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ABSTRACT

Among biomass materials available, macroalgae is a promising alternative to traditional energy
crops. The absence of lignin, a high growth rate and a richness of fermentable sugars and nitrogen,
are real gains for a competitive ethanol production. But the presence of salts can be an obstacle to
obtain relevant performances. Experiments were carried out with a synthetic medium adjusted on
algal hydrolysate composition in order to reduce resource limitations and variations of composition.
The behavior of four yeast strains for ethanol production was investigzedida guilliermondii,
Scheffersomyces stipitis, Kluyveromyces marxianus and Saccharomyces cerevisiae. Glucose, which

is the most abundant sugar in the targeted algal hydrolysbt pp), was completely assimilated

by all of the considered strains, even in the presence of salts at levels found in macroalgal
hydrolysates (0.25 M of sodium chloride and 0.21 M of sulfate). The use of peptone as nitrogen
source enhanced kinetics of consumption and production. For instance, the rate of ethanol
production byS cerevisiae in the presence of peptone was six times higher than that obtained using
ammonium, 0.6 and 0.1 g'h™ respectively. In the presence of salts, the rates of glucose
consumption and ethanol production were lowered for the considered strains, excé&pt for
marxianus. NeverthelessS cerevisiae could be the most promising strain to valorldk/a spp
hydrolysate in bioethanol, in terms of ethanol produced (7.5- 7:9 gvhether in the presence or

in absence of salts.

Keywords: macroalgae, yeasts, valorization, ethanol, osmotic pressure, sugar mix
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1. INTRODUCTION

Nowadays, 88% of energy consumption is mainly aetifrom fossil fuels, such as petrol, coal or
natural gas [1]. The growing concern on depletibossil fuels and their environmental effects,
particularly greenhouse gas emissions, have lsgaoch for viable renewable fuel alternatives [2].
One of these alternative solutions is to produacduels like bioethanol. This renewable fuel is
made from vegetal wastes, like agricultural ressd(rece straw, corn stover, wet birch pulp), agro-
industrial wastes (mushroom wastes, cotton cekylasffee, date syrup) [3]-[4] and microalgae
[5]. Macroalgae are also considered as a potestiaice for third generation biofuel production [6]-
[7]

Furthermore, in France, a proliferation of greayaaland deposit on the beaches of Brittany can
be observed. Up to 98.000 mlgal biomass, principallylva, is gathered during summer along the
Brittany coastline [8]. This proliferation is thesult of many factors. Among them, years of use of
nitrates and phosphates, especially in agricultuhea has a negative impact on costal ecosystem
and causes problems, such as emission of an oféendor, killing of shellfish [9,10] or killing of
abaloneHaliotis discus hannai [11]. It was found that both fresh medium and daeposing algal
effluent have toxic effects and the decomposed femrmore toxic than fresh culture medium,
provoking hypoxia due to the release of ammoniasatiides.

But this biomass regarded as a pollutant can be&ected into high-value product, such as
ethanol via fermentation. Besides having a fastwjitaate and a high biomass yield, macroalgae
contain high carbohydrates levels (20 to 40% dryghtg but no lignin [12] which is difficult to
degrade. So, its valuation offers a double bensbtving a problem of green tide and help to
produce bio-energy and high-value substances withusing available food resources. After
hydrolysis, this type of carbon source can prowddegide range of simple sugars, such as glucose,
galactose, xylose, arabinose, fucose, mannitolrlaachnose [13]. Also rich in protein (almost 20%
of dry weight) and free amino-acids, macroalgaease a potential source of nitrogen. For this
reason, they are used as a complement for the meatien of rice straw [14].

Nevertheless, sugar composition and quantities framp a macroalgae to another and for a
given algae, environmental and seasonal variaboeslso observed [15]. Macroalgae also contain
salts, like sodium chloride and sulfates, from atglfi polymer like ulvan [9]. These components
could play a role in the osmotic pressure of th#uocel medium and so on ethanol production
performance.

In view of the valorization of this bioresourcegeté is therefore a need to select adequate

microorganisms. For this purpose, several studiessed on the selection of natural or genetically
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modified microorganisms. Bioconversion of algalrbass to ethanol can be operated by bacteria,
like Clostridium phytofermentans [16], or the recombinarischerichia coli KO11 [17]. However,
yeast strains are the most used. Among Sdtcharomyces cerevisiae is the most commonly
studied for ethanol conversion of cellulosic arghticellulosic biomass [18,19]. This strain has a
high ethanol tolerance, but also high yields andsraf fermentation. Moreover, because this yeast
is Crabtree-positive, fermentative pathway is fadoin the presence of high sugar levels [20]. For
these reasons, it is already used for ethanol e¢emreof macroalgae, such baminaria digitata,
Chondrus crispus or Ulva lactuca [13], Sargassum spp, with on average 89% of ethanol conversion
[21], as well as withGelidium amansii [22]. However, due to an insufficient capacitytb&é non-
oxidative pentose phosphate pathw@ygerevisiae is unable to ferment xylose [23].

Among the wild type of yeasts capable of fermentigtpse in ethanol, at relatively high yield
(0.404 g/g) Pichia stipitis is considered as the most interesting [24,25]s Flviain is often utilized
in co-culture withS. cerevisiae for ethanol production from glucose and xylose{2H. But it has a
low ethanol tolerance (inhibition beyond 30 §.bf ethanol) [28]. This strain is already used for
biomass conversion in ethanol from coffee industgstes hydrolysates, which contain xylose,
glucose, arabinose, galactose and mannose [29].

Kluyveromyces marxianus is able to ferment mixed sugars comprising glucasaactose,
xylose, arabinose and mannose from green macrofl8a€erhe advantages of this strain are a fast
cell growth rate and a higher ethanol tolerance hatipitis [28,30]. From 100 g.t of glucoseK.
marxianus is capable of producing 49 g'Lof ethanol in only 22 hours [31]. Due to its broad
substrate spectrum (glucose, galactose, xylosenitohand rhamnose)Candida guilliermondii is
also an interesting strain for waste valorizationethanol [13]. It is already used for sugarcane
bagasse, date wastes or macroalgae valorizatiethamol [32]-[33].

The objective of this work was to improve ethanaduction from a model medium simulating
algal hydrolysate to assess for possible subseqogriémentation on the hydrolysate. Working
with synthetic medium led not only to reduce reseutimitations but also to control the
composition, avoiding seasonal variations of itsiposition. This can give insights on the impacts
of variable compositions from algal hydrolysates yeast fermentation and ethanol vyields.
Adjustment of the synthetic medium was focused arb@n and nitrogen substrates and the
presence of salts. According to the above liteeat@view, the choice of the strain is of major
importance. Becaus8 cerevisiae, C. guilliermondii, P. stipitis and K. marxianus have already
proven their relevance for ethanol fermentationmfrearious wastes, they were selected for this
study. Behavior of these four yeast strains wasethee investigated using synthetic medium

mimicking green algal hydrolysates.
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2. MATERIAL AND METHODS

2.1 Microorganisms and inoculum

Saccharomyces cerevisiae baker’s yeast CLIB 95 (CIRM Frenchjchia stipitis 3651, Candida
guilliermondii 11947 andKluyveromyces marxianus 11954, obtained from DSMZ (Germany) were
used in this study.

Culture of S cerevisae was maintained at 4°C on a Petri plates and alpat svhose
composition consisted in (g glucose (20), peptone (10), yeast extract (Add agar (20).
Cultures of the three other strains were maintaiaed°C on agar plate containing in (gL
glucose (10), peptone (5), yeast extract (3), reattact (3), and agar (15), according to the
supplier. Medium components were weighed on a gi@tiscale; the accuracy of the scale was 0.1
mg.

For the inoculum preparation, the yeasts were fiearezl to 250 mL Erlenmeyer flasks
containing 25 mL of culture medium of the same cosifion as the culture medium without agar.
Before inoculation, it was sterilized in an auteelaat 121°C, for 20 min, namely the standard
procedure to remove even heat-resistant spores.

The inoculated flasks were incubated in a rotasingker (New Brunswick, INNOVA 40, NJ, USA)
at 20 rad seé, 180 rpm £1 rpm, 28°C + 0.1°C, the optimal tenapre for yeast growth, for 18 h
in order to obtain high cell density. At the endtbé incubation period, cells were centrifuged
aseptically (3000 rpm, 4°C and 5 min), resuspende&d mL KCI (150 mM) and then centrifuged
again in similar conditions. The suspension obthiaier harvesting cells and re-suspending in 10
mL of KCI 150 mM was used for inoculation.

2.2 Fermentation medium

Synthetic media were prepared following the compmsiof green algaéllva sp. They were
constituted by simple sugars (glucose, galactoges&, rhamnose and arabinose) and salts at levels
close to those of hydrolysates. The medium wasclead with mineral supplementation, whose
composition was (in mg.1): KH,PO, 5200; MgSQ, 7H,O 1200; CaCl 6H,O 150; FeSQ 7H,O
100; ZnSQ, 7H,O 30; CuSQ, 5H,0 0.79; HBO3 15; Kl 2; Ng@Mo0O,, 2H,0 5; MnSQ, H,O 32;
CoCb, 6H,0 5.2; EDTA 100. The medium was enriched withJ8H(1 g.L") or peptone (5 g.1)
(sources of nitrogen). The pH was adjusted at 60t QpH meter WTW pH 315i) by addition of
sterile KOH 2 mM. Finally the medium was sterilizeg filtration through 0.2um (Sartorius) filter
under aseptic conditions [34]-[35] in order to al@ny modification of the composition which

could take place with autoclave, such as Maillareigtion [36].
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2.3 Fermentation experiments

Fermentations were carried out in 250 mL hermdyicdbsed bottles with a working volume of
100 mL. The sterilized fermentation medium was udated with the yeast suspension under
aseptic conditions. The ethanol fermentation wégested to 180 rpm £1 rpm, at 28 + 0.1 °C, via a
shaking incubator (INNOVA 40). All experiments wegrerformed in duplicates and samples were
withdrawn and centrifuged at 3000 rpm =1 rpm, 4 .2°Q and 5 min £ 5 s. The cell free

supernatant was evaluated for ethanol and sugaeotnations.

2.4 Analytical methods

The various metabolites produced by the yeastst@dsugar concentrations were analyzed
using high performance liquid chromatography (HPLG2%], equipped with an ions exclusion
column HPX-87H (300 x 7.8 mm, Bio-Rad, Hercules,, CISA). The temperature was 45°C (Oven
CrocoCil™; Cluzeau-Info-labo, Ste Foy LaGrande,négy. Sulfuric acid (0.01 M) was used as the
mobile phase at 45°C, and at a flow rate of 0.7mih’. A Shimadzu RIO-6A Refractive index
index Detector (Japan) was used for the detectfothe various compounds [37]. The various
metabolites and sugars were quantified by compaheg peak areas with those of standard of
known concentrations. The Nessler method (NF T B®)}Qvas used to determine the ammonium
concentration.

Cell growth was monitored by analysis of absorbaac&00 nm, with a spectrophotometer
SECOMAM Prim 500, after calibration using a nondatated medium. Biomass growth was also
measured in terms of dry matter (g)L30 mL of medium was disposed in a previouslyghed
porcelain cup (P1) and placed in an oven at 10%f@hg 24h. Dry medium was then weighed (P2)

and the dry matter could be calculated as follows:

(P2 — P1)

D tter = ———=—
rymatter = — -~ — )

Inoculum size of each yeast strain was also cdattoby measuring dry matter. After
centrifugation of 10 mL of yeast culture, the pellas deposited in a previously weighed porcelain

cup and treated as samples above.

One- way analysis of variance (ANOVA) test was perfed using R project 2.15.0 software to

check for the significance of the data and to disdheir interpretation.

2.5 Ethanoly; ratio

Fermentation efficiency corresponded to the rafidhe the ethanol produced over the ethanol
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theoretically produced ratio (ethagg! During ethanolic fermentation, sugars were com@ekin
ethanol and Cg) by the action of microorganisms. For example wjticose:
n X (C6H1206) - 2n X (CszOH) + 2n CO; (2)

For a total conversion, one mole of glucose wasvexdad by yeasts in two moles of ethanol.

According to equation (2), the ethanol theoreticploduced could be calculated as follows:

Methanol)

[ethanol]eor (g.L7) = 2 X [glucose] x (M
glucose

3)

But, this ethanolic fermentation could be in contpet with other metabolic pathway, like
glycerol production for cell maintenance [34]. $loe ratio of ethanol observed over theoretically
produced could give information on the carbon sabstconsumption for cell maintenance:

[ethan()l] observed
Ethanolo/ (%)= W

(5)

3. RESULTSAND DISCUSSION
3.1 Selection of the carbon substrate
3.1.1 Study of different yeast strains

The synthetic medium was enriched with mineralsnamium chloride (1 g.t) as nitrogen source
and the five considered sugars (12°9,lwhich are the most encounteredutva sp hydrolysates.
Sugar fermentation of each yeast strain, inoculatetl.8 mg.[* (0.1% v/v), was studied. Table 1
shows the main results obtained after 144 h of éatation. For each case, glucose was the first
sugar consumed. The level of consumption differ@ninfone strain to another, following this
decreasing ordelS. cerevisiae (100.0%)>C. guilliermondii (75.9%)>K. marxianus (64.4%)>P.
stipitis (30.2%) (Table 1). Compared to the other straffscerevisiae showed a complete
assimilation of the glucose present in the mediuthinw 144 h of fermentation. It was also the only
strain which consumed galactose (100% of the feellkt No yeast strain consumed xylose,
rhamnose or arabinose. All considered strains sti@amvereference for glucose, according with the
available related literature. Indeed, glucose ¢ardon substrate of choice for yeasts [38]-[39]H30
When utilizing this sugar, strains display a higatabolic output [13]. So, the other sugars would
not be assimilated until total glucose removal frilv® medium. This could account for the absence
of galactose, xylose, rhamnose and arabinose cgismby K. marxianus, P. stipitis and C.

guilliermondii.
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Tablel
Sugars consumed and ethanol production by the jmast strains selected, after 144h of

fermentation (11.8 mg:tinoculation)

_ Glucose Galactose [ethanol]o/t ratio
Yeast strains
consumed (%) consumed (%)
(%)
K. marxianus 64.4 0.0 72.6 £0.25
P. dtipitis 30.2 0.0 44.8 £ 0.05
C. guillermondii 75.6 0.0 92.9+0.63
S cerevisiae 100.0 100.0 100.0 £ 0.25

Concerning xylose, wild types & cerervisiae were shown to be not able to assimilate pentose
[40]; While P. stipitis is known to be the most efficient for xylose fentation [41]. However, no
xylose consumption was observed. Moreover, thigirstshowed the lowest ethanol production.
This should be related to the sensibility of thisis to the aeration conditions and it need for a
microoxygenation of the medium, essentially givgrathigh agitation [33]. From this, the aeration
conditions applied in this work did not seem adég@iar ethanol production . stipitis.

Comparing cell growth displayed in Figure @, guilliermondii led to the highest cell growth
rate and final biomass amount, followed ®yerevisiae, K. marxianus andP. stipitis. HoweverC.
guilliermondii consumed only 75.9% of the glucose present inciiiture medium. That lets
suppose tha€. guilliermondii used more glucose for cell formation tharcerevisiae, instead of
producing ethanol. Based on ethanol yields, whigresents the ethanol produced over the glucose
consumed (expressed in carbon/carbon (mol/mol);ebelts were as followsS cerevisiae (68.0%
C/C) > C. guilliermondii (61.9% C/C) >K. marxianus (48.4% C/C) >P. stipitis (30.2% C/C)
(Figure 2). Ethang} ratio (ethanol observed over ethanol theoretigalbduced) was also found to
be the lowest foP. stipitis, 44.8%; whileS. cerevisiae led to the highest value, 100.0%. So,
Scerevisiae appeared to be the most promising candidate fervidorization of glucose and
galactose contained Wiva sp hydrolysates.
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Figure 1. Absorbance at 600nm measured during 144 h of fetatien by A )K. marxianus, (
) P. dtipitis, (™) C. guilliermondii and x )S. cerevisiae

The culture medium contained a total of 60 fdf sugars, which can play a role in a possible
Crabtree effect [20]. For Crabtree-positive yeastisumption rate was enhanced by facilitated
diffusion of glucose in the cell and alcoholic femtation is privileged in the presence of a high
glucose concentration. Cell growth is also lowaretavor of the co-production of glycerol, acetate
and ethanol [42]S cerevisiae is known to be a Crabtree-positive strain. Soinfpdigh sugar
content, this strain should privilege the formatajrco-products of fermentation instead of biomass
production.

K. marxianus, P. stipitis and C. guilliermondii, which are Crabtree negative strains, possess a
regulated H symport system, which leads to regulate glucosesport in the cell. In the case of
high sugar content, Crabtree-negative yeasts ceshe entry of glucose by their high-affinity
system and give a weak fermentative response J20$. could explairt. cerevisiae predominance
over the other strains, referring to glucose corgion and ethanol production.

Yeast strains also secreted acetic acid and glydering fermentation (Figure 2} cerevisiae
was the highest producer of glycerol, with 4.68%C Chamely 3.5 to 8 times higher than the
amounts obtained for the other straiis,marxianus (1.3% C/C) >P. dipitis (1.2% C/C) >C.
guilliermondii (0.6% C/C). The reverse was observed for acetttyaelds, sincesS. cerevisiae was
the lowest producer (1.6% C/C) compared to therdttrains, and the highest production was found
for C. guilliermondii (6.9% C/C).
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Figure 2. Glycerol ™), acetic acid® ) and ethan' ( ) yiel@ C/C) obtained after 144 h of

fermentation with the four yeast strains

A total of 60 g.L* of cumulated sugars in the medium could also cayperosmotic conditions
[43]. This osmotic pressure to which the yeastsewsxposed could significantly impact on yeast
viability and on fermentation performances [44].fact, that could drive to a dehydration of cells
and hence to an inhibition of growth. Then, thisslof yeasts viability drove to a decline of etHano
production [45]-[46]. So, to counteract this logsmater, yeasts produced and accumulated neutral
solutes in their cytoplasm, like glycerol, whichdléo restore thermodynamic equilibrium [34].
Osmotolerance induced by glycerol production was thuglycerol-3-phosphate deshydrogenase
activity and the control of alcohol dehydrogenase aldehyde dehydrogenase [47]. One of the co-
products generated with glycerol in the case ofaisnpressure was acetic acid [48]. Strains had
different strategies for osmo-adaptation and comsetly proportions of glycerol and acetic acid
produced differed from one strain to another [49¢ure 2 showed th& cerevisiae excreted more
glycerol than acetic acid contrary @ guilliermondii. These two strains could produce more co-
products tharK. marxianus and P. stipitis, which might be a reason for a higher resistamce t
osmotic pressure and then a faster cell growth.

3.1.2 Influence of the inoculum size

Inoculum size could influence sugar consumption atinol production. An optimization of
this parameter could improve ethanol production pradluction rate. A variation of inoculum size
from 11.8 to 587 mg.L (0.1 to 5% v/v) withS. cerevisiae, in a mix of five sugars (12 g was
investigated. As presented in Table 2, in the c&dd..8 mg.L* inoculation, glucose was not totally

consumed (95.1%) and no galactose consumption bserneed within 72 h of fermentation; while

10



299 total glucose and galactose consumption were stHowthe other inoculum levels. However, no
300 consumption of arabinose, rhamnose and xylose Wwssreed irrespective of the inoculation level.
301 From 58.7 to 587 mg:t (0.5 to 5% v/v), 11-12 g:t of ethanol was produced versus only 6 g.L
302 for 11.8 mg.L* inoculum (Figure 3). But inoculum size did notrsfigcantly impact ethanol yield
303 (confirmed by ANOVA test, p-value= 0.162), whichhrained in a short range, between 61 and
304 65% C/C irrespective of the inoculum size. Ethatwlbiomass ratio decreased for increasing
305  inoculum size; while a weak peak was observedHterethanol production, 12.0 ¢-ffor 118 mg.L

306 (1% v/v) inoculum (Figure 3), as well as for thth&hoby ratio, the ratio of the experimental to
307 the theoretically ethanol produced, found also ¢ooptimal for 118 mg.t inoculum (97.7%).
308 From this, 118 mg.t seemed to be the optimal inoculum size in termesiudinol productivity.

309

310 Table2

311 Inoculum size effect on sugar consumption and etharoduction byS.cerevisiae, over 72 h of

312 fermentation

Inoculum Glucose Galactose [ethanol]o/t

size consumed consumed ratio (%)
(mg.L™) (%) (%)
11.8 95.1 - 99.8+0.16

58.7 100.0 100.0 92.5+0.24
118 100.0 100.0 97.7 £0.39

587 100.0 100.0 91.8+0.42

20 r 1 100
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0 : : : 0

11.8 58.7 118 587

Inoculum size (mg.L1)

313
314  Figure 3. Influence of inoculum size on ethanol product{ ), ethanol/ biomass rati®( ) and

315 ethanol yield " )
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Tesfaw and Assefa [40] also investigated the imit@e of the inoculum size on ethanol
production byS. cerevisiae. They found that lowering the inoculum size reducests of production
in ethanol fermentation. But the ethanol productimised from 1.29 to 2.35 g'th™ when the yeast
load increased from 0.5 to 5 ¢-Lin agreement with the trend also observed inrei@y from 11.8
to 118 mg.[* of inoculation. In their studies, Tahir et al. [3@sted different sizes of inoculum,
from 1 to 5% (v/v) for ethanol production Uy cerevisae. The amount of ethanol produced
gradually increased with the rise of the inoculitowever, a maximum ethanol production (65.0
g.L™) was achieved at 3.0% inoculum; while a furtherémse in the inoculum size did not result in
a considerable enhancement of ethanol productibis finding is in accordance with the results
displayed in Figure 3. Indeed, beyond an optimuntxgasing the size of inoculum did not improve
ethanol production.

In terms of ethanol to biomass ratio, 11.8 migihoculation was the most interesting, but led to
the lowest ethanol production. The quantity of theculated cells influences the time of
fermentation as well as the product yields [51]e Bhortening of the fermentation time linked to
the increase in the size of the inoculum was due tast cell growth; most of the substrate was
immediately converted to ethanol. However excessieeulum volume would largely influences
fermentation efficiencies. So, a compromise hdsetalone between ethanol productivity and costs
of production. According to the results obtained8 Ing.L* inoculation seemed to be a good
compromise between ethanol productivity and ethamddiomass ratio, with a mix of sugars as
carbon sources. These results highlighted thereftgeimportance of the size of the inoculum

regarding ethanol fermentation.

3.2 Effect of the nitrogen source

Two sources of nitrogen were tested, one minerdf,, 1 g.L') and another one, organic
(peptone, 5 g.Y). The behavior of. cerevisiae (11.8 mg.L' inoculum) with regard to these two
nitrogen sources was studied for glucose fermemtd80 g.I*), the main sugar consumed.

S cerevisiae needed 144 h to totally consume glucose usingQllds nitrogen source, while
only 20 h in the presence of peptone (Table 3}jifeato consumption rates of 0.21 and 1.5l
! with NH4Cl and peptone, respectively (Figure 4). Ethanotipction rate followed the same trend,
0.10 and 0.58 g:th* with NH,CI and peptone, respectively. Analysis of Nidt the end of culture
showed that the nitrogen content was not limitgigce 75% of the nitrogen source remained in the

medium. This confirmed that an organic nitrogenrseumproves growth and glucose consumption

12
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and hence ethanol production rate. Chniti et a] fBaerved the same trend by studying syrup dates
enrichment with either NKCI or yeast extract.

Table3
Influence of the nitrogen source on glucose ferauson
NH4CI Peptone

Time to totally consume

144 20
glucose (h)

Ethanol production rate
(g.L-h?
[ethanol]o/t ratio (%) 91.06 78.78

0.10 0.58

Cell growth
2.05 10.48
(Absorbance at 600nm
Ethanol yield (% C/C) 60.65 52.47

Glycerol yield (% C/C) 4.24 2.14

35
30 i
25
20 |
15 |
10 + N
I

0.21g.L1.h?

-
-
-
-
-

Concentrations (g.L1)

0 50 100 150
Time (h)

Figure 4. Kinetics of glucose consumption (continuous linajl ethanol production (dashed line)

with peptone A4 ) and NiCI (®) as nitrogen source

This preference for peptone over ammonium Sycerevisiae has also been reported in the
literature [53]. It reveals that most free and pEptamino acids (particularly glutamic acid) are
utilized by the yeast, inducing higher cell grow#ln increase of ethanol production rate and a
diminution of glycerol production [54]. Another slyiwith y—aminobutyric acid as nitrogen source
reports the preference & cerevisiae for amino-acids as nitrogen source [55]. This gmafice is
not exclusive toS cerevisiag, P. stipitis and C. guilliermondii also showed a preference for an

organic source like peptone or yeast extract inistéa mineral source ((NfSQy) [56].
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The use of peptone led also to a decrease of ffleergl yield, 2.1 instead of 4.2% C/C in the
presence of ammonium (Table 3). This should beeel#o the nitrogen source. In fact, with a
better assimilation of nitrogen, cell growth is da&d, leading to a higher glucose consumption and
also a decrease of the oxygen content, both havidigect impact on glycerol and ethanol yields,
lowering the former and increasing the latter [51].

However, even though ethanol production rate adidgcewth was faster, ethanglratio and
ethanol yield were not improved using peptone astef NHCI (Table 3) showing tha&.
cerevisiae growth by an anabolic pathway is favored over famtation in the presence of peptone.

These results highlight the importance of the g source. FOB. cerevisiae, a mineral source
allows to obtain a high ethanol yield with a lowimass yield; while an organic source, such as
peptone, allows to improve ethanol production matepite of a loss of carbon substrate for biomass
formation.

According to the supplier (Biokar Diagnostics, A2AH), peptone is mostly composed of
glutamic acid (17.4%), proline (8.4%), leucine,imgsand aspartic acid (between 6.4 and 7.2%).
Hou et al [15], who studied.aminaria digitata as nitrogen source, found that amino-acids
contained in peptone were also abundant in thigoaégae. Therefore, the use of peptone as source
of nitrogen can lead to approach algal hydrolysat&litions.

Moreover, algae could be used as nitrogen sourcenk@ance ethanol production from corn
stover [57] or high gravity sweet potato medium][38is proven that yeast growth and ethanol
production are enhanced by this supplementary sowifc nitrogen. Rich in proteins, their
composition in amino-acids are close to those dadsyeextract and peptone, confirming that
macroalgae could be used as substituent in yelisteor as fermentation media.

3.3 Influence of salts

Due to the presence of salts in algal hydrolysaast strains could suffer from their impact on the
osmotic pressure. The supplementation of synthmédium with sodium chloride and sulfate at
similar concentrations found iblva sp hydrolysates (0.25 and 0.21 M respectively; datd n
shown) should allow to study the behavior of therfgeast strains selected facing this change of
osmolarity.

Referring to Figure 5.a, a slight impact of thegerce of salts was only really noticeableRor
stipitis. Due to the presence of salts, yeasts need ta aolap higher osmotic pressure. During

osmoregulation, biomass development is slowedvorfaf the production of neutral solutes, like
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glycerol (Blomberg, 2000). From thi§ cerevisiae, K. marxianus and C. guilliermondii, whose
biomass growth was less affected, could betterteatapresist to osmotic pressure tirastipitis.

Growth rates differed from one strain to anothdteA22 h of fermentation and contrarily to the
other strainsS. cerevisiae growth reached a stationary state at a lower dasoe value than those
observed for the other strains, for which growtrswaserved until 48 h. F& cerevisiae andK.
marxianus, glucose depletion was observed within 22h ofuralt(Figure 5.b). Following growth
and substrate consumption, ethanol production eéssed after 22 h of culture f8rcerevisiag;
while ethanol continued to be produced durihgmarxianus culture (Figure 5.c) until the end of
growth at 48 h (Figure 5.a). For this latter spgcaesecond carbon substrate was assimilated, most
likely peptone. As already seen above, macroalgaeiéh in protein. So, such diauxic growth may
be also encountered when utilizing algal hydrolgsats fermentation medium. Whecerevisiae
could assimilate peptone as nitrogen source, itldvoot be able to assimilate its carbon content.
But it is possible for this strain to consume thgegrol produced as carbon source to maintain cell
viability. Glycerol growth inS. cerevisiae has been reported in previous studies, in theepoesof
complex supplements such as yeast extract, peptam@ino acids in the medium[59], [60].
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Figure 5. Growth rate (a), glucose consumption (b) andrethproduction (c) foK. marxianus (#

Time (h)

), P. stipitis (=), C. guilliermondii (") and S. cerevisiae (), during fermentation in absence

(continuous line) and presence of salts (dashej lin

Glucose consumption (20 g'Linitially) was not significantly affected by a igr osmotic
pressure (Figure 5.b); irrespective of the preseficalts, all the glucose was consumed at the end
of culture, after 72 h. However, regarding ethamolduction differences can be seen depending on
the species considered (Figure 5.c). The mostfgignt impact was observed f&. stipitis, in
close connection with cell growth. Ethagotatio for P. stipitis was also impacted and decreased
from 71.2 to 60.5% (Table 4L. guilliermondii andS. cerevisiae also showed a lower ethappl
ratio at a higher osmotic pressure (53.1 and 74mé¥ead of 62.5 and 77.8%) and a slower ethanol
production rate (only 0.09 gLh™* for C. guilliermondii) (Table 4). Only ethanol production Kf
marxianus was not impacted, as well as its ethgnmdtio. Neverthelesss. cerevisiae still gave the
best results in terms of ethanol produced (7.5¢7L9), production rates (0.30-0.33 g-lh™) and
ethanol to biomass ratio (24.7-18.0), whether enghesence or in the absence of salts.

Table4
Influence of salts on glucose fermentation, with thur selected strains
Glucose Ethanol _ _
_ _ [ethanol]o/t ratio| Ethanol/ Biomass
consumption rat{ production rate _
1.1 - (%) ratio
at 24h (g.L".h™) (g.L".h")
with salts with salts with salts with salts
K. marxianus | 0.86 0.86 0.14 0.14 66.2 66.3 2.64 2.74
P. dtipitis 0.55 0.49 0.13 0.10 71.2 60.5 3.27 2.98
C. guilliermondii | 0.67 0.60 0.11 0.09 62.5 53.1 2.45 2.07
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S cerevisiae || 0.83 0.83 || 0.33 0.30 H 77.8 743 || 5.55 5.43

In the case of salts supplementation of the medalycerol and acetic acid yields rose for all the
considered strains (Figure 6). However, the in@ehered from one strain to another and was the
most important foiS. cerevisiae, in agreement with its higher ethanol productionthe literature,
glucose consumption is lowered and so fermentattonpletion time increases in the presence of a
higher amount of salts. That also impacts cell ghoand ethanol production and promotes glycerol
production [51]. Similar behavior was previouslgaeded withHansenula anomala [37] or with
Dekkera bruxellensis [43]. Effects of sulfates, like N8Oy, MgSQ, and (NH,).SO, was also studied

in the control of osmotic pressure of culture mediurhese electrolytes play a role in osmotic
pressure [61]. But the salts added in the mediave encountered in algal hydrolysates did not
significantly affect kinetics of consumption, gréwand production, except fd. stipitis which
suffered from a slowdown of metabolism. This metnat S. cerevisiae, C. guilliermondii andK.
marxianus are able to adapt their metabolism to salinityugid by algae and so to survive and
grow in these conditions. This is confirmed by Kasset al [13], who reported th&t cerevisiae
YPS128 was able to produce 7 Q.bf ethanol by fermentation of a mix of sugars ¢12™") from
Ulva lactuca hydrolysate. Furthermore, Borines et al [21] reeadrhigher levels of ethanol with the

fermentation ofSargassum spp. hydrolysate by a wil& cerevisiae than based on glucose as a

substrate.
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Figure 6 Glycerol® ), acetic aci®( ) and ethar | {/iglds obtained after 72 h of fermentation

with the four strains, in absence (a) and presehsalts (b)

CONCLUSIONS

The green seaweed is proposed as a promising bsomaterial that can be easily converted to
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ethanol. Synthetic media adjusted Oiva sp hydrolysate composition gave the opportunity to
control nitrogen, carbon and salt contents and equmesntly to understand the importance of these
factors on ethanol production. Glucose, which & tost abundant sugar Wva sp hydrolysate,
was the most assimilated by the four studied yst@atns. The use of peptone, a nitrogen source
close to macroalgal proteins, confirmed that algae be used as fermentation medium. Finally,
synthetic media supplemented with salts led toystheé impact of the latter on the fermentation
process. Salts brought by macroalgae did not sogmfly impede the production, except fér
stipitis. Among the strains studied. marxianus seemed to be the most resistant to osmotic
pressure and hence appeared promising for the meaten of Ulva sp hydrolysates. ButS
cerevisiae remained the most interesting in terms of ethgnodiuction. This work argues thidtva

sp hydrolysate can be an adequate biomass resourathfanol fermentation by yeast strains. To

confirm these results, work is in progress in ti@ratory orUlva spp hydrolysate.
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Figure captions

Figure 1. Absorbance at 600nm measured during ld#férmentation by 4 K. marxianus, ()

P. stipitis, (®) C. guilliermondii and (X) S. cerevisiae

Figure 2: Glycerol® ), acetic aci®( ) and ethar ) {jields (% C/C) obtained after 144 h of
fermentation with the four yeast strains

Figure 3 Influence of inoculum size on ethanol picitbn (), ethanol/ biomass rati™( ) and
ethanol yield " )

Figure 4. Kinetics of glucose consumption (contimsidine) and ethanol production (dashed line)
with peptone 4 ) and NiCI (®) as nitrogen source

Figure 5 Growth rate (a), glucose consumption (im) @hanol production (c) fd€. marxianus (™

), P. stipitis (#-), C. guilliermondii () and S cerevisiae (), during fermentation in absence
(continuous line) and presence of salts (dashel lin

Figure 6 Glycerol® ), acetic aci®( ) and ethar | {ields obtained after 72 h of fermentation

with the four strains, in absence (a) and presehsalts (b)

Table captions

Table 1. Sugars consumed and ethanol productiathdoyour yeast strains selected, after 144h of
fermentation (11.8 mg:tinoculation level)

Table 2. Inoculum size effect on sugar consumpdiath ethanol production [&cerevisiae, over 72

h of fermentation

Table 3. Influence of the nitrogen source on gledesmentation

Table 4. Influence of salts on glucose fermentatath the four selected strains
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Fig. 1. Absorbance at 600 nm measured during 144 h of fermentation by (%) K. manianus (*), P stipitis (
W) C. guilliermondii and (*) S. cerevisiae.
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Fig. 2. Glycerol (™), acetic acid (™) and ethanol () yields (% C/C) obtained after 144 h of fermentation
with the four yeast strains.
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Fig. 3. Influence of inoculum size on ethanol production (™), ethanol/biomass ratio (™) and ethanol yield
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Fig. 4. Kinetics of glucose consumption (continuous line) and ethanol production (dashed line) with

peptone (&) and NH,CI (™) as nitrogen source.
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line) and presence of salts (dashed ling).
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Fig. 6. Glycerol (™), acetic acid (™) and ethanol () yields obtained after 72 h of fermentation with the four
strains, in absence (a) and presence of salts (b).
Table 1. Sugars consumed and ethanaol production by the four yeast strains selected, after 144 h of
fermentation {11.8 mg L= inoculation).
Yeast strains Glucose consumed (%) Galactose consumed (%) [ethanocl]oft ratio (%)
K. marxianus 64.4 0.0 726025
F stipitis 30.2 0.0 448 +0.05
C. gullermondi 756 0.0 929 +0863
5. cerevisiae 100.0 100.0 100.0 £ 0.25

Table 2. Inoculum size effect on sugar consumption and ethanol production by 5.cerevisiae, over 72 h of
fermentation.

Inoculum size (mg.L~1) Glucose consumed (%)  Galactose consumed (%) [ethanol]o/t ratio (%)

11.8 95.1 - 998+0.16
58T 100.0 100.0 025+0.24
118 100.0 100.0 97.7£0.39

587 100.0 100.0 91.8+042



Table 3. Influence of the nitrogen source on glucose fermentation.

NH,CI Peptone
Time to totally consume glucose (h) 144 20
Ethanol production rate (g.L-".h™1) 0.10 0.58
[ethanol]oft ratio (%) 91.06 7678
Cell growth (Absorbance at 600 nm) 205 10.48
Ethanol yield (% CIC) 60.65 52.47
Glycerol yield (% CIC) 424 214

Table 4. Influence of salts on glucose fermentation, with the four selected strains.

Glucose consumption Ethanol production [ethanol]oit Ethanol/Biomass
rate at 24 h (g.L7".h™") rate (g.L~".h™") ratio (%) ratio
with salts with salts with with salts
salts
K. marxianus 0.86 0.86 0.14 0.14 66.2 66.3 284 274
F stipitis 0.55 0.49 0.13 0.10 71.2 605 3.27 298
C. guilliermondii 0.67 0.60 0.11 0.09 625 531 245 207

8. cerevisiae 0.83 0.83 0.33 0.30 778 743 555 543
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