SUPPLEMENTAL MATERIAL

Chemical-by-chemical and cumulative risk assessment of residential indoor exposure to semivolatile organic compounds in France

Maud Pelletier¹, Philippe Glorennec^{1*}, Corinne Mandin², Barbara Le Bot¹, Olivier Ramalho², Fabien Mercier¹, Nathalie Bonvallot¹.

¹ Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) -UMR S 1085, F-35000 Rennes, France

² University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France

*Corresponding author:

INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France. EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France.

Tel.: +33-2 99 02 26 22.

E-mail address: <u>nathalie.bonvallot@ehesp.fr</u>

Table of contents:

Table S1: Reference doses (RfD) and cancer slope factors (CSF) retrieved from literature for most critical effect for SVOCs and used for chemical by chemical risk assessment by estimation of hazard quotients and excess risks

Table S2: SVOC oral bioavailabilities (f_{oral}) used for the estimation of internal reference doses (average values) retrieved from Pelletier et al. (2017) and online databases

Table S3: Hazard quotients estimated for indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

Table S4: Excess risks (ER) for carcinogenic indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

Table S5: Neurotoxic reference doses (RfD) retrieved from literature or established by the authors

 for neurotoxic cumulative assessment group

Table S6: Hazard indexes for neurotoxic indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

Table S7: Reprotoxic reference doses (RfD) retrieved from literature or established by the authors

 for reprotoxic cumulative assessment group

Table S8: Hazard indexes for reprotoxic indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

Table S9: Relative potency factors (RPF) and TEF (Toxicity Equivalent Factors) used for tier 2 cumulative assessments

Table S10: Reference compounds's cancer slope factor (CSF) or reference dose (RfD) retrieved from literature or established by the authors for specific health effects and used for cumulative risk assessment by using toxicity equivalency factor and relative potency factor approaches

Table S11: Reference doses (RfD) constructed for the 8 PCBs included in this study from the RfDretrieved from literature for the Aroclor 1254 for immunotoxic effect

References

Table S1: Reference doses (RfD) and cancer slope factors (CSF) retrieved from literature for most critical effect for SVOCs and used for chemical by chemical risk assessment by estimation of hazard quotients and excess risks

	PfD ^a	CSE			Point of	
SVOC	μg/kg- bw/d)	CSF (mg/kg /d)⁻¹	Reference	Critical effect (following oral exposure)	departure (mg/kg-bw/d)	Uncertainty factor
Aldrin	0.03		ANSES ^b (2015) ATSDR ^c (2002) US EPA ^d (1988)	Liver lesions and increased relative liver weight in adult male and female rats after chronic exposure (2 years)	LOAEL=0.025	UFH=10 UFA= 10 UFL=10
Aldrin	2 (gest)		ATSDR ^c (2016)	Decreased body weight and electroconvulsive shock threshold in offspring male and female after acute exposure (7 days) of pregnant mice	LOAEL=2	UFH= 10 UFA = 10 UFL=10
Anthracene	300		US EPA ^d (1991)	No observed effects in adult male and female mice after subchronic exposure (90 days)	NOAEL=1000	UFH= 10 UFA= 10 UFS= 30
BBP	200		US EPA ^d (2000)	Increased relative liver and brain weights in adult male rats after chronic exposure (6 months)	NOAEL=159	UFH= 10 UFA= 10 UFS= 10
BDE 47	0.002 (child)		Li et al. (2014)	Decreased relative uterus weight in 2 months female rats after single dose exposure at PND 10	BMDL=0.002	UFA=10 UFH=10 UFS=10 MF=1
BDE 99 ^e	0.1 (child)		US EPA ^d (2008)	Neurobehavioral developmental effects in adult male and female mice after exposure to single dose at PND 10	BMDL _{1SD} =0.29	UFH= 10 UFA= 10 UFS= 3 UFD= 10
BDE 99 ^e	10 (gest)		Kortenkamp and Faust (2010)	Suppression of testosterone levels, reductions of anogenital distance in offspring male after acute exposure (10 days) of pregnant rats	NOAEL=1	UFH= 10 UFA= 10
Benzo[a]pyrene	0.3 (child)		US EPA ^d (2017)	Neurobehavioral impairment in adult male and female rats after postnatal exposure from PND 5 to PND 11	BMDL _s =0.092	UFH= 10 UFA= 10 UFD= 3
Benzo[a]pyrene		1	US EPA ^d (2017)	Tumor response in the alimentary tract (forestomach, esophagus, tongue, and larynx) of female mice after oral chronic exposure (2 years).	BMDL ₁₀ ^f	
Chlorpyrifos	0.1 (child)		OEHHA ^g (2010)	Reduced plasma and red blood cells cholinesterase activity in adult Beagle dogs after chronic exposure (2 years)	NOAEL=0.03	UFH=10 UFA=3 UF ^h =10
Chlorpyrifos	1		ATSDR ^c (2016) ANSES ^b (2015)	Reduced red blood cells cholinesterase activity in adult male and female rats after chronic exposure (2 years)	NOAEL=0.1	UFH= 10 UFA= 10
DBP	2 (gest/ child)		ANSES ^b (2008)	Reduction of spermatocyte development and mammary glands dysplasia in offspring male after subchronic exposure of pregnant rats and offspring from GD 15 to PND 21	LOAEL=2	UFH= 10 UFA= 10 UFL= 10

DBP	52		RIVM (2001)	Decreased number and body weight of offspring rats (without maternal toxicity) after a two-generation reproductive toxicity study	LOAEL=52	UFH= 10 UFA= 10 UFL= 10
DEHP	44 (gest)		Health Canada (1994)	Decreased fetus number after acute exposure (17 days) of pregnant mice	NOAEL=44	1000
DEHP	3.7		RIVM (2001)	Sertoli cells vacuolation in adult male rats after subchronic exposure (13 weeks)	NOAEL=3.7	UFH= 10 UFA= 10 UFS= 10
DEP	200		RIVM (2001)	Degenaration and atrophy of testes and spermatogenesis impairment in adult male rats after chronic exposure (16 weeks)	NOAEL=100	UFH= 10 UFA= 10 UFD= 5
DiBP	200 (gest)		Kortenkamp and Faust (2010)	Suppression of fetal testosterone synthesis after acute exposure (10 days) of pregnant rats	BMDL=40	200
Dieldrin	0.05		ATSDR ^c (2016) ANSES ^b (2009) US EPA ^d (1998)	Increased relative liver weight and hepatic lesions in adult female rats after chronic expsoure (2 years)	NOAEL=0.005	UFH= 10 UFA= 10
DiNP	800 (gest)		Benson (2009)	Decreased fetal testosterone and retained areolas/nipples in offspring male after acute exposure (14 days) of pregnant rats	LOAEL=750	UFH= 10 UFA= 10 UFL=10
Fluorene	40		US EPA ^d (1990)	Decreased red blood cells, packed cell volume and hemoglobin in adult male mice after subchronic exposure (13 weeks)	LOAEL=125	UFH= 10 UFA= 10 UFS=10 UFL= 3
Galaxolide	1500		Bonvallot et al. (2010)	Increased body weight and relative liver weight in adult male and female rats after subchronic exposure (90 days)	NOAEL=150	UFH= 10 UFA= 10
Lindane	0.01		ATSDR ^c (2016)	Biphasic changes in cell- and humoral- mediated immunity to red blood cells in adult female mice after chronic exposure (24 weeks)	LOAEL=0.012	UFH= 10 UFA= 10 UFL= 10
Lindane		1.1	OEHHA ^g (2011)	Increased in liver tumor of male mice after oral chronic exposure (2 years)	i Q _{animal}	
Phenanthrene	40		RIVM (2001)	Decreased body weight, increased relative liver and kidney weight (unknown species and duration of exposure)	na	UFH= 10 UFA= 10
Tributyl phosphate	1100 (gest)		ATSDR ^c (2016)	Decreased maternal body weight gain after acute exposure (10 days) of pregnant rats	BMDL _{1SD} =110	UFH= 10 UFA= 10
Tributyl phosphate	80		ATSDR ^c (2016)	Urinary bladder hyperplasia in adult male rats after chronic exposure (2 years)	BMDL ₁₀ =8.03	UFH= 10 UFA= 10
Tonalide	15		Bonvallot et al. (2010)	Increased relative liver weight in adult rats after subchronic exposure (90 days)	NOAEL=1.5	UFH= 10 UFA= 10

BMDL: benchmark dose modelling; GD: gestational days; LOAEL: low observed adverse effect level; na: not available; MF: modifying factor; NOAEL: no observed adverse effect level; PND: postnatal day; UF_A: interspecies uncertainty factor; UF_D: database deficiency uncertainty factor; UF_H: intraspecies uncertainty factor; UF_S: acute/subchronic uncertainty factor.

^a "Gest" correspond to RfD specific to gestational exposure and "child" to RfD specific to postnatal exposure.

- ^b Retrieved from: <u>https://www.anses.fr/fr/content/les-valeurs-de-r%C3%A9f%C3%A9rence</u>
- ^cRetrieved from: <u>https://www.atsdr.cdc.gov/mrls/mrllist.asp</u>
- ^d Retrieved from: <u>https://cfpub.epa.gov/ncea/iris/search/index.cfm</u>?

^e Assumption of similar toxic potency between congeners having the same molecular formula (same number of halogenated atoms) led to use the RfD of BDE 99 also for BDE 85 and BDE 100.

^f BMDL₁₀: the animal cancer potency was estimated from a linear extrapolation from the 90% confidence bound on the BMD₁₀ (estimated using multistage-Weibull model).

^gRetrieved from: <u>https://oehha.ca.gov/chemicals</u>

^hAdditional factor for children extrapolation.

ⁱ q_{animal}: correspond to the animal cancer potency estimated from the upper 95% confidence bound on the linear extrapolation using the Crump linearized multistage polynomial model.

Table S2: SVOC oral bioavailabilities (f_{oral}) used for the estimation of internal reference doses (average values) retrieved from Pelletier et al. (2017) and online databases

SVOC	f _{oral} (-) ¹	SVOC	f _{oral} (-) ¹
Aldrin	0.53	Dieldrin	0.53
Anthracene	0.68	Fluorene	0.60
BBP	0.75	Lindane	0.62
BDE 47	0.85	Galaxolide	0.50
BDE 85	0.44	PCB101	0.70
BDE 99	0.82	PCB105	0.80
BDE 100	0.84	PCB118	0.64
BDE 153	0.85	PCB138	0.89
Benzo[a]pyrene	0.43	PCB153	0.72
Chlorpyrifos	0.83	PCB28	0.78
DBP	0.75	PCB31	0.79
DEHP	0.75	PCB52	0.83
DEP	0.75	Phenanthrene	0.93
DiBP	0.75	Tonalide	0.50
DiNP	0.75	Tributyl phosphate	0.50
DPP	0.75	2,3,7,8-TCDD	0.76
Cypermethrin	0.36		

¹Arithmetic mean estimate from retrieved values from online databases (Agency for toxic substances and disease registry (ATSDR); Hazardous substances data bank (HSBD)).

Table S3: Hazard quotients estimated for indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

	Highest	hazard	Chil	dren	Adu	ılts	Pregnant	women
SVOC	quo	tient						
	p50	p95	p50	p95	p50	p95	p50	p95
Aldrin	0.004	0.01	0.004	0.01	0.001	0.005	0.00002	0.00007
Dieldrin	0.03	0.1	0.03	0.1	0.009	0.05		
Lindane	0.3	2.1	0.3	2.1	0.09	0.7		
Chlorpyrifos	0.002	0.005	0.002	0.005	0.00007	0.0002		
Tributylphosphate	0.00003	0.0001	0.00003	0.0001	0.000009	0.00004	0.0000007	0.000003
Galaxolide	0.00008	0.0004	0.00008	0.0004	0.00003	0.0001		
Tonalide	0.002	0.01	0.002	0.01	0.0008	0.004		
Anthracene	0.000002	0.000009	0.000002	0.000009	0.0000007	0.000004		
Benzo[a]pyrene	0.001	0.007	0.001	0.007				
Fluorene	0.00004	0.0002	0.00004	0.0002	0.00001	0.00009		
Phenanthrene	0.0002	0.001	0.0002	0.001	0.00007	0.0004		
BBP	0.001	0.004	0.001	0.004	0.0001	0.0005		
DBP	0.3	2.1	0.3	2.1	0.004	0.03	0.1	0.7
DEHP	0.2	0.7	0.2	0.7	0.02	0.08	0.002	0.007
DEP	0.002	0.02	0.002	0.02	0.0006	0.005		
DiBP	0.004	0.01					0.004	0.01
DiNP	0.00008	0.0004					0.00008	0.0004
BDE 47	1	2.7	1	2.7				
BDE 85	0.0002	0.0009	0.0002	0.0009	0.00006	0.0003	0.0000006	0.000003
BDE 99	0.008	0.01	0.008	0.01			0.00003	0.00006
BDE 100	0.01	0.06	0.01	0.06	0.005	0.02	0.00005	0.0002

Table S4: Excess risks (ER) for carcinogenic indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

	Adults			
SVOC	p50	p95		
Lindane	2.4.10 ⁻⁷	2.0.10 ⁻⁶		
Benzo[a]pyrene	1.3.10 ⁻⁸	8.2.10 ⁻⁸		

Table S5: Neurotoxic reference doses (RfD) retrieved from literature or established by the authors for neurotoxic cumulative assessment group

SVOC	RfD ^ª (µg/kg- bw/d)	Reference	Critical effect (following oral exposure, excepted if specified)	Point of departure (mg/kg-bw/d)	Uncertainty factor
Aldrin	2 (gest)	ATSDR ^b (2016)	Decreased body weight and electroconvulsive shock threshold in offspring male and female after acute exposure (7 days) of pregnant mice	LOAEL=2	UFH= 10 UFA = 10 UFL=10
BBP	170 (child)	This study (from Min et al., 2014)	Learning and memory impairment, decreased locomotor activity and induce depression in 1 month-old male rats after acute exposure (2 weeks)	NOAEL=50	UFA=10 UFH=10 UFS=3
BDE 47	0.1 (child)	US EPA ^c (2008)	Spontaneous motor behavior impairment and decreased habituation capability in adult male mice after single dose exposure at PND 10	BMDL _{1SD} =0.35	UFH= 10 UFA= 10 UFD= 10 UFS= 3
BDE 99	0.1 (child)	US EPA ^c (2008)	Neurobehavioral developmental effects in adult male and female mice after single dose exposure at PND 10	BMDL _{ISD} =0.29	UFH= 10 UFA= 10 UFD= 10 UFS= 3
BDE 153	3 (child)	This study (from Zhang et al., 2013)	Decreased spontaneous behavior in 1 and 2 months-old male rats after intraperitoneal ^d single dose exposure at PND 10	NOAEL=1	UFA=10 UFH=10 UFS=3
Benzo[a]pyrene	0.3 (child)	US EPA ^c (2017)	Neurobehavioral impairment in adult male and female rats after postnatal exposure from PND 5 to PND 11	BMDL _s =0.092	UFH= 10 UFA= 10 UFD= 3
Chlorpyrifos	1	ATSDR ^b (2016) ANSES ^e (2015)	Reduced red blood cells cholinesterase activity in adult male and female rats after chronic exposure (2 years)	NOAEL=0.1	UFH= 10 UFA= 10
Chlorpyrifos	0.1 (child)	ОЕННА ^f (2010)	Reduced plasma and red blood cells cholinesterase activity in adult Beagle dogs after chronic exposure (2 years)	NOAEL=0.03	UFH=10 UFA=3 UF ^g =10
DBP	17	This study (from Yan et al., 2016)	Anxiety and oxidative stress in brain tissue in 10 weeks male rats after 1 month exposure	NOAEL=5	UFA=10 UFH=10 UFS=3
DEHP	17	This study (from Tang et al., 2015)	Spatial learning impairment and memory dysfunction in 2 months-old male mice after acute exposure (10 days)	NOAEL=5	UFA=10 UFH=10 UFS=3
DiBP	170	This study (from Ma et al., 2013)	Learning impairment and increased apoptosis rate of hippocampal cells in adult male and female mice after subchronic exposure (8 weeks)	NOAEL=500	UFA=10 UFH=10 UFD=10 UFS=3

Dieldrin	0.1	ATSDR ^b (2016)	Learning impairment in young adult male monkeys after subchronic exposure (55 days)	NOAEL=0.01	UFH= 10 UFA= 10
Fluorene	33	This study (from Peiffer et al., 2016)	Spatial learning ability impairment in adult male rats after acute exposure (4 weeks)	NOAEL=10	UFA=10 UFH=10 UFS=3
PCB 52	0.3 (gest/ child)	This study (from Boix et al., 2010, 2011)	Motor coordination impairment in 4 months-old male and female rats after subchronic exposure of pregnant rats from GD 7 to PND 21	LOAEL=1	UFA=10 UFH=10 UFL=10 UFS=3
PCB 118	0.4 (gest)	This study (from Kuriyama and Chahoud 2004)	Spontaneous reflexes impairment and increased motor activity in offspring male and female after single dose exposure of pregnant rats	LOAEL=0.375	UFA=10 UFH=10 UFL=10
PCB 138 ^h	0.3 (gest/ child)	This study (from Boix et al., 2010, 2011)	Spontaneous motor activity and learning impairment in 4 months-old male and female rats after subchronic exposure of pregnant rats from GD 7 to PND 21	LOAEL=1	UFA=10 UFH=10 UFL=10 UFS=3
Lindane	2.7 (gest/ child)	This study (from Myers 1999)	Increased motor activity and decreased motor reflex in offspring rats after subchronic exposure of pregnant rats from GD 6 to PND 10	NOAEL=0.8	UFA=10 UFH=10 UFS=3

BMDL: benchmark dose modelling; GD: gestational days; LOAEL: low observed adverse effect level; NOAEL: no observed adverse effect level; PND: postnatal day; UF_A : interspecies uncertainty factor; UF_D : database deficiency uncertainty factor; UF_H : intraspecies uncertainty factor; UF_L : LOAEL uncertainty factor; UF_S : acute/subchronic uncertainty factor.

^a "Gest" correspond to RfD specific to gestational exposure and "child" to RfD specific to postnatal exposure.

^bRetrieved from: <u>https://www.atsdr.cdc.gov/mrls/mrllist.asp</u>

^c Retrieved from: <u>https://cfpub.epa.gov/ncea/iris/search/index.cfm</u>?

^d For BDE 153, no studies performing *in vivo* oral exposures of mammalian species were found and the one of Zhang et al. (2013) performing *in vivo* intraperitoneal exposure of rats was selected.

^e Retrieved from: <u>https://www.anses.fr/fr/content/les-valeurs-de-r%C3%A9f%C3%A9rence</u>

^fRetrieved from: <u>https://oehha.ca.gov/chemicals</u>

^gAdditional factor for children extrapolation.

^h Assumption of similar toxic potency between congeners having the same molecular formula (same number of halogenated atoms) led to use the RfD of PCB 138 also for PCB 153.

	Children		Adults		Pregnant women	
SVUC	p50	p95	p50	p95	p50	p95
Aldrin					0.00002	0.00007
Dieldrin	0.01	0.07	0.004	0.02		
Lindane	0.001	0.008			0.0003	0.003
Chlorpyrifos	0.002	0.005	0.00007	0.0002		
Benzo[a]pyrene	0.001	0.007				
Fluorene	0.00005	0.0003	0.00002	0.0001		
PCB 52	0.001	0.007			0.0003	0.002
PCB 118					0.0001	0.0002
PCB 138	0.0003	0.002			0.00008	0.0002
PCB 153	0.0003	0.002			0.0001	0.0003
BBP	0.002	0.004				
DBP	0.04	0.2	0.01	0.09		
DEHP	0.05	0.1	0.004	0.02		
DiBP	0.01	0.04	0.005	0.02		
BDE 47	0.02	0.05				
BDE 99	0.008	0.01				
BDE 153	0.00002	0.0001				
Hazard index	0.2	0.4	0.03	0.1	0.001	0.005

Table S6: Hazard indexes for neurotoxic indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

Table S7: Reprotoxic reference doses (RfD) retrieved from literature or established by the authors

 for reprotoxic cumulative assessment group

svoc	RfD ^ª (µg/kg- bw/d)	Reference	Critical effect (following oral exposure)	Point of departure (mg/kg-bw/d)	Uncertainty factor
BBP	1200	ОЕННА ^ь (2013)	Reduced birth weight in F1 male and female rats after a two-generation reproductive toxicity study	NOAEL=20	1000
BDE 47	0.002 (child)	Li et al. (2014)	Decreased relative uterus weight in 2 months female rats after single dose exposure at PND 10	BMDL=0.002	UFA=10 UFH=10 UFS=10 MF=1
BDE 99 ^c	10 (gest)	Kortenkamp and Faust (2010)	Suppression of testosterone levels, reductions of anogenital distance in offspring male after acute exposure (10 days) of pregnant rats	NOAEL=1	UFH= 10 UFA= 10
Benzo[a]pyrene	0.02	This study (from Fournier et al., 2016)	Decreased in testosterone synthesis in adult male rats after subchronic exposure (90 days)	BMDL ₁₀ =0.002	UFA=10 UFH=10
Chlorpyrifos	40 (gest)	This study (from Shin et al., 2015)	Sperm motility impairment in offspring male after acute exposure (10 days) of pregnant mice	NOAEL=4	UFA=10 UFH=10
Chlorpyrifos	27	This study (from Sai et al., 2014)	Reduced sperm counts, motility in caudal epididymidis, testosterone level and altered seminiferous tubules in adult male rats after subchronic exposure (90 days)	NOAEL=2.7	UFA=10 UFH=10
DBP	2 (gest/ Child)	ANSES ^d (2008)	Reduction of spermatocyte development and mammary glands dysplasia in offspring male after subchronic exposure of pregnant rats from GD 15 to PND 21	LOAEL=2	UFH= 10 UFA= 10 UFL= 10
DBP	52	RIVM (2001)	Decreased number and body weight of offspring rats (without maternal toxicity) after a two-generation reproductive toxicity study	LOAEL=52	UFH= 10 UFA= 10 UFL= 10
DEHP	44 (gest)	Health Canada (1994)	Decreased fetus number after acute exposure (17 days) of pregnant mice	NOAEL=44	1000
DEHP	3.7	RIVM (2001)	Sertoli cells vacuolation in adult male and female rats after subchronic exposure (13 weeks)	NOAEL=3.7	UFH= 10 UFA= 10 UFS= 10
DEP	200	RIVM (2001)	Degenaration and atrophy of testes and spermatogenesis impairment in adult male rats after chronic exposure (16 weeks)	NOAEL=100	UFH= 10 UFA= 10 UFD= 5

DiBP	200 (gest)	Kortenkamp and Faust (2010)	Suppression of fetal testosterone synthesis after acute exposure (10 days) of pregnant rats	BMDL=40	200
Dieldrin	0.02	This study (from Perobelli et al., 2010)	Increased immotile sperm in adult male rats after subchronic exposure (8 weeks)	LOAEL=0.05	UFA=10 UFH=10 UFL=10 UFS=3
Dinp	750 (gest)	Benson (2009)	Decreased fetal testosterone and retained areolas/nipples in offspring male after acute exposure (14 days) of pregnant rats	LOAEL=750	UFH= 10 UFA= 10 UFL=10
PCB 101 and 118 ^e	0.0003 (gest/ child)	This study (from Pocar et al., 2011)	Decreased relative teste and ovary weight in offspring (F1 and F2) after subchronic exposure of pregnant mice from GD 0 to PND 21	LOAEL=0.001	UFA=10 UFH=10 UFL=10 UFS=3
Lindane	3 (child)	ATSDR ^f (2016)	Reduced relative testicular and epididymis weight, spermatid and sperm counts, and testosterone level in male offspring of rats after acute exposure (6 days) during lactation	LOAEL=1	UFH= 10 UFA= 10 UFL= 3

BMDL: benchmark dose modelling; GD: gestational days; LOAEL: low observed adverse effect level; MF: modifying factor; NOAEL: no observed adverse effect level; PND: postnatal day; UF_A: interspecies uncertainty factor; UF_D: database deficiency uncertainty factor; UF_H: intraspecies uncertainty factor; UF_L: LOAEL uncertainty factor; UF_S: acute/subchronic uncertainty factor.

^a "Gest" correspond to RfD specific to gestational exposure and "child" to RfD specific to postnatal exposure.

^bRetrieved from: <u>https://oehha.ca.gov/chemicals</u>

^c Assumption of similar toxic potency between congeners having the same molecular formula (same number of halogenated atoms) led to use the RfD of BDE 99 also for BDE 100.

^d Retrieved from: <u>https://www.anses.fr/fr/content/les-valeurs-de-r%C3%A9f%C3%A9rence</u>

^e For PCB 101 and 118, only Pocar et al. (2011) studied combined exposure to both congener and their LOAEL for reprotoxic effects was employed to construct a common RfD_{rep}.

^fRetrieved from: <u>https://www.atsdr.cdc.gov/mrls/mrllist.asp</u>

	Child	dren	Adı	ults	Pregnant women	
SVOC	p50	p95	p50	p95	p50	p95
Dieldrin	0.07	0.3	0.02	0.1		
Lindane	0.0009	0.01				
Chlorpyrifos	0.000007	0.00002	0.000003	0.000007	0.000002	0.000005
Benzo[a]pyrene	0.02	0.1	0.006	0.03		
∑PCB 101+118	1	5			0.1	1
BBP	0.0002	0.0006	0.00002	0.00008		
DBP	0.3	2.1	0.004	0.03	0.1	0.7
DEHP	0.2	0.6	0.02	0.08	0.002	0.007
DEP	0.002	0.02	0.0006	0.005		
DiBP					0.004	0.01
DiNP					0.00009	0.0004
BDE 47	1	2.7				
BDE 99					0.00004	0.00009
BDE 100					0.00005	0.0002
Hazard index	3	8.1	0.07	0.2	0.3	1.4

Table S8: Hazard indexes for reprotoxic indoor SVOCs in France (median and high uptakes with percentiles 50th and 95th respectively)

 Table S9: Relative potency factors (RPF) and TEF (Toxicity Equivalent Factors) used for tier 2 cumulative assessments

Reference	SVOCs	Relative toxicity indicator
TEF (Ineris 2003)	Benzo(a)pyrene	1
	Anthracene	0.01
	Fluorene	0.001
	Phenanthrene	0.001
TEF (Van den Berg 1998, 2006)	PCB 105	0.0003
	PCB 118	0.0003
RPF (Benson 2009)	DEHP	1
	BBP	0.21
	DBP	0.64
	DiBP	0.24
	DINP	0.39
RPF (Hannas et al., 2011)	DEHP	0.11
	DiBP	0.15
	DiNP	0.06
RPF (Fournier et al., 2016)	Benzo(a)pyrene	1597
	DEHP	1.08
	DEP	22.63
	BBP	0.095
RPF from this study based on	Chlorpyrifos	1 (20.1)
benchmark doses (BMD10 in μ M)	Benzo(a)pyrene	8.27 (2.4)
indicated in brackets and	DEHP	1.89 (10.6)
corresponding to a decrease of	PCB 52	0.5 (39. 9)
10% in neuronal viability (Fournier	PCB 153	279.03 (0.1)
et al., 2017)	Dieldrin	1.29 (15.5)
	Lindane	0.52 (38.9)
	BDE 47	4.16 (4.8)
	BDE 99	2.95 (6.8)

Table S10: Reference compounds's cancer slope factor (CSF) or reference dose (RfD) retrieved from literature or established by the authors for specific health effects and used for cumulative risk assessment, tier 2 by using toxicity equivalency factor and relative potency factor approaches. Reference compounds were selected from the literature for PAHs (benzo(a)pyrene as recommended by Ineris, 2003), PCBs (2,3,7,8-TCDD as recommended by Van den Berg 1998, 2006), phthalates (DEHP and DPP as recommended resepctively by Hannas et al. 2011 and Benson et al., 2009), and a mixture of reprotoxic SVOCs (cypermethrin as recommended by Fournier et al., 2016). For mixture of neurotoxic SVOCs, we consider the chlorpyrifos as the reference compounds because of its well-known neurotoxic effect, and the availability of a relevant RfDs as described in the method section.

SVOC	CSF (mg/kg- bw/d) ⁻¹ /RfD ^a (mg/kg-bw/d)	Reference	Critical effect (following oral exposure)	Point of departure (mg/kg-bw/d)	Uncertainty factor
Benzo[a]pyrene	CSF=1	US EPA ^b (2017)	Based on the tumor response in the alimentary tract (forestomach, esophagus, tongue, and larynx) of female mice after oral chronic exposure of 2 years	na	na
Chlorpyrifos	RfD=0.0001 (child)	ОЕННА ^с (2010)	Reduced plasma and red blood cells cholinesterase activity in adult Beagle dogs after chronic exposure (2 years)	NOAEL=0.03	UFH=10 UFA=3 UF ^d =10
Chlorpyrifos	RfD=0.001	ATSDR ^e (2016) ANSES ^f (2015)	Reduced red blood cells cholinesterase activity in adult male and female rats after chronic exposure (2 years)	NOAEL=0.1	UFH=10 UFA=10
Cypermethrin	RfD=0.04	This study (from Fournier et al., 2016)	Decreased testosterone level in adult male rats after acute exposure (15 days)	BMDL ₁₀ =3.7	UFA=10 UFH=10
DEHP	RfD=0.044 (gest)	Health Canada (1994)	Decreased fetus number after acute exposure (17 days) of pregnant mice	NOAEL=44	1000
DPP	RfD=0.2 (gest)	Benson (2009)	Decreased fetal testosterone production after acute exposure (10 days) of pregnant rats	BMDL _{1SD} =17	100
2,3,7,8-TCDD	RfD=7.10 ⁻¹⁰	US EPA ^b (2012)	Decreased sperm count and motility in men exposed to TCDD as boys. Increased TSH in noenates.	LOAEL=2.10 ⁻⁸	UFH=3 UFL=10

na: not available

^a "Gest" correspond to RfD specific to gestational exposure and "child" to RfD specific to postnatal exposure.

- ^cRetrieved from: <u>https://oehha.ca.gov/chemicals</u>
- ^d Additional factor for children extrapolation
- ^eRetrieved from: <u>https://www.atsdr.cdc.gov/mrls/mrllist.asp</u>
- ^f Retrieved from: <u>https://www.anses.fr/fr/content/les-valeurs-de-r%C3%A9f%C3%A9rence</u>

^b Retrieved from: <u>https://cfpub.epa.gov/ncea/iris/search/index.cfm</u>?

Table S11: Reference doses (RfD) constructed for the 8 PCBs included in this study from the RfD retrieved from literature for the Aroclor 1254 for immunotoxic effect

svoc	RfD (µg/kg- bw/d)	Reference	Critical effect (following oral exposure)	Point of departure (mg/kg-bw/d)	Uncertainty factor
∑ 8 PCB (28, 31, 52, 101, 105, 118, 138, 153)	0.007	This study (from Arnold et al., 1995 and Tryphonas et al., 1991)	Immunotoxicity in offspring after subchronic exposure to Aroclor 1254 of pregnant monkeys during gestation and lactation (46 weeks) and in adult after chronic exposure of 23 and 55 months	LOAEL=0.005* 0,34 ^ª	UFH= 10 UFA= 10 UFL= 3

^a The LOAEL was multiplied by a factor of 0.34 which correspond to the proportion (34%) of the 8 congeners in the Aroclor 1254.

References

Arnold, D. L., Bryce, F., McGuire, P. F., Stapley, R., Tanner, J. R., Wrenshall, E., ... & Malcolm, S. (1995). Toxicological consequences of aroclor 1254 ingestion by female rhesus (Macaca mulatta) monkeys. Part 2. Reproduction and infant findings. *Food and chemical toxicology*, *33*(6), 457-474.

Benson, R. (2009). Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate. *Regulatory Toxicology and Pharmacology*, *53*(2), 90-101.

Boix, J., Cauli, O., & Felipo, V. (2010). Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats. Mechanisms involved. *Neuroscience*, 167(4), 994-1003.

Boix, J., Cauli, O., Leslie, H., & Felipo, V. (2011). Differential long-term effects of developmental exposure to polychlorinated biphenyls 52, 138 or 180 on motor activity and neurotransmission. Gender dependence and mechanisms involved. *Neurochemistry international*, 58(1), 69-77.

Bonvallot, N., Mandin, C., Mercier, F., Le Bot, B., & Glorennec, P. (2010). Health ranking of ingested semi-volatile organic compounds in house dust: an application to France. *Indoor air*, *20*(6), 458-472.

Fournier, K., Tebby, C., Zeman, F., Glorennec, P., Zmirou-Navier, D., & Bonvallot, N. (2016). Multiple exposures to indoor contaminants: Derivation of benchmark doses and relative potency factors based on male reprotoxic effects. *Regulatory Toxicology and Pharmacology*, *74*, 23-30.

Fournier, K., Baumont, E., Glorennec, P., & Bonvallot, N. (2017). Relative toxicity for indoor semi volatile organic compounds based on neuronal death. *Toxicology Letters*, 279, 33-42.

Hannas, B. R., Lambright, C. S., Furr, J., Howdeshell, K. L., Wilson, V. S., & Gray Jr, L. E. (2011). Doseresponse assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate, and diisononyl phthalate. *Toxicol. Sci.*, *123*(1), 206-216.

Health Canada (1994). Canadian Environmental Protection Act. Priority Substance List, Assessment Report : Bis(2-ethylhexyl) phthalate. ISBN 0-662-22031-5.

Ineris (2003). Hydrocarbures aromatiques polycycliques (HAPs). Évaluation de la relation doseréponse pour des effets cancérigènes : Approche substance par substance (facteurs d'équivalence toxique - FET) et approche par mélanges. Évaluation de la relation dose-réponse. Institut National de l'Environnement et des Risques. Verneuil en Halatte, France. 2003. https://www.ineris.fr/fr/hydrocarbures-aromatiques-polycycliques-haps

Kortenkamp, A., & Faust, M. (2010). Combined exposures to anti-androgenic chemicals: steps towards cumulative risk assessment. *International journal of andrology*, *33*(2), 463-474.

Kuriyama, S. N., & Chahoud, I. (2004). In utero exposure to low-dose 2, 3', 4, 4', 5-pentachlorobiphenyl (PCB 118) impairs male fertility and alters neurobehavior in rat offspring. *Toxicology*, 202(3), 185-197.

Li, L. X., Chen, L., Cao, D., Chen, B. H., Zhao, Y., Meng, X. Z., ... & Zhang, Y. H. (2014). Development of a reference dose for BDE-47, 99, and 209 using benchmark dose methods. *Biomedical and Environmental Sciences*, *9*(27), 733-739.

Ma, N., Liu, S., Gao, P., Cao, P., & Xu, H. (2013). Effect of diisobutyl phthalate on learning and memory behavior and apoptosis of hippocampus cells in mice. *Journal of hygiene research*, 42(1), 57-60.

Min, A., Liu, F., Yang, X., & Chen, M. (2014). Benzyl butyl phthalate exposure impairs learning and memory and attenuates neurotransmission and CREB phosphorylation in mice. *Food and Chemical Toxicology*, 71, 81-89.

Myers, D.P. (1999) Lindane: Developmental neurotoxicity study in the Han Wistar rat by dietary administration. Unpublished report No. CIL/022 from Huntingdon Life Sciences Ltd, Suffolk, England (*cited in WHO/FAO, 2002*).

Peiffer, J., Grova, N., Hidalgo, S., Salquèbre, G., Rychen, G., Bisson, J. F., ... & Schroeder, H. (2016). Behavioral toxicity and physiological changes from repeated exposure to fluorene administered orally or intraperitoneally to adult male Wistar rats: A dose–response study. *Neurotoxicology*, 53, 321-333.

Pelletier, M., Bonvallot, N., Ramalho, O., Mandin, C., Wei, W., Raffy, G., Mercier, F., Blanchard, O., Le Bot, B., & Glorennec, P. (2017). Indoor residential exposure to semivolatile organic compounds in France. *Environment International*, in press.

Perobelli, J. E., Martinez, M. F., da Silva Franchi, C. A., Fernandez, C. D. B., Camargo, J. L. V. D., & Kempinas, W. D. G. (2010). Decreased sperm motility in rats orally exposed to single or mixed pesticides. *Journal of Toxicology and Environmental Health*, Part A, 73(13-14), 991-1002.

Pocar, P., Fiandanese, N., Secchi, C., Berrini, A., Fischer, B., Schmidt, J. S., ... & Borromeo, V. (2011). Effects of polychlorinated biphenyls in CD-1 mice: reproductive toxicity and intergenerational transmission. *Toxicological Sciences*, *126*(1), 213-226.

RIVM (2001). Re-evaluation of human-toxicological maximum permissible risk levels. Report 711701 025.

Sai, L., Li, X., Liu, Y., Guo, Q., Xie, L., Yu, G., ... & Li, L. (2014). Effects of chlorpyrifos on reproductive toxicology of male rats. *Environmental toxicology*, 29(9), 1083-1088.

Shin, H. S., Seo, J. H., Jeong, S. H., Park, S. W., Park, Y. I., Son, S. W., ... & Kim, J. S. (2015). Effect on the H19 gene methylation of sperm and organs of offspring after chlorpyrifos-methyl exposure during organogenesis period. *Environmental toxicology*, 30(12), 1355-1363.

Tang, J., Yuan, Y., Wei, C., Liao, X., Yuan, J., Nanberg, E., ... & Yang, X. (2015). Neurobehavioral changes induced by di (2-ethylhexyl) phthalate and the protective effects of vitamin E in Kunming mice. *Toxicology Research*, 4(4), 1006-1015.

Tryphonas, H., Luster, M. I., Schiffman, G., Dawson, L. L., Hodgen, M., Germolec, D., ... & Arnold, D. L. (1991). Effect of chronic exposure of PCB (Aroclor 1254) on specific and nonspecific immune parameters in the rhesus (Macaca mulatta) monkey. *Fundamental and applied toxicology*, *16*(4), 773-786.

Van den Berg, M., Birnbaum, L., Bosveld, A. T., Brunström, B., Cook, P., Feeley, M.,... & Kubiak, T. (1998). Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Persp., 106(12), 775.

Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M.,... & Rose, M. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci., 93(2), 223-241. Yan, B., Guo, J., Liu, X., Li, J., Yang, X., Ma, P., & Wu, Y. (2016). Oxidative stress mediates dibutyl phthalateinduced anxiety-like behavior in Kunming mice. *Environmental toxicology and pharmacology*, 45, 45-51.

Zhang, H., Li, X., Nie, J., & Niu, Q. (2013). Lactation exposure to BDE-153 damages learning and memory, disrupts spontaneous behavior and induces hippocampus neuron death in adult rats. *Brain research*, 1517, 44-56.