shannon entropy, Arimoto entropy is a nonexten-
sive entropy.The parameter𝛼 reflects the degree of nonexten-
sivity.The nonextensivity gradually weakens as the parameter
approaches 1, and the limit of the Arimoto entropy equals the
Shannon entropy when 𝛼 → 1.

We then follow the derivation of the Jensen–Shannon
divergence reported by Lin [30]. In our previous work [21], a
divergence measure based on the Arimoto entropy called the
JA divergence was introduced.The JA divergence was used to
measure the distance of two random variables and showed a
superior performance in registering medical images to those
of other information-theory measures.

Given a random variable 𝑋 (𝑥1, 𝑥2, . . . , 𝑥𝑀) with prob-
ability distributions of 𝑃 (p1, p2, . . . , p𝑀), we define the JA
divergence [21] as

JA𝛼 (p1, p2, . . . , p𝑀) = 𝐴𝛼(𝑀∑
𝑖=1

𝜔𝑖p𝑖) − 𝑀∑
𝑖=1

𝜔𝑖𝐴𝛼 (p𝑖) , (6)

where 𝐴𝛼(⋅) denotes the Arimoto entropy for 𝛼 > 0, 𝛼 ̸= 1,
and 𝜔𝑖 represent weight factors, such that ∑𝑀𝑖=1 𝜔𝑖 = 1 with𝜔𝑖 ≥ 0. When the parameter 𝛼 approaches 1, the Arimoto
entropy converges to the standard Shannon entropy, and the
limitation of the JA divergence in (6) resembles that of the
traditional MI obtained by L’Hopital’s rule.
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Input: Reference image 𝑅, floating image 𝐹
Stage 1: Given the initialized transformation 𝑇𝜇, Output is the transformed floating image 𝐹(𝑇𝜇).
Stage2: Random sampling strategy was used for 𝑅 and 𝐹(𝑇𝜇), and then output are the coordinates of sample points.
Stage 3:The joint histogram between 𝑅 and 𝐹(𝑇𝜇) was estimated using these sample points. The output is the
joint probability distribution of 𝑅 and 𝐹(𝑇𝜇).
Stage 4:The joint probability distribution was adopted to calculate the JA similarity measure between 𝑅 and 𝐹(𝑇𝜇).
The output of this stage is the value of JA between 𝑅 and 𝐹(𝑇𝜇).
Stage 5:The simplex optimization method was employed. If the stop criteria of optimization method are satisfied,
output is the optimal transformation 𝑇∗, otherwise go to stage 1.

Algorithm 2: Multimodel medical image registration.

Reference image R Floating image F

Similarity measure S

Random sampling

Simplex Optimization 
scheme

Estimation of 2D or 3D joint 
histogram using FCHE

Random sampling 

Stop?

No

①

Yes

②

③

④

⑤

Transformation T

Export optimal T∗

Figure 3: Block diagram of our registration algorithm.

3. Description of the Proposed Method

Herein, we described our medical registration method. First,
the FCHEmethodwas applied to estimate the joint histogram
of two images to be registered and calculate their joint proba-
bility distributions.Then, the JA divergence used as similarity
measure was derived in an affine transformation space.
Finally, the simplex optimization scheme was employed to
search for the maximum of the JA divergence, along with
the optimal transformation being obtained. A block diagram
of our registration algorithm (Algorithm 2) consisting of
five stages is displayed in Figure 3, where the sequence
numbers A–E denote these stages, respectively.

3.1. Registration Algorithm. For two misaligned images to
be registered, one is selected as the floating image F and

the other is considered as the reference image R. As an
example, Figure 4 describes the corresponding slices in T1-
weighted magnetic resonance (MR) and T2-weighted MR
volumes ((a) denotes the reference image, and (b) denotes the
floating image).The goal of image registration is to search the
optimal transformation between 𝐹 and 𝑅. We denote 𝑥 and𝑥󸀠 by an arbitrary point in 𝑅 and its corresponding point in𝐹, respectively. The spatial transformation relation between
the corresponding points in 𝑅 and 𝐹 can be formulated
as

𝑥󸀠 = 𝑇𝜇 (𝑥) , (7)

where 𝑇𝜇 represents the mapping function and 𝜇 is a vector
of parameters.
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(a) (b)

Figure 4: Two corresponding slices in two registered volumes. (a) Central slice inMR T1 volume. (b) Corresponding slice in the transformed
MR T2 volume registered by a known 3D rigid transformation method.

Image registration aimed to align the floating image to
the reference image by maximizing a similarity measure
between 𝐹 and 𝑅. In other words, the registration problem
is formulated as the following optimization problem:

𝑇∗ = arg max
𝜇

𝑆 (𝐹 (𝑇𝜇 (𝑥)) , 𝑅 (𝑥)) , (8)

where 𝑆 denotes a suitable similaritymeasure, which achieves
its maximum when the reference image and floating image
are completely registered, and𝐹(𝑇𝜇(𝑥)) stands for the floating
image transformed by the space mapping 𝑇𝜇.

3.2. Transformation Model. Rigid, affine, perspective, and
curve (elastic) transformation models were reported to sim-
ulate geometric transformations of images [3]. Rajwade et al.
[17] reported that the CHEs are not suitable for deformation
registration because the derivatives of histograms acquired by
CHE are not analytically derived.Therefore, in this paper, we
restrict the transformation 𝑇𝜇 to rigid cases.The parameter 𝜇
is the vector set of 6 degrees of freedom (DoFs) for 3D rigid
transformation.These 6 DoFs include three displacements in
the 𝑥, 𝑦, and 𝑧 directions and three rotation angles around
the 𝑥-, 𝑦-, and 𝑧-axes. Hence, we model the transformation𝑇𝜇 and rewrite (7) as follows:

𝑥󸀠 = 𝑅 ⋅ 𝑥 + 𝑡 = (1 0 00 cos𝛼 − cos𝛼0 sin𝛼 cos𝛼 )( cos𝛽 0 sin𝛽0 1 0− sin𝛽 0 cos𝛽)(cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 00 0 1) ⋅ 𝑥 +(𝑡𝑥𝑡𝑦𝑡𝑧), (9)

where 𝑥󸀠 and 𝑥 hold the same denotations as those in
Section 3.1, 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧 are the translation parameters, and𝛼, 𝛽, and 𝛾 denote the rotation parameters. In the following
section, we adopt the transformation model defined by (9).

3.3. SimilarityMeasure. In image registration, the value of the
similarity measure for two misaligned images is expected to
be maximum when the images are perfectly aligned. Hence,
choosing an appropriate similarity measure is an important
task in image registration. As mentioned in Section 2.2, the
JA divergence can reach the maximum when the difference
between two random variables is minimal. Therefore, the JA
divergence measure in (6) is applied as a similarity measure,
and 𝑆 is given as follows:

𝑆 (𝐹 (𝑇𝜇 (𝑥)) , 𝑅 (𝑥)) = JA𝛼 (p1, p2, . . . , p𝑀) . (10)

By combining (8) and (10), we formulate the optimal
spatial mapping between 𝐹(𝑇𝜇(𝑥)) and 𝑅(𝑥) as

𝜇∗ = arg max
𝜇

𝑆 (𝐹 (𝑇𝜇 (𝑥)) , 𝑅 (𝑥))
= arg max

𝜇
{JA𝛼 (p1, p2, . . . , p𝑀)} , (11)

where 𝜇∗ denotes the set of estimated parameters and p𝑖 =𝑝𝑖(𝐹(𝑇𝜇(𝑥)) | 𝑅(𝑥)), 1 ≤ 𝑖 ≤ 𝑀, represents the conditional
probability distribution of the transformed floating image
given the reference image.

The intensity values in 𝐹(𝑇𝜇(𝑥)) and 𝑅(𝑥) are denoted
by 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑚) and 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑚), respectively.𝑀 is the number of the chosen intensity bins for estimating
the joint probabilities. By substituting 𝑓 and 𝑟 into the
conditional probability 𝑝𝑖(𝐹(𝑇𝜇(𝑥)) | 𝑅(𝑥)), we can rewrite



Mathematical Problems in Engineering 7

(a) (b) (c)

Figure 5: Real 2D brain images. (a) MR T1 image. (b) MR T2 image. (c) MR PD image.

the formula as p𝑖 = 𝑝(𝐹 = 𝑓𝑗 | 𝑅 = 𝑟𝑖) = 𝑝(𝑓𝑗 | 𝑟𝑖). We choose
the JA divergence with different weights and 𝛼 values as the
similaritymeasure 𝑆 shown in (10). In (6), the reference image
is adopted as basis for image registration, and the marginal
probability distributions of the reference image are chosen
as the weights; that is, 𝜔𝑖 = 𝑝(𝑅(𝑥)) = 𝑝(𝑅 = 𝑟𝑖) = 𝑝(𝑟𝑖).
By substituting 𝜔𝑖 and p𝑖 into (6), we rewrite the similarity
measure 𝑆 as𝑆 (p1, p2, . . . , p𝑚) = JA𝛼 (p1, p2, . . . , p𝑚)

= 𝛼𝛼 − 1 {{{{{
𝑚∑
𝑖=1

𝑝 (𝑟𝑖) [[
𝑚∑
𝑗=1

𝑝 (𝑓𝑗 | 𝑟𝑖)𝛼]]
1/𝛼

− [[
𝑚∑
𝑗=1

[ 𝑚∑
𝑖=1

𝑝 (𝑟𝑖) 𝑝 (𝑓𝑗 | 𝑟𝑖)]𝛼]]
1/𝛼}}}}} .

(12)

The similarity measure defined in (12) is then maximized
using an optimization method to search for the optimal
transformation parameters.

3.4. Optimization. The optimization algorithm mainly influ-
ences the convergence speed of a similarity measure. Hence,
an appropriate optimization method is valuable to a reg-
istration framework. We do not obtain the derivatives of
the probability distributions using FCHE method. Hence,
gradient-based optimization techniques are not available
herein. In this work, we exploit the downhill simplex method
(Nelder–Mead [31] or Amoeba optimization) to maximize
the similarity measure defined in (12), considering that this
method only requires function evaluations without need for
derivatives.

Notably, the downhill simplex optimization scheme is
terminated if the difference between the current function
value and the best function value is less than 0.01 and the
maximum of difference between the current value and the
best value for all parameters is less than 0.1.The scheme is also
terminated if the number of iterations reaches a previously
fixed value𝑁MAX. In our work,𝑁MAX is set to 100.

4. Experiments and Results

To evaluate the FCHE method, two groups of experiments
were implemented on 2D and 3D medical images. In Sec-
tion 4.1, the datasets used are described. The performance
of the FCHE method in registration accuracy is exemplified
through 2D registration in Section 4.2. Meanwhile, the
method addresses the rigid registration of 3Dmedical images
in Section 4.3.

The FCHE method, CHE algorithm without random
sampling, SH, and PZW algorithms were coded by Visual
C++ and implemented in Visual Studio 2012. The classes and
functions were employed in the Insight Toolkit (ITK) [32].
In this work, all experiments were performed on a 3.10GHz
and 8GB-memory personal computer. Meanwhile, we set the
nonextensive parameter in the JA divergence as 𝛼 = 1.50. We
also used the downhill simplex optimization to maximize the
JA measure in all experiments.

4.1. Test Images. The datasets for 2D tests were obtained
from the Visible Human Project [33]. We chose the head
subset, including three protocols of MR images, T1-weighted
MR, T2-weighted MR, and proton density- (PD-) weighted
MR images (Figure 5) to enforce 2D registration. These
images were acquired in the Portable Network Graphics
(.png) format and aligned originally with one another at
dimensions of 256 × 256 pixels. 3D registration experiments
were carried out on simulated 3Ddatasets.The simulated data
were obtained from the Brainweb database of the Montreal
Neurological Institute [34]. These data contained 3D brain
MR imaging (MRI) volumes simulated through the following
three different protocols: T1-weighted, T2-weighted, and PD-
weighted with various slice thicknesses, noise levels, and
intensity nonuniformities. In the simulated experiments for
3D, the size of the volumes (with voxel coding on 8 bits) was
181 × 217 × 181 voxels at a voxel size of 1mm × 1mm × 1mm.
All corresponding slices in these volumes were aligned with
each other.

4.2. Registration for 2D Images. The performance of our reg-
istration scheme based on FCHE method was first assessed
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Figure 6: Rigid registration results of the real 2DbrainMRT1 andMRPD images. Various values of two parameters𝑚 and𝑁were chosen.The
transformation parameters were generated randomly from the range 0–10mm, with the unit of errors also in millimeters. (a) Registration
errors for several various 𝑚 values, 𝑚 ∈ {16, 32, 64, 128, 256} and 𝑁 = 3000. (b) Results of different numbers of random samples, 𝑁 ∈{3000, 5000, 8000, 10000, 30000} with𝑚 = 32.
using the real 2D brain data. The role of the number of
bins and random samples employed in our method was
examined and compared with those in the CHE without
random sampling, SH, PZW, and particle filter (PF) [35].

4.2.1. Parameter Setting. The registration parameters were
chosen by trial and error from the real data. To demonstrate
the effect of these parameters, we performed the experimental
process as follows. Using the pair of MR T1 and MR PD
volumes mentioned in Section 4.1, we chose the former
volume as reference image. By contrast, the latter volume was
randomly transformed and considered as the floating image.
Twenty initial transformations were generated, where the 𝑥
and 𝑦 coordinates were derived from the range 0–10mm. To
quantitatively evaluate the registration results, we calculated
the difference between the true values and the estimated
values as the registration error.

Figure 6 displays the mean and standard deviation of
the registration errors when varying the number of bins𝑚 and the number of random samples 𝑁. The lowest
mean of the registration error was obtained when 𝑚 = 32
(herein,𝑁 = 3000) (Figure 6(a)). By contrast, the number of
random samples𝑁 = 3000 achieved the relatively low errors
(Figure 6(b)). In the sequel, we used𝑚 = 32 and𝑁 = 3000 for
2D images.

4.2.2. Accuracy. To illustrate the registration accuracy of our
method, we compared the CHE, SH, PZW, and PR methods
with the FCHE in terms of real 2D brain datasets MR T1
and MR PD. In the process, the MR T1 image was also
applied as the reference image. We selected 20 affine trans-
formations, which involved displacements along the 𝑥 and

𝑦 directions generated randomly from the range 10–20mm,
rotation angles generated randomly from 0∘ to 20∘, and scales
generated randomly from 0.9 to 1.1. Consequently, a total
of 20 pairs of test images and 100 affine registrations were
obtained for the five methods. Table 1 shows the means
and standard deviations of the registration errors in all
100 trials that exploited the five algorithms. Notably, the
registration errors incurred under the FCHE method are
lower than those acquired under the other four methods.
Furthermore, the FCHE method improved the execution
efficiency in estimating joint distributions compared with the
CHE algorithm.

4.2.3. Noise Resistance. This section assesses the performance
of our method, as well as the CHE, SH, PZW, and PF
algorithms, in the presence of different noise levels. Similar to
Section 4.2.1, MR T1 and MR PD images were chosen as the
reference and floating images. Three levels of Gaussian noise
with zero mean were added to the MR PD image by applying
the imnoise function ofMatlab.The respective variances were
0.01, 0.05, and 0.1.Then, 20 initial affine transformations were
obtained to transform each noisy MR PD image. As a result,
20 pairs of test images were acquired for each noise level.
Altogether, 300 registrations were carried out for the five
approaches.

The resulting registration errors are displayed in Table 2.
In each cell, the numbers in round brackets denote themeans
of the translation errors in the𝑥 and𝑦directions.The rotation
angles 𝜃with their standard deviations are in square brackets.
As shown in Table 2, the registration accuracies of FCHE are
superior to those of the other four algorithms for each noise
level.



Mathematical Problems in Engineering 9

Table 1: Statistics of the registration errors (mm) for 20 trials on the real MR T1 and MR PD brain images shown in Figure 4. The second
and fourth columns provide the means of the errors in the 𝑥 and y directions. The third and fifth columns display the respective standard
deviation of the errors incurred under the five methods. The sixth to eleventh columns show the means and standard deviation of rotation
and scales errors.

Methods
Errors in the𝑋

direction
Errors in the 𝑌

direction Rotation angles Scales in the𝑋
direction

Scales in the 𝑌
direction Average run

time (s)
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

FCHE 0.11 0.05 0.14 0.05 0.07 0.04 0.08 0.06 0.07 0.05 1.58
CHE 0.13 0.07 0.19 0.04 0.08 0.03 0.09 0.05 0.09 0.04 23.6
SH 0.14 0.09 0.20 0.07 0.11 0.07 0.12 0.08 0.13 0.06 1.27
PZW 0.12 0.05 0.22 0.06 0.09 0.05 0.11 0.05 0.12 0.07 1.43
PF 0.11 0.06 0.15 0.05 0.08 0.06 0.09 0.07 0.09 0.05 2.81

Table 2: Mean registration errors (mm) for 20 tests of the real 2D brain MR T1 and MR PD images using three approaches in the presence
of different noise levels with their variances 𝜎 = 0.01, 0.05, and 0.1. The numbers in square brackets are the standard deviations of the errors.

Methods 𝜎 = 0.01 𝜎 = 0.05 𝜎 = 0.1

FCHE
(0.21 0.29 0.22)[0.12 0.16 0.19] (0.29 0.31 0.25)[0.19 0.21 0.15] (0.39 0.54 0.41)[0.25 0.52 0.32]

CHE
(0.20 0.31 0.27)[0.14 0.17 0.16] (0.34 0.32 0.31)[0.22 0.20 0.14] (0.39 0.51 0.45)[0.23 0.50 0.29]

SH
(0.23 0.32 0.31)[0.14 0.15 0.17] (0.33 0.39 0.34)[0.18 0.20 0.15] (0.38 0.71 0.58)[0.32 1.03 0.55]

PZW
(0.24 0.31 0.29)[0.24 0.14 0.13] (0.31 0.33 0.31)[0.21 0.22 0.18] (0.52 0.69 0.62)[0.43 0.44 0.53]

PF
(0.22 0.31 0.23)[0.15 0.18 0.16] (0.31 0.32 0.25)[0.20 0.19 0.16] (0.39 0.57 0.49)[0.28 0.46 0.38]

4.3. Registration for 3D Images. To evaluate the performance
of the FCHE approach applied to 3D image registration,
we compared the method with CHE, SH, and PZW on
three groups of simulated 3D brain datasets introduced in
Section 4.1, namely, MR T1 and MR T2, MR T1 and MR
PD, and MR T2 and MR PD. In each pair of test images,
the subvolumes of size 41 × 41 × 41 voxels were exploited
to implement the registration experiments along with the
former image applied as reference image. Then, the zero-
mean Gaussian noise with the variance of 0.05 was added to
the latter of each image pair using the imnoise function of
Matlab. We selected 20 rigid transformations with 𝑥, 𝑦, and𝑧 coordinates generated randomly from the range 0–10mm
to transform the noisy images. Consequently, 20 pairs of
test images for each group of data were generated, and a
total of 240 3D rigid registrations for the four methods were
implemented. Table 3 displays the statistics of the registration
errors of the successful experiments in 20 tests conducted
on three groups of images using four algorithms. Here, an
experiment is regarded as “success” if the registration error in
every direction is less than 1mm. It is observed from Table 3
that the registration accuracies using the FCHE and CHE
methods are comparable and better than those employing SH
and PZW approaches. Meanwhile, the FCHE method also
improved the registration efficiency compared to CHE.

4.4. Discussion of Experimental Results. Experiments were
conducted on 2D and 3D datasets; the former used real
brain data (MR T1, MR T2, and MR PD images), and
the latter included simulated 3D images (MR T1, MR T2,
and MR PD volumes). In 2D registration experiments, to
compare the registration accuracy of our method with those
of other four algorithms, 100 trials were carried out based on
affine transformations using parameters randomly generated
within a certain range. To access the immunity of noise, three
levels of Gaussian noise were added to the floating images and
300 trials were performed. The results obtained for the 2D
real images showed that our alignment technique provided
lower registration errors and a better robustness to noise
than those exploiting SH, PZW, and PF strategies and CHE
without random sampling.

For 3D case, three groups of simulated 3D brain datasets,
MR T1 and MR T2, MR T1 and MR PD, and MR T2
and MR PD, were employed to evaluate the performance
of our method. For each group of test images, 20 pairs of
test images were generated and totally 240 3D registrations
for four methods were implemented. Experimental results
on simulated 3D data show a better behavior of FCHE
method with low registration errors when compared to the
other methods, and the subvoxel registration accuracies are
achieved by FCHE method in almost all cases.
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5. Conclusion

This study introduced the FCHEs to estimate the joint prob-
ability distribution and accelerate the registration process
by employing CIR and random samples on nongrid points.
Estimation methods for 2D and 3D joint histograms were
also elaborated. This work reduced the grid effect caused by
grid-aligning transformations between two images to be reg-
istered.The reduction of such effectwas achievedwhen a joint
histogram was calculated from a subset of pixels randomly
selected from nongrid coordinates of the fixed image instead
of entire images. Then, a similarity measure based on the
Arimoto entropy, called the JAdivergence, was introduced for
medical image registration. This similarity measure is a gen-
eralization of the well-known Jensen–Shannon divergence
measure. We employed affine transformation as the param-
eter space, along with the JA divergence as the registration
criteria, to carry out the registration experiments. To search
the maxima of this similarity measure, we used the downhill
simplex optimization approach. Then, we applied the FCHE
estimation algorithm to estimate the joint probability distri-
bution of two images to be registered.

As mentioned above, the similarity measure computed
by adopting the FCHE estimation algorithm was not differ-
entiable, which is an important property in nonrigid regis-
trations. As a result, gradient-based optimization schemes
were not available for the FCHE-based registration method.
In the future, we intend to extend our application to other
multimodal medical images, such as ultrasound and MR
images, and to other organs.
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