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ABSTRACT: A ruthenium catalyst for Z-selective olefin metathesis has been synthesized from a readily accessible N-heterocyclic 
carbene (NHC) ligand that is prepared thanks to an efficient, practical and scalable multicomponent synthesis. The desired rutheni-
um complex with cyclometalated NHC ligand is obtained by means of selective C(sp3)-H activation at the adamantyl fragment and 
X-ray diffraction analysis unambiguously confirmed the structure of the precatalyst. The catalyst demonstrated attractive catalytic 
performance in self- and cross-metathesis at low catalyst loading to afford the desired internal olefins with high conversion and 
very high Z-selectivity (up to >99%). The versatility of the chelated catalyst is illustrated by the high cis-selectivity (up to >98%) 
and high tacticity control (up to >98% syndiotactic) achieved in ring-opening-polymerization, allowing for the production of highly 
microstructurally controlled norbornene, norbornadiene and cyclopropene-derived polymers.                                    

KEYWORDS: Olefin metathesis, Z-selective catalyst, Syndiotactic polymers, NHC ligand, Ruthenium Complex.                                 

During the last two decades, olefin metathesis has evolved 
to become a highly versatile tool for the construction of C-C 
double bonds.1 The development of efficient and robust transi-
tion metal-based catalysts for olefin metathesis has allowed 
important applications in natural product synthesis,2 biochem-
istry3 and material science.4 Among the key advances, the 
incorporation of N-heterocyclic carbenes (NHC) as ancillary 
ligands has enabled new generations of ruthenium-based cata-
lysts with improved properties.5 In the recent years, particular 
attention has been given to the development of Ru-based com-
plexes capable of Z-selective olefin metathesis,6, 2b as an alter-
native to more sensitive W-,7 and Mo-based catalysts.8 Attrac-
tive applications in selective olefin metathesis transformations 
have been achieved with unsymmetrical NHC ligands,9 and 
recent breakthrough works by Grubbs and co-workers evi-
denced the benefits provided by a chelating unsymmetrical 
NHC ligand in ruthenium-catalyzed Z-selective olefin metath-
esis transformations,10 that opened the door to the develop-
ment of catalysts with improved activity and Z-selectivity.11 
The most efficient cyclometalated Z-selective ruthenium cata-
lyst Ru-1 was recently obtained using the unsymmetrical 
saturated NHC ligand combining a N-adamantyl and a bulky 
N-2,6-diisopropylphenyl (Dipp) group (Figure 1).12 Indeed, 
catalyst Ru-1 delivered exceptional level of Z-selectivity in 
broad scope of transformations,6b with the exception of ring-
opening-cross metathesis.13 Nevertheless, and despite the 
advantageous properties conferred to the cyclometalated-metal 
species by this unsymmetrical NHC, the cost arising from the 
multi-step synthesis of such ligands may render their use pro-
hibitive for industrial applications.14 In fact, the ligands sur-

rounding the metal are the most expensive component of a (Z-
selective) metathesis catalyst. This is reinforced by the fact 
that despite the metal, the ligands cannot be recycled. There-
fore, the development of readily accessible NHC ligand for the 
design of new ruthenium-based catalyst displaying high versa-
tility and high selectivity in the production of Z-olefins is of 
high interest. Recently, we described a practical and efficient 
multicomponent procedure for the highly selective synthesis 
of unsymmetrical unsaturated NHC ligand precursors that 
provide a cost-effective alternative to the multistep synthesis 
of their saturated analogues.15 Notably, this approach allows 
for the straightforward preparation at multi-gram scale in good 
yield of the unsymmetrical imidazolium salt 1 bearing the N-
Dipp and N-adamantyl substituents (Figure 1). Herein, we 
report on the synthesis of a new chelated ruthenium-based 
catalyst incorporating an unsymmetrical unsaturated NHC, 
which demonstrated its great versatility and high selectivity in 
the construction of internal Z-olefins. Moreover, no modifica-
tion of the Ru-based catalyst is required to produce highly 
tactic polymers (up to >98% syndiotactic) with very high cis-
content (up to >98%). 
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Figure 1. Highly Z-selective ruthenium catalyst Ru-1 based on 
the saturated unsymmetrical NHC precursor (left). New synthetic 
approach to the lower-cost highly Z-selective ruthenium catalyst 
Ru-2 (right). Self-metathesis (SM), cross-metathesis (CM), ring-
opening-cross metathesis (ROMP). 

We initiated our study by the preparation of complex Ru-2 
incorporating our readily accessible unsymmetrical unsaturat-
ed NHC ligand combining the N-Dipp and N-adamantyl sub-
stituents. First, deprotonation of the tetrafluoroborate imidazo-
lium salt 1 with potassium bis(trimethylsilyl)amide (KHMDS) 
followed by the addition of a stoichiometric amount of the first 
generation Hoveyda-Grubbs complex (HGI) afforded the 
expected second generation type complex C1 with good 78% 
isolated yield (Scheme 1). X-ray diffraction analysis of this 
new species allowed us to confirm the prerequisite close prox-
imity between the ruthenium center and the adamantyl C-H 
bond (2.89 Å) (Figure 2, left).16 Serenely, the cyclometalation 
procedure by means of carboxylate-assisted C-H bond activa-
tion strategy was engaged in the presence of an excess of 
sodium pivalate (Scheme 1).17 Isolation and full characteriza-
tion, including X-ray crystallography of the stable nitrato-
complex Ru-2 confirmed the five-membered chelating archi-
tecture, which is critical for successful stereoselectivity in 
catalysis (Figure 2, right).18 

 

Scheme 1. NaOPiv-Mediated C(sp3)-H Activation at the 
Adamantly Fragment to Form the Cyclometalated Ru-2 
Complex 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Solid-state structure of complex C1 (left) and complex 
Ru-2 (right) from single crystal X-ray diffraction. Displacement 
ellipsoids are drawn at 50% probability. Most hydrogen atoms 
have been omitted for clarity (N in blue, C in grey, Cl in green, O 
in red, H in white. For complex C1: distance between C27 and Ru 
= 2.89 Å. For complex Ru-2: distance between C27 and Ru = 
2.06 Å. 

The efficiency of this new catalyst was first evaluated in the 
self-metathesis of an unfunctionalized terminal olefin;11a i.e 1-
dodecene (Table 1). Interestingly, the catalyst Ru-2 demon-
strated excellent catalytic performances at low 0.1 mol% cata-
lyst loading and afforded after 2 hours the desired internal 
olefin with 88% conversion and with very high >99% selectiv-
ity towards primary metathesis products (PMP).19 Further-
more, high 98% Z-selectivity could be maintained at high 
conversion without any detectable amount of undesired olefin 
walking product, suggesting good stability of the cyclomet-
alated catalyst Ru-2 (Table 1, entry 3). 

 
Table 1. Evaluation of Catalyst Ru-2 in the Self-Metathesis 
of 1-Dodecenea 

 

entry time (h) Conv. (%) Z:E ratio PMP-selectivity 
(%) 

1 1 76 >99:1 >99 
2 2 88 (82)b >99:1 >99 
3 6 95 98:2 >99 
4 22 98 98:2 >99 
aConversions, molar ratio of E and Z isomers, and PMP-

selectivity were monitored by GC analysis using tetradecane as 
internal standard. bIsolated yield 

The efficiency of our new catalyst was further evaluated in 
the homometathesis of two more challenging substrates (Table 
2). First, while modest reactivity is generally observed for 
substrates with allylic functionality,11a,d the efficiency of the 
catalyst was illustrated in the self-metathesis of allylacetate to 
produce the desired self-metathesis product 6a in high conver-
sion (>98%) and high 97% Z-selectivity  with very little al-
teration of the product configuration after an extended period 
of time (table 2, entry 4). Regarding allylbenzene, which is 
easily isomerized to β-methylstyrene, Ru-2 homometathesized 
allylbenzene with full conversion and excellent 97% Z-
selectivity after 6h with very low amount (<5%) of allylben-
zene isomerization (Table 2, entry 7). It is important to note 
that very similar behaviors were described with catalyst Ru-1, 
which afforded the self-metathesis products 6a and 6b with 
very comparable rate of conversion and selectivity.  

O

Ru

N N

O N
O

O

N N

 Modest overall yield (<20%)

O

Ru

N N

O N
O

O

NN

BF4

1

BF4

4 steps synthesis
95% selectivity, 75% yield
Multicomponant synthesis at multi-gram scale

Z-selective catalyst

Previous work (Grubbs et al.): This work:

Reaction

SM

Product

up to >99% cis

CM up to >98% cis

up to >98% cis &
 up to >98% syndiotacticROMP

Z-selective catalyst

cost effective catalyst 
with 

improved performances

NH2

+

H2N

Glyoxal 
Folmaldehyde, AcOH

10 min, 40°C

then KBF4

(Ru-1) (Ru-2)

O

Ru

N N

Cl
Cl

O

Ru

N N

O

78% Isolated yield

Ru-2

43% yield over two steps

N
O

O

1) NaOPiv (10 equiv)
    THF, MeOH, 55 °C
    48h

2) NH4NO3 (15 equiv)
    THF, 12h

C1

1

1) KHMDS,
    Tol, rt, 0.5h

2) HGI, Tol,
    40 °C, 0.5h

9 +
9

9

3 4

Ru-2 (0.1 mol%)

THF, 
35 °C, time (h)

Page 2 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Table 2. Self-Metathesis of Allylacetate and Allylbenzene 

 
entry substrate time (h) Conv. (%)a Z:E ratiob 

1 R = OAc (5a)  1 70 98:2 
2  2 93 97:3 
3  4 >98 (89)c 97:3 
4  8 >98 96:4 
5 R = Ph (5b) 1 84 >99:1 
6  3 96(90)c 98:2 
7  6 >98 97:3 
8  20 >98 85:15 
aDetermined by 1H NMR spectroscopy. bMolar ratio of E and Z 

isomers were determined by GC. cIsolated Yields. 

Ruthenium-based olefin metathesis catalysts have demon-
strated variable degree of stability in the presence of alco-
hols.20 In fact, the free hydroxyl-function may participate in 
catalyst deactivation and/or decomposition into isomerization 
active species such as ruthenium hydrides.21 Therefore, 4-
pentanol was established as a particularly challenging bench-
mark substrate for cylometalated ruthenium catalysts, which 
demonstrated low activities and/or major erosion of Z-
selectivity.22 Interestingly, catalyst Ru-2 afforded good cata-
lytic activity in the self-metathesis of 4-pentenol (7), while 
attaining and maintaining high Z-selectivity at high conver-
sion, surpassing all previously described Z-selective cyclomet-
alated catalysts, notably Ru-1 (Table 3). 

 
Table 3. Self-Metathesis of 4-Pentenol by Catalyst Ru-2a 

 
Entry Time (h) Conversion (%) Z:E ratio (%) 

1 1 14 >98:2 
2 2 50(49)b 97:3 
3 4 84 93:7 
4 6 84 93:7 

aConversions and molar ratio of E and Z isomers were deter-
mined by 1H NMR spectroscopy. bIsolated Yield 

The excellent selectivity obtained in self-metathesis 
prompted us to further evaluate catalyst Ru-2 in cross-
metathesis (Scheme 2). The reaction between 3-butenyl ace-
tate (9) and 1-decene afforded the desired internal olefin prod-
uct 12, a Z-insect pheromone, in good 73% yield and with 
high 97:3 Z:E ratio. While cross metathesis with vinyl boro-
nates catalyzed by non-cyclometalated Grubbs type complexes 
leads to highly E isomer products,23 high 97% Z-selectivity 
was observed with catalyst Ru-2 for the production in good 
78% yield of the vinyl pinacol boronate cross product 13.24 
Interestingly, 4-pentenol (7) could also be engaged efficiently 
in cross-metathesis with 1-dodecene (3) to produce 14 in satis-
factory yield and high 95% Z-selectivity. The latter was con-
verted in three steps to the disparlure pheromone 15 with high 

94% cis-epoxy content.25 While cyclometalated Ru-based 
catalysts proved inefficient in reacting internal olefins with 
trans configuration, the substrate scope for cross-metathesis 
with this family of catalysts is not restricted to terminal ole-
fins.26 Indeed symmetrical internal Z-olefins can be useful 
coupling partners in such transformations. The CM reaction 
between allyl benzene (5b) and cis-1,4-diacetoxybutene (11) 
afforded the desired unsymmetrical internal olefin 16 in good 
yield and with high 95:5 Z:E ratio. 

 
Scheme 2. Z-selective Cross-Metathesis with Ru-2 

 
aIsolated yields. bDetermined by 1H NMR spectroscopy. 

Recently, Z-selective Ru-based catalysts have demonstrated 
their capacity to produce norbornene and norbornadiene-
derived polymers with specific microstructures.27 Neverthe-
less, while high cis-selectivity is often attained with cyclomet-
alated Ru-based catalyst, the production of polymers exhibit-
ing high tacticity is more challenging and requires special 
catalyst design. In fact, Grubbs and co-workers demonstrated 
that a modification of the chelating fragment by replacement 
of the N-adamantyl substituent for the less encumbered N-tert-
butyl group allowed for lower unfavorable interactions that 
resulted in higher syndioselectivity,13 but at the expense of 
catalyst stability.27b A close look at the structural parameters of 
complex Ru-2 and comparison with the crystal structure of the 
previously reported complex Ru-1 evidenced no significant 
difference.28 In fact, the planar geometry of the unsaturated 
NHC ligand (N(42)-C(51)-C(42)-N(41) torsional angle of 
0.63°) induced no dramatic change to the topographic steric 
map of the catalytic pocket and the resulting calculated buried 
volume for Ru-2 was only slightly lower than for complex 
Ru-1 (45.9 vs 46.4) (Figure 3).29 

 

 

Figure 3. Steric map of complex Ru-2. The complex is oriented 
according to the scheme on the left; the steric map is reported on 
the right. 

Because very small changes in the electronic and steric 
properties of the ancillary NHC ligand can translate in dra-
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matic differences in catalytic properties, we decided to probe 
the potential benefit provided by our readily accessible cata-
lyst for the control of tacticity in ring-opening-polymerization 
(Scheme 3). Our first attempt using catalyst Ru-2 (0.01 mol%) 
in the ROMP of norbornene afforded a polymer material with 
very low solubility that prevented its spectroscopic analysis. 
On the other hand, norbornene ROMP with the addition of 2.5 
mol % of 1-octene as a chain transfer agent, generated poly-17 
with high cis-content (>98% Z-selectivity). Furthermore, the 
13C NMR spectrum of the hydrogenated material was con-
sistent with highly syndiotactic polymer (>98%) (Scheme 3, 
A). Under the same conditions, the norbornadiene ROMP 
afforded the polymeric product poly-18 in high yield with the 
same level of selectivity control (97% cis, >98% syndiotactic). 
Moreover, the polymerization of the more complex monomer 
19 using 1 mol% of Ru-2 produced a highly cis and syndiotac-
tic material (poly-19), which was isolated in 68% yield. Final-
ly, we turned our attention to the chiral cyclopropene mono-
mer 20 that was only previously considered with Mo- and W-
based catalysts.30 Once again, excellent stereogenic metal 
control was observed with Ru-2 producing poly-20 with very 
high cis,syndio-selectivity, since microstructural errors were 
below the detection level (Scheme 3, B). 

 
Scheme 3. Ring-Opening Metathesis Polymerization of 
Norbornyl (Part A) and Cyclopropenyl Substrates (Part B) 

 
aIsolated yield; bDetermined by 1H NMR spectroscopy; cTac-

ticity of the hydrogenated polymer; dDeterminated by 13C spec-
troscopy (isotactic sequences were below the detection limit). 

In summary, we have developed a new highly Z-selective 
ruthenium catalyst based on a readily accessible unsaturated 
unsymmetrical NHC ligand. The catalyst Ru-2 afforded a 
stable catalytic system with excellent activities in the self-
metathesis and cross-metathesis of (functionalized) terminal 
olefins, attaining and maintaining high Z-selectivity at high 
conversion, with the capacity to surpass the efficiencies of 
previously described Z-selective cyclometalated catalysts. 
Moreover, no structural modification of the Ru-based catalyst 
is required to achieve high tacticity (up to >98% syndiotactic) 
and high cis-selectivity (up to >98%) in ring-opening-
polymerization allowing for the production of highly micro-
structurally controlled norbornene, norbornadiene and cyclo-
propene-derived polymers.  
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http://pubs.acs.org/action/showLinks?system=10.1021%2Facs.organomet.6b00371&coi=1%3ACAS%3A528%3ADC%252BC28XhtVCrsrzM&citationId=p_n_97_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Facs.organomet.6b00371&coi=1%3ACAS%3A528%3ADC%252BC28XhtVCrsrzM&citationId=p_n_97_1
http://pubs.acs.org/action/showLinks?pmid=26992043&crossref=10.1002%2Fanie.201601004&coi=1%3ACAS%3A528%3ADC%252BC28XktlKmur0%253D&citationId=p_n_91_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja405559y&coi=1%3ACAS%3A528%3ADC%252BC3sXpslCju7g%253D&citationId=p_n_93_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja405559y&coi=1%3ACAS%3A528%3ADC%252BC3sXpslCju7g%253D&citationId=p_n_93_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjacs.6b08387&coi=1%3ACAS%3A528%3ADC%252BC28Xhs1Smt7bF&citationId=p_n_90_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fma101375v&coi=1%3ACAS%3A528%3ADC%252BC3cXhtV2ktb3K&citationId=p_n_100_1
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