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Abstract: 

Because N-arylation of isatin only worked with iodoferrocene (and in low yield), we employed N-

arylation of 2-aminophenones and subsequent oxidative cyclization to access various N-arylated isatins. 

In the course of this work, we observed that N-arylation using 2-iodofuran, 2-iodobenzofuran and 2-

iodobenzothiophene did not lead to the expected derivatives, but to (benzo)furo- and (benzo)thieno[2,3-

b]quinolines. Separate cyclization was also performed under acidic conditions on 2-

(arylamino)phenones in order to obtain acridines and related compounds. Most of the synthesized 

compounds were screened for their antiproliferative activity in A2058 melanoma cells, and against a 

panel of disease-relevant kinases such as mammalian CDK5/p25, PIM1, CLK1, DYRK1A, GSK3α/β, 

Haspin and leishmanial CK1. The biological results are reported. 

1. Introduction 

Heterocycles possessing an aromatic core are key entities in numerous molecules of pharmaceutical 

interest, as well as in organic materials for a wide range of applications. Among them, isatins and 

acridines are of the highest interest. 

Isatins can be found in natural products,2 pharmaceuticals3 and dyes.4 Due to their wide properties,1 

numerous procedures are reported to access them.5 We can for example cite oxidation of indoles,6 C-H 

functionalization of suitable N-substituted anilines,7 intramolecular oxidative cyclization,8 and double 

carbonylation followed by cyclization.9  

Regarding acridines, they are present in compounds having versatile pharmacological activities 

(anticancer, antibacterial, etc) including alkaloids from natural plants and marine organisms. Moreover, 

they are used as pigments and dyes, as well as in fluorescent materials.10 Since the Bernthsen’s 

synthesis of acridines,11 gentler methods have been developed.12 For instance, we can cite quinoline 

aminobenzannulation reaction,13 intramolecular Heck reaction,14 use of in situ generated arynes,15 

palladium-catalyzed reaction between 1,2-dibromobenzenes and N-tosyl hydrazones,16 rhodium-

catalyzed [3+3] annulation of aryl azides with azobenzenes,17 indium-catalyzed cyclization of 2-
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(arylamino)benzaldehydes,18 palladium-catalyzed aniline arylation followed by cyclization and 

aromatization,19 copper salt-mediated cyclization of trityl amines,20 zinc salt-promoted cyclization of 2-

(arylamino)phenyl imines,21 copper-catalyzed reaction of 2-cyanoanilines with diaryliodonium salts,22 

palladium-catalyzed reaction of 2-bromobenzaldehydes with anilines,23 reaction of 2-acylanilines with 

cyclohexanones,24 and rhodium-catalyzed bilateral cyclization of benzaldehydes with 

nitrosobenzenes.25  

We here report our efforts to combine copper-catalyzed N-arylation of 2-aminophenones with either 

intramolecular oxidative cyclization or cyclization of 2-(arylamino)phenones in order to get isatins and 

acridines, respectively. 

Most of the compounds obtained were evaluated for their antiproliferative activity against melanoma 

cells. Indeed, if melanoma account for 2% of skin cancers, their mortality rate remains very high (80%) 

mainly due to the melanocyte intrinsic resistance to chemical agents and radiotherapy, a good ability to 

adapt and acquire resistance, and to develop distant metastases (e.g. in brain).26 There is thus a need to 

identify other pharmacological targets and to develop new drugs. The selected cell lines, which have 

relevant mutations, are a suitable model to evaluate the cytotoxicity and the antiproliferative activity of 

original molecules due to their natural and acquired resistance to chemotherapy and radiotherapy. 

The bioactivity of the small chemical compounds synthesized was also analyzed against a panel of 

disease-related kinases. Indeed, since the end of the nineties, this class of signaling biomolecules has 

become a major class of drug targets since they are often deregulated in diseases such as cancers and 

neurodegenerative disorders.27 Today, 39 FDA-approved kinase inhibitors are on the market and more 

than 250 drug candidates are undergoing clinical evaluation.28 

2. Results and Discussion 

In the course of our studies dedicated to the generation of new aromatic heterocycles, we attempted to 

N-arylate isatins. Under the conditions reported by Chakraborty and co-workers from iodobenzene,29 

and by Moghaddam and co-workers from bromobenzene,30 we failed in obtaining the N-arylated isatin 
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as described. The procedure of Shibata and co-workers on oxindole (0.2 equiv of N,N’-

dimethylethylenediamine, 0.1 equiv of copper(I) iodide, 2.2 equiv of potassium carbonate in refluxing 

acetonitrile)31 did not allow isatin to be N-arylated by iodobenzene either. Recourse to catalytic 

copper(I) oxide (0.1 equiv) and iron(III) acetylacetonate (0.3 equiv), in the presence of cesium 

carbonate (2 equiv) as base, in dimethylformamide at 90 °C (30 h), as documented by Taillefer and co-

workers from 2-pyrrolidinone,32 did not furnish the expected N-phenyl isatin from iodobenzene. 

Finally, by following conditions reported by Ranu and co-workers to couple amides with aryl iodides,33 

iodobenzene was treated by isatin (2 equiv) in the presence of nickel(II) acetylacetonate (0.1 equiv), 

copper(I) iodide (0.1 equiv) and cesium carbonate (2 equiv) in N-methyl-2-pyrrolidinone at 100 °C, but 

without success. 

These disappointing results led us to consider an alternative way to synthesize N-arylated isatins. 

Intramolecular oxidative cyclization being largely developed,8 we decided to involve in the reaction 

various 2-(arylamino)acetophenones. For this purpose, N-arylation of 2-aminoacetophenone (1) to 

afford the derivatives 2 was achieved by reaction with iodides in the presence of catalytic activated 

Cu34 and potassium carbonate (2 equiv) at the reflux temperature of dibutyl ether.8b (Table 1, left). 

Oxidative cyclization was next performed by following the optimized procedure of Deng and co-

workers using selenium dioxide in dioxane at 80 °C (Table 1, right, Method A). 

The expected isatins were often produced in satisfying yields. Nevertheless, 3f and 3g proved 

difficult to isolate due to their low solubility (entries 6 and 7). The method being unsuitable to cyclize 

2-(ferrocenylamino)acetophenone (2l) into 3l (mainly recovery of 2l), we attempted an alternative way 

using iodine (1.3 equiv) as oxidative agent in dimethylsulfoxide;8j unfortunately, by slowly increasing 

the reaction temperature from 20 to 120 °C until disappearance of 2l, only degradation was noticed 

(entry 12). In the case of 2m, conversion to the expected product 3m gave a better result by using 

pyridine as solvent at 120 °C instead of dioxane at 80 °C, either because of a higher solubility of 3m in 

the former or since a higher temperature is used (entry 13, Method A; Figure 1, left). 
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Table 1. N-arylation of 2-aminoacetophenone (1) to afford the diarylamines 2, and subsequent 
conversion to the isatins 3. 

 

Entry I-Ar 2, Yield (%)a Method Product 3, Yield (%)a 

1 I-Ph 2a, 71 A 

 

3a, 90 

2 

 
2b, 60 A 

 

3b, 67 

3 

 

2c, 88 A 

 

3c, 68 

4 

 
2d, 94 A 

 

3d, 71 

5 

 
2e, 70 -b -b -b 

6 

 
2f, 66 A 

 

3f, 20c 
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7 

 

2g, 71 A 

 

3g, 13c 

8 

 
2h, 63 A 

 

3h, 45 

9 

 
2i, 94 A 

 

3i, 80 

10 

 
2j, 90 A 

 

3j, 62 

11 

 

2k, 69 - - - 

12 

 

2l, 87 A 

 

3l, 0d 

13 

 

2m, 62 B 

 

3m, 89 

a After purification (see experimental part). b Not attempted. c These compounds proved difficult 
to isolate due to solubility issues. d Mainly recovery of 2l. 
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Figure 1. ORTEP diagrams (50% probability) of the isatins 3m and 3l. 

Because we could not convert 2l into the corresponding N-ferrocenylisatin (3l) (entry 12), we tried 

again to arylate isatin but this time using iodoferrocene. Using activated copper (1 equiv) and 

tripotassium phosphate (2 equiv) in dimethylformamide at 145 °C for several days did not lead to any 

conversion (iodoferrocene recovered). N-ferrocenylisatin (3l) was only obtained, albeit in a moderate 

16% yield, when isatin and iodoferrocene were treated by activated copper in dibutyl ether at 150 °C for 

24 h (Scheme 1; Figure 1, right). 

 

Scheme 1. N-arylation of isatin with iodoferrocene to afford 3l. 

Double N-arylation starting from 1,3- and 1,4-diiodobenzene similarly worked to furnish the N,N-

diarylated phenylenediamines 2n and 2o. From 2o, our attempt to generate the corresponding bis-isatin 

3o as previously (4 equiv selenium dioxide in dioxane at 80 °C) failed; nevertheless, 3o could be 

isolated in 56% yield using iodine in dimethylsulfoxide.8j Both 2n and 2o were converted to 

pentacycles as described previously,35 and the structure of 4o could be confirmed by X-ray diffraction 

(Scheme 2). 
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Scheme 2. N-arylation of 2-aminoacetophenone (1) to afford the diarylamines 2n and 2o, formation of 
the bis-isatine 3o from 2o, and cyclization to the pentacycles 4n (from 2n) and 4o (from 2o); ORTEP 

diagram (50% probability level) of the pentacycle 4o. 

As shown in Table 1, it is possible to prepare 2-(2-thienylamino)acetophenone (2k). Nevertheless, 

this compound proved sensitive to degradation, and our attempts to make the corresponding isatin, by 

using either selenium dioxide in dioxane at 80 °C (complex mixture obtained including dearylated 

isatin) or iodine in dimethylsulfoxide at 130 °C (degradation), failed. Replacing 2-iodothiophene by 2-

iodobenzothiophene in the N-arylation of 2-aminoacetophenone (1) was even more striking. Indeed, 

under the conditions used (0.2 equiv of activated copper, 2 equiv of potassium carbonate, reflux of 

dibutyl ether), the expected 2-(2-benzothienylamino)acetophenone was not isolated but instead the 

benzothieno[2,3-b]quinoline 4p resulting from subsequent reaction of the benzothienyl ring with the 

nearby ketone and dehydration (Table 2, entry 1; Figure 2, left).  
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Because very few efficient methods are reported to access benzothieno[2,3-b]quinolines36 and 

benzofuro[2,3-b]quinolines,37 we decided to extend the scope of the reaction (Table 2). For this 

purpose, 2-aminoacetophenone (1) was similarly N-arylated with 2-iodobenzofuran and cyclized to 

furnish the benzofuro[2,3-b]quinoline 4q (entry 2). 2-Aminobenzophenone (5) and 2-amino-3-

benzoylpyridine (7) were next successfully employed to afford the derivatives 6p, 6q, 8p and 8q 

(entries 3-6; Figure 2, right). Furan being more suitable than thiophene to undergo such cyclizations, as 

shown by higher yields in all the attempted reactions, the use of 2-iodofuran was tested: unlike 2-

iodothiophene (entry 7), it allowed the expected tricycle to be formed in 61% yield (entry 8). 

Table 2. N-arylation-cyclization from 2-aminoketones to afford tri- and tetracycles. 

 

Entry Aminoketone Iodide Product, Yield (%)a 

1 

2 

1 

 

 

Y = S 

Y = O 

 

4p, 46 

4q, 57 

3 

4 

5 

 

 

Y = S 

Y = O 

 

6p, 64 

6q, 85 

5 

6 

7 

 

 

Y = S 

Y = O 

 

8p, 63 

8q, 70 

7 

8 

5 

 

 

Y = S 

Y = O 

 

6k, 10 

6r, 61 

a After purification (see experimental part).b The rest is mainly 9k.  
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Figure 2. ORTEP diagrams (50% probability) of the tetracycles 4p and 6q. 

This one-pot N-arylation-cyclization reaction, albeit very useful as shown in Table 2, cannot be 

extended to all the aryl iodides. Thus, in order to access a larger range of tricycles, we combined N-

arylation of different 2-aminophenones (Table 3, left; Figure 3, left) with acid-mediated cyclization 

(Table 3, right; Figure 3, right). By using sulfuric acid in boiling acetic acid for 10 min,38 the expected 

heterocycles of acridine-type were obtained satisfactorily in most cases. From 5, formation of the 

expected thieno[2,3-b]quinoline 6k was already detected after the N-arylation step. The electron-rich 

ferrocenyl derivatives 2l and 9l did not lead to the expected tricycles; instead, either unidentified 

products were formed (with no more unsubstituted cyclopentadienyl ring in the case of 9l) or the 

starting materials 9l (entry 10) and 2l (result not shown) were recovered. In the case of 9m and 2m, 

lower yields were observed for the cyclized products 6m and 4m (entries 12 and 13); this could be due 

to lower reactivity of the π-deficient pyridine toward the ketone function. Moreover, even if the 

reactions appear as being regioselective with isolated 6m and 4m, the NMR spectra of the crudes show 

that other products are formed. Extending the reaction time from 2m led to degradation (formation of a 

4-substituted acetophenone was suspected). 

Table 3. N-arylation of the 2-aminoketones 5 and 7 to respectively afford 9 and 10, and cyclization of 
the 2-(arylamino)ketones 2 and 9 to respectively afford the acridines and related compounds 4 and 6. 
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Entry I-Ar 9, Yield (%)a Product, Reaction time, Yield (%)a 

1 

2  
9e (from 5), 42 

 

6e (R = Ph; from 9e), 15 min, 59 

4e (R = Me; from 2e), 10 min, 94 

3 - - 

 

4h (from 2h), 10 min, 92 

4 

5  
9i (from 5), 74 

 

6i (R = Ph; from 9i), 15 min, 46 

4i (R = Me; from 2i), 10 min, 95 

6 

7  
9j (from 5), 81 

 

6j (R = Ph; from 9j), 10 min, 96 

4j (R = Me; from 2j), 30 min, 98 

8 

9  

9k (from 5), 50b 

 

6k (R = Ph; from 9k), 30 min, 80 

4k (R = Me; from 2k), 10 min, 61 

10 

11 

 

9l (from 5), 85 

10l (from 7), 82 

- - 

12 

13  

9m (from 5), 88 

10m (from 7)d 

 

6m (R = Ph; from 9m), 2 h, 54c 

4m (R = Me; from 2m), 30 min, 57c 

a After purification (see experimental part). b Further cyclization to 4-phenylthieno[2,3-
b]quinoline (6k) was also noticed in 10% yield. c Starting material and unidentified products were 
also present in the crude. d 10m also formed but proved to have a very low solubility in organic 

solvents. 

   

Figure 3. ORTEP diagrams (50% probability) of the compounds 10l and 4j. 
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3. Antiproliferative activity in A2058 melanoma cells 

Most of the synthesized compounds were tested and exerted a significant antiproliferative activity in 

A2058 melanoma cells (Figure 4). The best result was obtained with the acridine 6i which induced 

95.97% ± 2.56% growth inhibition at 10-5 M. Nevertheless, other heterocyclic products such as the 

pentacycle 4o, its precursor 2o, the ferrocene- and pyridine-containing isatins 3l and 3m, and the 

tetracycles 4p and 4q also exhibited high antiproliferative activity. 

 
Figure 4: Antiproliferative activity of most of the synthesized compounds 

at 10-5 M after 72 h in A2058 human melanoma cells. 

Most of the synthesized compounds were also evaluated39 against a short panel of disease-related 

protein kinases: cyclin-dependent kinases 2 (CDK2/Cyclin A), 5 (CDK5/p25) and 9 (CDK9/Cyclin T); 

proto-oncogene kinase PIM1; CDC2-like kinase 1 (CLK1), dual specificity tyrosine phosphorylation 

regulated kinase 1A (DYRK1A); glycogen-synthase kinase-3 (GSK-3 α/β); casein kinase 1 (CK1 
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isoforms δ/ε); mitotic kinases Haspin and Aurora B; and leishmanial casein kinase 1 (LmCK1) (Table 

4). 

Table 4. Inhibitory activities of synthesized compounds against a short panel of disease-related protein 
kinases. The table displays the remaining kinase activities detected after treatment with 10 µM of the 
tested compounds. The values obtained after treatment with 1 µM are given in brackets. Results are 
expressed in % of maximal activity, i.e. measured in the absence of inhibitor but with an equivalent 
dose of DMSO (solvent of the tested compounds). ATP concentration used in the kinase assays was 15 
µmol/L (values are means, n = 2). Kinases are from human origin unless specified: Mm, Mus musculus; 
Rn, Rattus norvegicus; Ssc, Sus scrofa domesticus; Lm, Leishmania major. 

Compoun
d 

CDK5/p25 PIM1 MmCLK1 RnDYRK1A SscGSK3α/β LmCK1 Haspin 

2b 91 (100) 97 (103) 97 (84) 94 (80) 73 (87) 130 (70) 149 (107) 
2e -a 95 (95) 105 (108) 94 (87) 107 (92) -a 92 (90) 
2j 101 (93) 106 (109) 106 (94) 99 (86) 63 (104) 126 (74) 131 (119) 
2k 99 (129) 64 (120) 104 (125) 70 (75) 121 (77) 99 (80) 93 (75) 
2l 114 (127) 140 (134) 127 (116) 128 (130) 110 (110) 107 (77) 79 (125) 
2m 113 (125) 128 (132) 112 (115) 129 (125) 141 (107) 84 (86) 88 (123) 
3b 100 (87) 83 (90) 90 (99) 123 (90) 84 (103) 31 (108) 87 (111) 
3c 95 (87) 94 (109) 101 (108) 39 (89) 36 (90) 85 (77) 85 (114) 
3d 95 (100) 101 (115) 93 (111) 112 (111) 101 (95) 144 (105) 87 (117) 
3f 102 (93) 82 (102) 94 (108) 94 (87) 55 (116) 52 (79) 85 (110) 
3g 98 (101) 89 (111) 89 (116) 159 (160) 41 (104) 32 (93) 58 (98) 
3h 91 (105) 89 (113) 102 (138) 96 (121) 65 (126) 79 (98) 87 (93) 
3i 111 (129) 89 (114) 106 (128) 88 (83) 52 (82) 43 (63) 84 (88) 
3j 117 (128) 79 (113) 109 (78) 66 (86) 103 (65) 84 (67) 117 (77) 
3l 124 (142) 91 (134) 109 (134) 92 (84) 80 (73) 55 (65) 119 (105) 
3m 128 (120) 65 (106) 105 (112) 67 (61) 60 (66) 93 (70) 135 (85) 
3o 74 (102) 88 (120) 107 (113) 91 (70) 140 (73) 57 (64) 168 (101) 
4e -a 27 (90) 58 (97) 32 (108) 108 (100) -a 26 (79) 
4h -a 68 (96) 60 (99) 58 (102) 123 (104) -a 75 (100) 
4i -a 58 (93) 69 (94) 57 (90) 99 (75) -a 74 (90) 
4j 88 (107) 73 (87) 55 (90) 80 (103) 88 (85) 72 (92) 77 (90) 
4k 80 (100) 78 (88) 69 (91) 52 (89) 113 (77) 97 (71) 55 (89) 
4m 89 (97) 80 (100) 43 (80) 72 (67) 50 (104) 82 (143) 44 (77) 
4n 108 (95) 81 (84) 130 (96) 143 (136) 150 (95) 97 (61) 99 (90) 
4o 101 (110) 65 (112) 57 (102) 92 (101) 137 (86) 85 (81) 72 (109) 
4p 88 (126) 56 (108) 66 (131) 56 (82) 81 (77) 98 (82) 49 (80) 
4q 73 (130) 69 (109) 62 (120) 68 (96) 72 (94) 79 (76) 89 (120) 
6e -a 60 (87) 51 (96) 84 (103) 106 (96) -a 77 (92) 
6i -a 61 (109) 91 (104) 101 (135) 98 (95) -a 101 (107) 
6k 87 (110) 74 (91) 90 (101) 85 (111) 104 (88) 96 (78) 81 (104) 
6p 77 (126) 46 (104) 64 (116) 52 (84) 39 (73) 73 (69) 71 (73) 
6q 92 (127) 96 (107) 92 (117) 94 (124) 122 (87) 98 (88) 77 (85) 
8q -a 13 (44) 24 (73) 47 (65) 22 (44) -a 104 (197) 
9i -a 107 (103) 117 (106) 119 (142) 115 (110) -a 106 (104) 
9j -a 104 (111) 118 (106) 126 (133) 116 (107) -a 106 (100) 
9k 27 (113) 87 (111) 100 (120) 78 (75) 133 (85) 61 (76) 96 (90) 
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9l 100 (101) 103 (104) 76 (76) 100 (70) 84 (135) 149 (183) 77 (74) 

10l -a 90 (109) 114 (107) 132 (108) 107 (104) -a 114 (107) 

a Not performed. 

None of the tested compounds inhibits significantly CDK2/Cyclin A, CDK9/Cyclin T, CK1 δ/ε and 

Aurora B (data not shown). Nevertheless, positive results were recorded with CDK5/p25 (compound 

9k), PIM1 (compounds 4e, 6p and 8q), CLK1 (compounds 4m and 8q), DYRK1A (compounds 3c and 

4e), GSK-3 α/β (compounds 3c, 3g, 6p and 8q), LmCK1 (compounds 3b, 3g and 3i) and Haspin 

(compounds 4e, 4m and 4p) at 10 µM. At 1 µM, 8q remains active, but unselectively inhibits PIM1 and 

GSK-3 α/β. 

4. Conclusion 

Thus, whereas N-arylation of isatin only worked with iodoferrocene, various N-arylated isatins were 

synthesized by combining copper-catalyzed N-arylation of 2-aminoacetophenone and oxidative 

cyclization. With 2-iodofuran, 2-iodobenzofuran and 2-iodobenzothiophene, the corresponding 2-

(arylamino)phenones cyclized under the N-arylation conditions, affording relevant furo- and thieno[2,3-

b]quinolines in only one step. Finally, cyclization of other 2-(arylamino)phenones was performed under 

acidic conditions to furnish acridines and related compounds. 

Because of their promising activity as antiproliferative drugs in human invasive melanoma cells, 

some of the synthesized molecules should be further elaborated. Moreover, there is a growing interest 

on PIM1 kinase for development of new targeted therapy against triple-negative breast tumors.40 The 

inhibitors of PIM1 detected in this study should be improved in order to be evaluated as sensitizing 

agents for chemotherapeuty using pro-apoptotic drugs. 

5. Experimental 

5.1. General 
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All the reactions were performed under an argon atmosphere. Column chromatography separations 

were achieved on silica gel (40-63 µm). Melting points were measured on a Kofler apparatus. IR 

spectra were taken on a Perkin-Elmer Spectrum 100 spectrometer. 1H and 13C Nuclear Magnetic 

Resonance (NMR) spectra were recorded either on a Bruker Avance III spectrometer at 300 MHz and 

75 MHz respectively, or on a Bruker Avance III HD spectrometer at 500 MHz and 126 MHz 

respectively. 1H chemical shifts (δ) are given in ppm relative to the solvent residual peak and 13C 

chemical shifts are relative to the central peak of the solvent signal.41 Microanalyses were performed on 

a Flash 1112 Thermo Fisher elemental analyzer. Iodoferrocene,42 2-iodobenzothiophene,43 2-

iodobenzofuran43 and 2-iodofuran44 were prepared as described previously. 

Crystallography. The samples were studied with monochromatized Mo-Kα radiation (λ = 0.71073 

Å). The X-ray diffraction data were collected at the temperature given in the product description by 

using either D8 VENTURE Bruker AXS diffractometer (multilayered monochromator; compounds 3l, 

3m, 10l, 4o, 4p and 6q), or APEXII Bruker AXS diffractometer (graphite monochromator; compound 

4j). The structure was solved by dual-space algorithm using the SHELXT program,45 and then refined 

with full-matrix least-square methods based on F2 (SHELXL-2014).46 All non-hydrogen atoms were 

refined with anisotropic atomic displacement parameters. Except the nitrogen linked hydrogen atom 

that was introduced in the structural model through Fourier difference maps analysis in the case of 10l, 

H atoms were finally included in their calculated positions and, in the case of 3m, 10l, 4o and 4j, 

treated as riding on their parent atom with constrained thermal parameters. The molecular diagrams 

were generated by ORTEP-3 (version 2.02).47 

5.2. N-arylation of 2-aminoacetophenone (1) 

5.2.1. General procedure 1: The N-arylated substrates were prepared by slightly modifying a 

literature procedure.8b To the required iodide (9.0 mmol) in Bu2O (3 mL) were successively added 

activated Cu34 (76 mg, 1.2 mmol), 2-aminoacetophenone (1, 0.73 mL, 6.0 mmol) and K2CO3 (1.7 g, 12 

mmol). The mixture was degassed and refluxed under argon for 24 h. After cooling to room 
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temperature, the mixture was concentrated. Addition of H2O (25 mL), extraction with AcOEt (3x10 

mL), drying over Na2SO4, removal of the solvent and purification by chromatography on silica gel (the 

eluent is given in the product description) led to the expected compound. 

5.2.2. 2-(Phenylamino)acetophenone (2a). The general procedure 1 using iodobenzene (1.0 mL) 

gave 2a (eluent: heptane-AcOEt 80:20) in 71% yield (0.90 g) as a yellow oil: 1H NMR (CDCl3) δ 2.65 

(s, 3H), 6.74 (ddd, 1H, J = 8.1, 6.6 and 1.5 Hz), 7.12 (tt, 1H, J = 7.2 and 1.3 Hz), 7.23-7.39 (m, 6H), 

7.82 (ddd, 1H, J = 8.1, 1.6 and 0.5 Hz), 10.55 (br s, 1H); 13C NMR (CDCl3) δ 28.3 (CH3), 114.3 (CH), 

116.6 (CH), 119.1 (C), 123.3 (2CH), 124.1 (CH), 129.5 (2CH), 132.6 (CH), 134.7 (CH), 140.5 (C), 

148.1 (C), 201.3 (C). The spectral data are analogous to those described previously.48 

5.2.3. 2-(4-(Phenyl)phenylamino)acetophenone (2b).8b The general procedure 1 using 1-iodo-4-

phenylbenzene (2.5 g) gave 2b (eluent: heptane-AcOEt 80:20) in 60% yield (1.0 g) as a pale yellow 

powder: mp 92 °C; 1H NMR (CDCl3) δ 2.67 (s, 3H), 6.78 (ddd, 1H, J = 8.1, 5.0 and 3.1 Hz), 7.32-7.38 

(m, 5H), 7.42-7.49 (m, 2H), 7.59-7.64 (m, 4H), 7.85 (ddd, 1H, J = 8.1, 1.4 and 0.7 Hz), 10.65 (br s, 

1H); 13C NMR (CDCl3) δ 28.2 (CH3), 114.5 (CH), 116.8 (CH), 119.4 (C), 123.1 (2CH), 126.9 (2CH), 

127.1 (CH), 128.1 (2CH), 128.9 (2CH), 132.7 (CH), 134.7 (CH), 136.7 (C), 139.8 (C), 140.7 (C), 147.8 

(C), 201.3 (C). 

5.2.4. 2-(3-Tolylamino)acetophenone (2c).8b The general procedure 1 using 3-iodotoluene (1.2 mL) 

gave 2c (eluent: heptane-AcOEt 80:20) in 88% yield (1.2 g) as a yellow oil: 1H NMR (CDCl3) δ 2.35 

(d, 1H, J = 0.35 Hz), 2.64 (s, 3H), 6.72 (ddd, 1H, J = 8.1, 6.6 and 1.5 Hz), 6.93 (br d, 1H, J = 7.5 Hz), 

7.06-7.08 (m, 2H), 7.20-7.33 (m, 3H), 7.81 (dd, 1H, J = 8.0 and 1.4 Hz), 10.50 (br s, 1H); 13C NMR 

(CDCl3) δ 21.6 (CH3), 28.2 (CH3), 114.4 (CH), 116.5 (CH), 119.1 (C), 120.3 (CH), 124.0 (CH), 124.9 

(CH), 129.2 (CH), 132.6 (CH), 134.6 (CH), 139.4 (C), 140.4 (C), 148.2 (C), 201.2 (C). 

5.2.5. 2-(4-Methoxyphenylamino)acetophenone (2d). The general procedure 1 using 4-iodoanisole 

(2.1 g) gave 2d (eluent: heptane) in 94% yield (1.4 g) as a yellow powder: mp 68 °C (lit.49 65.5-66.5 

°C); 1H NMR (CDCl3) δ 2.64 (s, 3H), 3.82 (s, 3H), 6.67 (ddd, 1H, J = 8.1, 7.0 and 1.2 Hz), 6.88-6.94 
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(m, 2H), 6.99 (dd, 1H, J = 8.5 and 1.2 Hz), 7.14-7.21 (m, 2H), 7.24 (ddd, 1H, J = 8.9, 6.9 and 1.6 Hz), 

7.79 (dd, 1H, J = 8.1 and 1.6 Hz), 10.37 (br s, 1H); 13C NMR (CDCl3) δ 28.2 (CH3), 55.6 (CH3), 113.8 

(CH), 114.8 (2CH), 115.7 (CH), 118.3 (C), 126.4 (2CH), 132.6 (CH), 133.1 (C), 134.7 (CH), 149.7 (C), 

157.0 (C), 201.2 (C). The spectral data are analogous to those described previously.48 

5.2.6. 2-(4-Aminophenylamino)acetophenone (2e). The general procedure 1 using 4-iodoaniline 

(2.0 g) gave 2e (eluent: heptane-AcOEt 90:10; Rf (heptane-AcOEt 80:20) 0.08) in 70% yield (0.95 g) as 

an orange powder: mp 143 °C; IR (ATR): 705, 741, 795, 815, 842, 958, 1022, 1043, 1067, 1163, 1228, 

1252, 1408, 1436, 1457, 1513, 1567, 1586, 1619, 2989, 3269, 3342, 3420 cm-1; 1H NMR (CDCl3) δ 

2.63 (s, 3H), 3.75 (br s, 2H, NH2), 6.63 (ddd, 1H, J = 8.1, 6.9 and 1.1 Hz), 6.69-6.72 (m, 2H), 6.95 (dd, 

1H, J = 8.6 and 1.1 Hz), 7.03-7.06 (m, 2H), 7.24 (ddd, 1H, J = 8.6, 7.0 and 1.7 Hz), 7.77 (dd, 1H, J = 

8.1 and 1.5 Hz), 10.29 (br s, 1H); 13C NMR (CDCl3) δ 28.2 (CH3), 113.9 (CH), 115.4 (CH), 116.1 

(2CH), 118.1 (C), 126.8 (2CH), 131.2 (C), 132.6 (CH), 134.7 (CH), 143.7 (C), 150.1 (C), 201.1 (C). 

Anal. Calcd for C14H14N2O (226.28): C, 74.31; H, 6.24; N, 12.38. Found: C, 74.19; H, 6.28; N, 12.29. 

5.2.7. 2-(4-Nitrophenylamino)acetophenone (2f). The general procedure 1 using 1-iodo-4-

nitrobenzene (2.2 g) gave 2f after washing with water in 66% yield (1.0 g) as a beige powder: mp 140 

°C; 1H NMR (CDCl3) δ 2.67 (s, 3H), 6.99 (ddd, 1H, J = 8.2, 6.9 and 1.4 Hz), 7.25-7.31 (m, 2H), 7.43-

7.55 (m, 2H), 7.90 (dd, 1H, J = 8.1 and 1.5 Hz), 8.16-8.22 (m, 2H), 10.79 (br s, 1H); 13C NMR (CDCl3) 

δ 28.5 (CH3), 116.7 (CH), 118.5 (2CH), 119.2 (C), 120.2 (CH), 122.2 (C), 125.9 (2CH), 132.7 (CH), 

134.7 (CH), 144.1 (C), 147.6 (C), 202.0 (C). The spectral data are analogous to those described 

previously.48 

5.2.8. 2-(3-Nitrophenylamino)acetophenone (2g). The general procedure 1 using 1-iodo-3-

nitrobenzene (2.2 g) gave 2g after washing with water in 71% yield (1.1 g) as a beige powder: mp 160 

°C (lit.50 94-95 °C); 1H NMR (CDCl3) δ 2.67 (s, 3H), 6.89 (ddd, 1H, J = 8.1, 6.9 and 1.4 Hz), 7.35 (dd, 

1H, J = 8.5 and 1.3 Hz), 7.38-7.51 (m, 3H), 7.86-7.90 (m, 2H), 8.13 (t, 1H, J = 2.1 Hz), 10.70 (br s, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

18

1H); 13C NMR (CDCl3) δ 28.3 (CH3), 114.6 (CH), 115.7 (CH), 117.7 (CH), 118.7 (CH), 120.5 (C), 

127.4 (CH), 130.2 (CH), 132.8 (CH), 134.9 (CH), 142.3 (C), 145.8 (C), 149.2 (C), 201.8 (C). 

5.2.9. 2-(4-Chlorophenylamino)acetophenone (2h). The general procedure 1 using 1-chloro-4-

iodobenzene (2.1 g) gave 2h (eluent: heptane-AcOEt 80:20) in 63% yield (0.93 g) as a beige powder: 

mp 70 °C; 1H NMR (CDCl3) δ 2.65 (s, 3H), 6.76 (ddd, 1H, J = 8.2, 7.0 and 1.2 Hz), 7.16-7.21 (m, 3H), 

7.27-7.35 (m, 3H), 7.83 (dd, 1H, J = 8.1 and 1.6 Hz), 10.49 (br s, 1H); 13C NMR (CDCl3) δ 28.3 (CH3), 

114.3 (CH), 117.1 (CH), 119.5 (C), 124.4 (2CH), 129.0 (C), 129.6 (2CH), 132.7 (CH), 134.8 (CH), 

139.2 (C), 147.7 (C), 201.5 (C). The spectral data are analogous to those described previously.48 

5.2.10. 2-(4-Bromophenylamino)acetophenone (2i).8b The general procedure 1 using 1-bromo-4-

iodobenzene (2.5 g) gave 2i (eluent: heptane-AcOEt 80:20) in 94% yield (1.6 g) as a yellow oil: 1H 

NMR (CDCl3) δ 2.64 (s, 3H), 6.78 (ddd, 1H, J = 8.2, 7.0 and 1.3 Hz), 7.11-7.17 (m, 2H), 7.22 (dd, 1H, 

J = 8.6 and 1.2 Hz), 7.33 (ddd, 1H, J = 8.6, 6.9 and 1.5 Hz), 7.42-7.48 (m, 2H), 7.83 (dd, 1H, J = 8.1 

and 1.6 Hz), 10.49 (br s, 1H); 13C NMR (CDCl3) δ 28.3 (CH3), 114.3 (CH), 116.4 (C), 117.2 (CH), 

119.6 (C), 124.5 (2CH), 132.5 (2CH), 132.7 (CH), 134.7 (CH), 139.7 (C), 147.4 (C), 201.5 (C). 

5.2.11. 2-(4-(Trifluoromethyl)phenylamino)acetophenone (2j). The general procedure 1 using 1-

iodo-4-(trifluoromethyl)benzene (1.3 mL) gave 2j (eluent: heptane-AcOEt 80:20) in 90% yield (1.5 g) 

as a beige powder: mp 70 °C; 1H NMR (CDCl3) δ 2.68 (s, 3H), 6.88 (ddd, 1H, J = 8.1, 5.8 and 2.4 Hz), 

7.34 (d, 2H, J = 8.9 Hz), 7.39-7.45 (m, 2H), 7.59 (d, 2H, J = 8.8 Hz), 7.88 (dd, 1H, J = 8.1 and 1.4 Hz), 

10.69 (br s, 1H); 13C NMR (CDCl3) δ 28.3 (CH3), 115.1 (CH), 118.3 (CH), 120.6 (C), 120.9 (2CH), 

124.4 (q, C, J = 270 Hz), 124.7 (q, C, J = 32.5 Hz), 126.7 (q, 2CH, J = 3.8 Hz), 132.7 (CH), 134.7 

(CH), 144.2 (q, C, J = 1.5 Hz), 146.0 (C), 201.7 (C). The spectral data are analogous to those described 

previously.48 

5.2.12. 2-(2-Thienylamino)acetophenone (2k). The general procedure 1 using 2-iodothiophene 

(0.99 mL) gave 2k (eluent: heptane-AcOEt 80:20; Rf 0.56) in 69% yield (0.90 g) as a yellow oil: IR 

(ATR): 702, 751, 855, 954, 1158, 1241, 1311, 1358, 1451, 1490, 1499, 1538, 1571, 1607, 1633, 1738, 
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2924, 3244 cm-1; 1H NMR (CDCl3) δ 2.65 (s, 3H), 6.76 (ddd, 1H, J = 8.1, 7.1 and 1.2 Hz), 6.82 (dt, 

1H, J = 3.6 and 1.2 Hz), 6.95 (dd, 1H, J = 5.6 and 3.6 Hz), 7.04-7.12 (m, 2H), 7.34 (dddd, 1H, J = 8.6, 

7.1, 1.6 and 0.5 Hz), 7.81 (dd, 1H, J = 8.1 and 1.5 Hz), 10.43 (br s, 1H); 13C NMR (CDCl3) δ 28.1 

(CH3), 114.3 (CH), 117.0 (CH), 118.7 (C), 121.3 (CH), 121.9 (CH), 126.1 (CH), 132.2 (CH), 135.0 

(CH), 143.3 (C), 149.8 (C), 201.5 (C). Anal. Calcd for C12H11NOS (217.29): C, 66.33; H, 5.10; N, 

6.45; S, 14.75. Found: C, 66.00; H, 5.15; N, 6.49; S, 14.66. 

5.2.13. 2-(Ferrocenylamino)acetophenone (2l). The general procedure 1 using iodoferrocene (2.8 g) 

gave 2l (eluent: heptane-AcOEt 80:20) in 87% yield (1.7 g) as an orange powder: mp 58 °C (lit.51 57-59 

°C), 1H NMR (CDCl3) δ 2.64 (s, 3H), 4.10 (t, 2H, J = 1.9 Hz), 4.25 (s, 5H), 4.33 (t, 2H, J = 1.9 Hz), 

6.65 (ddd, 1H, J = 8.1, 6.9 and 1.2 Hz), 7.08 (dd, 1H, J = 8.6 and 1.2 Hz), 7.30 (ddd, 1H, J = 8.6, 6.9 

and 1.6 Hz), 7.78 (dd, 1H, J = 8.1 and 1.6 Hz), 10.06 (br s, 1H); 13C NMR (CDCl3) δ 28.1 (CH3), 65.2 

(2CH), 65.6 (2CH), 69.5 (5CH), 96.0 (C), 114.3 (CH), 115.4 (CH), 118.0 (C), 132.4 (CH), 134.7 (CH), 

150.5 (C), 201.2 (C). The spectral data are analogous to those described previously.51 

5.2.14. 2-(3-Pyridylamino)acetophenone (2m).52 The general procedure 1 using 3-iodopyridine (1.8 

g) gave 2m (eluent: heptane-AcOEt 70:30) in 62% yield (0.79 g) as a yellow oil: IR (ATR): 706, 746, 

794, 955, 1020, 1106, 1163, 1185, 1240, 1318, 1359, 1454, 1481, 1512, 1568, 1579, 1605, 1638, 1736, 

3031, 3247 cm-1; 1H NMR (CDCl3) δ 2.66 (s, 3H), 6.81 (ddd, 1H, J = 8.1, 7.1 and 1.2 Hz), 7.20 (dd, 

1H, J = 8.6 and 1.1 Hz), 7.28 (dd, 1H, J = 8.2 and 4.7 Hz), 7.35 (dddd, 1H, J = 8.6, 7.0, 1.6 and 0.5 

Hz), 7.59 (ddd, 1H, J = 8.3, 2.4 and 1.5 Hz), 7.85 (dd, 1H, J = 8.1 and 1.5 Hz), 8.35 (d, 1H, J = 4.7 Hz), 

8.57 (br s, 1H), 10.55 (br s, 1H); 13C NMR (CDCl3) δ 28.1 (CH3), 113.9 (CH), 117.7 (CH), 119.7 (C), 

123.8 (CH), 129.5 (CH), 132.6 (CH), 134.7 (CH), 137.2 (C), 144.7 (CH), 144.8 (CH), 147.0 (C), 201.5 

(C). 

5.2.15. General procedure 2: To the required iodide (2.0 g, 6.0 mmol) in Bu2O (3 mL) were 

successively added activated Cu34 (0.15 g, 2.4 mmol), 2-aminoacetophenone (1, 1.5 mL, 12 mmol) and 

K2CO3 (2.5 g, 18 mmol). The mixture was degassed and refluxed under argon for 48 h. After cooling to 
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room temperature, the mixture was concentrated. Addition of H2O (25 mL), filtration of the precipitate, 

washing with H2O and heptane, and drying led to the expected compound. 

5.2.16. N,N’-(1,3-Phenylene)-2,2’-bis(2-aminoacetophenone) (2n). The general procedure 2 using 

1,3-diiodobenzene gave 2n in 62% yield (1.3 g) as a beige powder: mp 126 °C (lit.35 129.5-132.5 °C); 

1H NMR (CDCl3) δ 2.64 (s, 6H), 6.75 (ddd, 2H, J = 8.1, 5.8 and 2.3 Hz), 6.99 (dd, 2H, J = 8.0 and 2.1 

Hz), 7.16 (t, 1H, J = 2.1 Hz), 7.28-7.36 (m, 5H), 7.81 (dd, 2H, J = 8.1 and 1.5 Hz), 10.53 (br s, 2H). 

The 1H NMR data are analogous to those described previously.35 13C NMR (CDCl3) δ 28.3 (2CH3), 

114.7 (2CH), 116.9 (2CH), 117.0 (CH), 118.4 (2CH), 119.4 (2C), 130.3 (CH), 132.6 (2CH), 134.7 

(2CH), 141.7 (2C), 147.7 (2C), 201.4 (2C). 

5.2.17. N,N’-(1,4-Phenylene)-2,2’-bis(2-aminoacetophenone) (2o). The general procedure 2 using 

1,4-diiodobenzene gave 2o in 100% yield (2.1 g) as a beige powder: mp 210 °C (lit.35 196-198 °C); 1H 

NMR (CDCl3) δ 2.65 (s, 6H), 6.72 (ddd, 2H, J = 8.1, 6.9 and 1.3 Hz), 7.20 (dd, 2H, J = 8.7 and 1.2 

Hz), 7.24 (s, 4H), 7.32 (dddd, 2H, J = 8.6, 6.9, 1.6 and 0.5 Hz), 7.82 (dd, 2H, J = 8.1 and 1.5 Hz), 10.50 

(br s, 2H). The 1H NMR data are analogous to those described previously.35 13C NMR (CDCl3) δ 27.2 

(2CH3), 113.2 (2CH), 115.5 (2CH), 118.0 (2C), 123.7 (4CH), 131.7 (2CH), 133.8 (2CH), 135.6 (2C), 

147.5 (2C), 200.3 (2C). 

5.3. Conversion of the N-arylated 2-aminoacetophenones to isatins 

5.3.1. General procedure 3 (Method A): To the required N-arylated 2-aminoacetophenone (3.0 

mmol) in dioxane (3 mL) was added SeO2 (0.67 g, 6.0 mmol). The mixture was heated at 80 °C for 24 

h. After cooling to room temperature, the mixture was concentrated and the compound was purified by 

chromatography on silica gel (the eluent is given in the product description). 

5.3.2. 1-Phenylisatin (3a). The general procedure 3 using 2-(phenylamino)acetophenone (2a, 0.63 g) 

gave 3a (eluent: heptane-AcOEt 80:20) in 90% yield (0.60 g) as an orange powder: mp 137 °C (lit.53 

136-139 °C); 1H NMR (CDCl3) δ 6.90 (d, 1H, J = 8.0 Hz), 7.17 (td, 1H, J = 7.6 and 0.9 Hz), 7.40-7.59 

(m, 6H), 7.70 (dd, 1H, J = 7.4 and 1.4 Hz); 13C NMR (CDCl3) δ 111.4 (CH), 117.7 (C), 124.4 (CH), 
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125.8 (CH), 126.2 (2CH), 129.0 (CH), 130.1 (2CH), 133.1 (C), 138.4 (CH), 151.8 (C), 157.5 (C), 183.0 

(C). The spectral data are analogous to those described previously.53 

5.3.3. 1-(4-Phenylphenyl)isatin (3b). The general procedure 3 using 2-((4-

phenyl)phenylamino)acetophenone (2b, 0.86 g) gave 3b (eluent: heptane-AcOEt 80:20) in 67% yield 

(0.60 g) as an orange powder: mp 178 °C; 1H NMR (CDCl3) δ 6.98 (dt, 1H, J = 8.0 and 0.75 Hz), 7.19 

(td, 1H, J = 7.5 and 0.8 Hz), 7.37-7.52 (m, 5H), 7.57 (td, 1H, J = 7.8 and 1.4 Hz), 7.59-7.64 (m, 2H), 

7.72 (ddd, 1H, J = 7.5, 1.4 and 0.6 Hz), 7.74-7.79 (m, 2H); 13C NMR (CDCl3) δ 111.4 (CH), 117.7 (C), 

124.5 (CH), 125.8 (CH), 126.4 (2CH), 127.3 (2CH), 128.0 (CH), 128.8 (2CH), 129.1 (2CH), 132.1 (C), 

138.5 (CH), 140.1 (C), 142.0 (C), 151.8 (C), 157.6 (C), 183.0 (C). The spectral data are analogous to 

those described previously.8b 

5.3.4. 1-(3-Tolyl)isatin (3c). The general procedure 3 using 2-(3-tolylamino)acetophenone (2c, 0.68 

g) gave 3c (eluent: heptane-AcOEt 80:20) in 68% yield (0.48 g) as an orange powder: mp 150 °C; 1H 

NMR (CDCl3) δ 2.43 (s, 3H), 6.87 (dd, 1H, J = 8.0 and 0.75 Hz), 7.16 (td, 1H, J = 7.5 and 0.8 Hz), 

7.18-7.28 (m, 3H), 7.43 (td, 1H, J = 7.6 and 0.8 Hz), 7.53 (td, 1H, J = 7.8 and 1.4 Hz), 7.68 (ddd, 1H, J 

= 7.4, 1.4 and 0.6 Hz); 13C NMR (CDCl3) δ 21.5 (CH3), 111.5 (CH), 117.6 (C), 123.1 (CH), 124.3 

(CH), 125.7 (CH), 126.8 (CH), 129.8 (CH), 129.9 (CH), 132.9 (C), 138.4 (CH), 140.3 (C), 152.0 (C), 

157.5 (C), 183.1 (C). The spectral data are analogous to those described previously.8b 

5.3.5. 1-(4-Methoxyphenyl)isatin (3d). The general procedure 3 using 2-(4-

methoxyphenylamino)acetophenone (2d, 0.72 g) gave 3d (eluent: heptane-AcOEt 80:20) in 71% yield 

(0.54 g) as an orange powder: mp 168 °C; 1H NMR (CDCl3) δ 3.86 (s, 3H), 6.82 (d, 1H, J = 8.0 Hz), 

7.02-7.08 (m, 2H), 7.15 (td, 1H, J = 7.5 and 0.8 Hz), 7.28-7.34 (m, 2H), 7.52 (td, 1H, J = 7.8 and 1.4 

Hz), 7.67 (ddd, 1H, J = 7.5, 1.3 and 0.5 Hz); 13C NMR (CDCl3) δ 55.7 (CH3), 111.3 (CH), 115.4 

(2CH), 117.6 (C), 124.3 (CH), 125.5 (C), 125.6 (CH), 127.6 (2CH), 138.4 (CH), 152.2 (C), 157.8 (C), 

159.9 (C), 183.2 (C). The spectral data are analogous to those described previously.8b 
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5.3.6. 1-(4-Nitrophenyl)isatin (3f).8e The general procedure 3 using 2-(4-

nitrophenylamino)acetophenone (2f, 0.77 g) gave 3f (eluent: heptane-AcOEt 80:20) in 20% yield (0.16 

g) as an orange powder: mp 232 °C; 1H NMR (CDCl3) δ 7.04 (d, 1H, J = 8.1 Hz), 7.27 (td, 1H, J = 7.5 

and 0.7 Hz), 7.63 (td, 1H, J = 7.8 and 1.4 Hz), 7.66-7.72 (m, 2H), 7.77 (ddd, 1H, J = 7.5, 1.4 and 0.6 

Hz), 8.41-8.47 (m, 2H); 13C NMR (CDCl3) δ 111.3 (CH), 118.0 (C), 125.4 (CH), 125.5 (2CH), 126.2 

(2CH), 126.4 (CH), 138.7 (CH), 138.7 (C), 147.1 (C), 150.2 (C), 157.0 (C), 181.6 (C). 

5.3.7. 1-(3-Nitrophenyl)isatin (3g).54 The general procedure 3 using 2-(3-

nitrophenylamino)acetophenone (2g, 0.77 g) gave 3g (eluent: heptane-AcOEt 80:20) in 13% yield (0.10 

g) as an orange powder: mp 160 °C; 1H NMR (CDCl3) δ 6.97 (d, 1H, J = 8.0 Hz), 7.26 (td, 1H, J = 7.6 

and 0.7 Hz), 7.62 (td, 1H, J = 7.8 and 1.4 Hz), 7.75-7.86 (m, 3H), 8.31-8.37 (m, 2H); 13C NMR 

(CDCl3) δ 111.1 (CH), 117.8 (C), 121.0 (CH), 123.5 (CH), 125.2 (CH), 126.3 (CH), 131.1 (CH), 132.1 

(CH), 134.3 (C), 138.7 (CH), 150.4 (C), 157.1 (C), 181.7 (C), 1C not seen. 

5.3.8. 1-(4-Chlorophenyl)isatin (3h). The general procedure 3 using 2-(4-

chlorophenylamino)acetophenone (2h, 0.74 g) gave 3h (eluent: heptane-AcOEt 80:20) in 45% yield 

(0.35 g) as an orange powder: mp 198 °C (lit.53 194-197 °C); 1H NMR (CDCl3) δ 6.89 (dt, 1H, J = 8.0 

and 0.7 Hz), 7.19 (td, 1H, J = 7.6 and 0.9 Hz), 7.35-7.40 (m, 2H), 7.50-7.57 (m, 2H), 7.57 (dd, 1H, J = 

7.8 and 1.4 Hz), 7.70 (ddd, 1H, J = 7.5, 1.4 and 0.6 Hz); 13C NMR (CDCl3) δ 111.2 (CH), 117.7 (C), 

124.7 (CH), 125.9 (CH), 127.4 (2CH), 130.3 (2CH), 131.5 (C), 134.7 (C), 138.5 (CH), 151.3 (C), 157.3 

(C), 182.5 (C). The spectral data are analogous to those described previously.53 

5.3.9. 1-(4-Bromophenyl)isatin (3i). The general procedure 3 using 2-(4-

bromophenylamino)acetophenone (2i, 0.87 g) gave 3i (eluent: heptane-AcOEt 80:20) in 80% yield 

(0.73 g) as an orange powder: mp 182 °C (lit.53 178-180 °C); 1H NMR (CDCl3) δ 6.89 (d, 1H, J = 8.1 

Hz), 7.19 (td, 1H, J = 7.5 and 0.8 Hz), 7.29-7.34 (m, 2H), 7.56 (td, 1H, J = 7.8 and 1.4 Hz), 7.66-7.72 

(m, 3H); 13C NMR (CDCl3) δ 111.2 (CH), 117.7 (C), 122.6 (C), 124.7 (CH), 125.9 (CH), 127.7 (2CH), 
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132.1 (C), 133.3 (2CH), 138.5 (CH), 151.2 (C), 157.3 (C), 182.5 (C). The spectral data are analogous to 

those described previously.53 

5.3.10. 1-(4-(Trifluoromethyl)phenyl)isatin (3j). The general procedure 3 using 2-(4-

(trifluoromethyl)phenylamino)acetophenone (2j, 0.84 g) gave 3j (eluent: heptane-AcOEt 80:20) in 62% 

yield (0.54 g) as an orange powder: mp 184 °C (lit.53 177-181 °C); 1H NMR (CDCl3) δ 6.97 (d, 1H, J = 

8.0 Hz), 7.23 (td, 1H, J = 7.6 and 0.7 Hz), 7.56-7.62 (m, 3H), 7.73 (dd, 1H, J = 7.5 and 0.9 Hz), 7.83 

(d, 2H, J = 8.4 Hz); 13C NMR (CDCl3) δ 111.3 (CH), 117.8 (C), 123.7 (q, C, J = 271 Hz), 124.9 (CH), 

126.1 (CH), 126.3 (2CH), 127.2 (q, 2CH, J = 15 Hz), 130.8 (q, C, J = 40 Hz), 136.3 (C), 138.6 (CH), 

150.8 (C), 157.2 (C), 182.1 (C). The spectral data are analogous to those described previously.53 

5.3.11. 1-Ferrocenylisatin (3l). To isatin (0.29 g, 2.0 mmol) in Bu2O (3 mL) was added 

iodoferrocene (0.31 g, 1.0 mmol) and activated Cu34 (63 mg, 1.0 mmol). The mixture was degassed and 

heated at 150 °C under argon for 24 h. After cooling to room temperature, the mixture was concentrated 

and the residue was purified by chromatography on silica gel (eluent: heptane-AcOEt 80:20; Rf 0.30) 

gave 3l in 16% yield (53 mg) as a black powder: mp 170 °C; IR (ATR): 753, 812, 945, 1093, 1105, 

1155, 1173, 1301, 1341, 1354, 1458, 1473, 1495, 1599, 1721, 1735, 2925, 3114 cm-1; 1H NMR 

(CDCl3) δ 4.30-4.31 (m, 7H), 4.66 (t, 2H, J = 2.0 Hz), 7.18 (td, 1H, J = 7.5 and 0.9 Hz), 7.56-7.67 (m, 

3H); 13C NMR (CDCl3) δ 63.3 (2CH), 66.1 (2CH), 69.8 (5CH), 89.8 (C), 112.5 (CH), 118.0 (C), 124.1 

(CH), 125.2 (CH), 138.2 (CH), 151.3 (C), 157.5 (C), 182.9 (C). Anal. Calcd for C18H13FeNO2 (331.14): 

C, 65.29; H, 3.96; N, 4.23. Found: C, 65.33; H, 4.14; N, 4.27. Crystal data for 3l. C18H13FeNO2, M = 

331.14, T = 150 K, triclinic, P -1, a = 7.6255(4), b = 13.3306(6), c = 14.5450(7) Å, α = 73.602(2), β = 

84.944(2), γ = 77.362(2) °, V = 1383.48(12) Å3, Z = 4, d = 1.590 g cm-3, µ = 1.096 mm-1. A final 

refinement on F2 with 6295 unique intensities and 373 parameters converged at ωR(F2) = 0.0981 (R(F) 

= 0.0392) for 5336 observed reflections with I > 2σ(I). CCDC 1811743. 

5.3.12. 1-(3-Pyridyl)isatin (3m, Method B). To 2-(3-pyridylamino)acetophenone (2m, 0.11 g, 0.50 

mmol) in pyridine (1 mL) was added SeO2 (115 mg, 1.0 mmol). The mixture was heated at 120 °C for 
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2 h. After cooling to room temperature, an aqueous 1 M solution of HCl (2 mL) was added before 

filtration and washing with H2O (2 x 5 mL). Drying under vacuum afforded 3m in 89% yield (0.10 g) 

as an orange powder: mp 204 °C; IR (ATR): 695, 704, 719, 759, 802, 927, 1028, 1098, 1150, 1170, 

1180, 1200, 1300, 1365, 1426, 1461, 1490, 1578, 1608, 1733, 3049, 3106, 3456 cm-1; 1H NMR 

(CDCl3) δ 6.92 (dd, 1H, J = 8.0 and 0.8 Hz), 7.23 (td, 1H, J = 7.6 and 0.9 Hz), 7.53 (dd, 1H, J = 8.2 

and 4.8 Hz), 7.59 (td, 1H, J = 7.8 and 1.4 Hz), 7.74 (ddd, 1H, J = 7.5, 1.2 and 0.5 Hz), 7.82 (ddd, 1H, J 

= 8.1, 2.5 and 1.5 Hz), 8.70-8.78 (m, 2H); 13C NMR (CDCl3) δ 111.1 (CH), 117.8 (C), 124.6 (CH), 

125.0 (CH), 126.2 (CH), 130.1 (C), 133.9 (CH), 138.7 (CH), 147.2 (CH), 149.9 (CH), 150.9 (C), 157.4 

(C), 182.0 (C). Anal. Calcd for C13H8N2O2 (224.22): C, 69.64; H, 3.60; N, 12.49. Found: C, 69.71; H, 

3.83; N, 12.55. Crystal data for 3m. C13H8N2O2, M = 224.21, T = 150 K, orthorhombic, F d d 2, a = 

31.035(3), b = 34.022(3), c = 3.7555(4) Å, V = 3965.3(7) Å3, Z = 16, d = 1.502 g cm-3, µ = 0.104 mm-1. 

A final refinement on F2 with 2262 unique intensities and 154 parameters converged at ωR(F2) = 

0.1168 (R(F) = 0.0463) for 2126 observed reflections with I > 2σ(I). CCDC 1811744. 

5.3.13. 1,1’-(1,4-Phenylene)bis(isatin) (3o). The procedure was adapted from a reported protocol.8j 

To N,N’-(1,4-phenylene)-2,2’-bis(2-aminoacetophenone) (2o, 1.0 g, 3.0 mmol) in DMSO (6 mL) was 

added I2 (2.0 g, 7.8 mmol). The mixture was heated at 130 °C for 7 h. After cooling to room 

temperature, an aqueous saturated solution of Na2S2O3 (10 mL) was added before filtration and 

washing using AcOEt (20 mL). Drying afforded 3o in 56% yield (0.62 g) as a beige powder: mp > 260 

°C; IR (ATR): 701, 754, 815, 823, 928, 1029, 1094, 1151, 1182, 1302, 1358, 1426, 1461, 1515, 1608, 

1737, 3059, 3458 cm-1; 1H NMR ((CD3)2SO) δ 6.98 (d, 2H, J = 7.9 Hz), 7.23 (t, 2H, J = 7.5 Hz), 7.62-

7.71 (m, 8H); 13C NMR ((CD3)2SO) δ 110.9 (2CH), 117.8 (2C), 123.8 (2CH), 124.7 (2CH), 127.7 

(4CH), 133.0 (2C), 138.0 (2CH), 150.9 (2C), 157.5 (2C), 182.5 (2C). Anal. Calcd for C22H12N2O4 

(368.35): C, 71.74; H, 3.28; N, 7.61. Found: C, 71.92; H, 3.41; N, 7.67. 

5.4. N-arylation of 2-aminobenzophenone (5) or 2-amino-3-benzoylpyridine (7) 
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5.4.1. 2-Amino-3-benzoylpyridine (7) was synthesized from 2-fluoro-3-benzoylpyridine as 

described previously.55 Yield: 88%. White powder: mp 145 °C (lit.55 147 °C); 1H NMR (CDCl3) δ 6.61 

(dd, 1H, J = 7.8 and 4.8 Hz), 6.80 (br s, 2H), 7.45-7.63 (m, 5H), 7.78 (dd, 1H, J = 7.8 and 1.9 Hz), 8.25 

(dd, 1H, J = 4.8 and 1.9 Hz); 13C NMR (CDCl3) δ 112.2 (CH), 113.2 (C), 128.5 (2CH), 129.2 (2CH), 

131.7 (CH), 139.2 (C), 143.3 (CH), 153.5 (CH), 159.7 (C), 197.8 (C). 

5.4.2. General procedure 4: The N-arylated substrates were prepared by slightly modifying a 

literature procedure.8b To the required iodide (9.0 mmol) in Bu2O (3 mL) were successively added 

activated Cu34 (76 mg, 1.2 mmol), the aminoketone (6.0 mmol) and K2CO3 (1.7 g, 12 mmol). The 

mixture was degassed and refluxed under argon (the reaction time is given in the product description). 

After cooling to room temperature, the mixture was concentrated. Addition of H2O (25 mL), extraction 

with AcOEt (3x10 mL), drying over Na2SO4, removal of the solvent and purification by 

chromatography on silica gel (the eluent is given in the product description) led to the expected 

compound. 

5.4.3. 2-(4-Aminophenylamino)benzophenone (9e). The general procedure 4 (reaction time: 24 h) 

using 4-iodoaniline (2.0 g) and 2-aminobenzophenone (5, 1.1 g) gave 9e (eluent: heptane-AcOEt 80:20) 

in 42% yield (0.73 g) as an orange oil: IR (ATR): 700, 730, 748, 819, 845, 925, 939, 1109, 1154, 1252, 

1325, 1410, 1446, 1514, 1567, 1616, 2923, 3031, 3356 cm-1; 1H NMR (CDCl3) δ 3.4-4.4 (br s, 2H), 

6.59 (t, 1H, J = 7.5 Hz), 6.75 (d, 2H, J = 8.6 Hz), 7.06 (d, 1H, J = 8.6 Hz), 7.11 (d, 2H, J = 8.5 Hz), 

7.26-7.29 (m, 1H), 7.45-7.55 (m, 4H), 7.66-7.68 (m, 2H), 10.02 (br s, 1H); 13C NMR (CDCl3) δ 114.0 

(CH), 115.3 (CH), 116.5 (2CH), 118.3 (C), 126.1 (2CH), 128.2 (2CH), 129.3 (2CH), 131.1 (CH), 131.8 

(C), 134.6 (CH), 135.3 (CH), 140.4 (C), 142.9 (C), 150.5 (C), 199.3 (C). Anal. Calcd for C19H16N2O 

(288.35): C, 79.14; H, 5.59; N, 9.72. Found: C, 79.25; H, 5.70; N, 9.89. 

5.4.4. 2-(4-Bromophenylamino)benzophenone (9i). The general procedure 4 (reaction time: 24 h) 

using 1-bromo-4-iodobenzene (2.5 g) and 2-aminobenzophenone (5, 1.1 g) gave 9i (eluent: heptane-

AcOEt 80:20) in 74% yield (1.6 g) as a yellow oil: 1H NMR (CDCl3) δ 6.85 (ddd, 1H, J = 8.1, 7.1 and 
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1.2 Hz), 7.33 (d, 2H, J = 8.5 Hz), 7.42 (ddd, 1H, J = 8.5, 7.1 and 1.6 Hz), 7.44-7.59 (m, 7H), 7.72-7.75 

(m, 2H); 13C NMR (CDCl3) δ 114.9 (CH), 115.8 (C), 117.3 (CH), 120.4 (C), 123.5 (2CH), 128.3 

(2CH), 129.6 (2CH), 131.7 (CH), 132.5 (2CH), 134.4 (CH), 135.1 (CH), 139.7 (C), 140.0 (C), 147.4 

(C), 199.3 (C). The spectral data are similar to those reported previously.56 

5.4.5. 2-(4-(Trifluoromethyl)phenylamino)benzophenone (9j).57 The general procedure 4 (reaction 

time: 24 h) using 1-iodo-4-(trifluoromethyl)benzene (2.4 g) and 2-aminobenzophenone (5, 1.1 g) gave 

9j (eluent: heptane-AcOEt 90:10) in 81% yield (1.7 g) as a yellow powder: mp 74 °C; IR (ATR): 699, 

745, 760, 827, 840, 926, 939, 1011, 1065, 1106, 1157, 1256, 1316, 1449, 1525, 1572, 1591, 1617, 

3067, 3302 cm-1; 1H NMR (CDCl3) δ 6.88 (ddd, 1H, J = 8.1, 7.1 and 1.1 Hz), 7.36 (d, 2H, J = 8.5 Hz), 

7.45 (ddd, 1H, J = 8.5, 7.2 and 1.5 Hz), 7.50-7.55 (m, 3H), 7.58-7.62 (m, 4H), 7.75-7.77 (m, 2H), 10.09 

(br s, 1H); 13C NMR (CDCl3) δ 116.1 (CH), 118.6 (CH), 119.7 (2CH), 121.9 (C), 124.2 (q, C, J = 32.8 

Hz), 124.5 (q, C, J = 272 Hz), 126.8 (q, 2CH, J = 3.8 Hz), 128.4 (2CH), 129.8 (2CH), 132.1 (CH), 

134.2 (CH), 134.9 (CH), 139.3 (C), 144.4 (C), 145.8 (C), 199.2 (C). 

5.4.6. 2-(2-Thienylamino)benzophenone (9k). The general procedure 4 (reaction time: 24 h) using 

2-iodothiophene (0.99 mL) and 2-aminobenzophenone (5, 1.1 g) gave 9k (eluent: heptane) in 50% yield 

(0.84 g) as a brown oil: Rf (heptane-AcOEt 80:20) 0.31; IR (ATR): 682, 697, 748, 923, 937, 1154, 

1179, 1224, 1251, 1310, 1324, 1442, 1495, 1542, 1574, 1599, 1616, 1738, 3061, 3252 cm-1; 1H NMR 

(CDCl3) δ 6.71 (ddd, 1H, J = 8.1, 7.1 and 1.1 Hz), 6.87 (dt, 1H, J = 3.6 and 1.2 Hz), 6.96 (dd, 1H, J = 

5.6 and 3.6 Hz), 7.07 (dd, 1H, J = 5.6 and 1.3 Hz), 7.17 (dd, 1H, J = 8.6 and 1.1 Hz), 7.33-7.40 (m, 

1H), 7.45-7.59 (m, 4H), 7.66-7.70 (m, 2H), 10.1 (br s, 1H); 13C NMR (CDCl3) δ 114.4 (CH), 116.7 

(CH), 118.7 (C), 121.2 (CH), 121.6 (CH), 126.1 (CH), 128.3 (2CH), 129.4 (2CH), 131.4 (CH), 134.9 

(CH), 135.0 (CH), 140.0 (C), 143.5 (C), 150.3 (C), 199.6 (C). Anal. Calcd for C17H13NOS (279.36): C, 

73.09; H, 4.69; N, 5.01; S, 11.48. Found: C, 73.23; H, 4.81; N, 4.77; S, 11.34. 

5.4.7. 2-(Ferrocenylamino)benzophenone (9l). The general procedure 4 (reaction time: 24 h) using 

iodoferrocene (2.8 g) and 2-aminobenzophenone (5, 1.1 g) gave 9l (eluent: heptane-CH2Cl2 80:20) in 
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85% yield (1.9 g) as a sticky red oil; Rf (heptane-AcOEt 80:20) 0.71; IR (ATR): 698, 731, 748, 804, 

821, 919, 932, 1000, 1105, 1152, 1249, 1322, 1452, 1509, 1570, 1599, 1615, 1738, 3083, 3275 cm-1; 

1H NMR (CDCl3) δ 4.14-4.57 (m, 9H), 6.55 (t, 1H, J = 7.0 Hz), 7.07 (br s, 1H), 7.34 (t, 1H, J = 6.7 

Hz), 7.45-7.57 (m, 4H), 7.62-7.70 (m, 2H), 9.64 (br s, 1H); 13C NMR (CDCl3) δ 65.1 (2CH), 65.6 

(2CH), 69.5 (5CH), 96.1 (C), 114.2 (CH), 115.2 (CH), 117.8 (C), 128.2 (2CH), 129.2 (2CH), 131.1 

(CH), 134.6 (CH), 135.2 (CH), 140.4 (C), 151.2 (C), 199.6 (C). Anal. Calcd for C23H19FeNO (381.26): 

C, 72.46; H, 5.02; N, 3.67. Found: C, 72.52; H, 5.30; N, 3.59. 

5.4.8. N-Ferrocenyl-2-amino-3-benzoylpyridine (10l). The general procedure 4 (reaction time: 5 h) 

using 2-amino-3-benzoylpyridine (7, 1.2 g) and iodoferrocene (2.8 g) gave 10l (eluent: heptane-AcOEt 

70:30) in 82% yield (1.9 g) as an orange powder: mp 170 °C; Rf (heptane-AcOEt 80:20) 0.50; IR 

(ATR): 697, 713, 764, 802, 821, 924, 1005, 1076, 1104, 1245, 1300, 1396, 1516, 1586, 1617, 3095, 

3269 cm-1; 1H NMR (CDCl3) δ 4.12 (s, 2H), 4.21 (s, 5H), 4.76 (s, 2H), 6.59 (dd, 1H, J = 7.8 and 4.6 

Hz), 7.47-7.65 (m, 5H), 7.80 (dd, 1H, J = 7.8 and 1.9 Hz), 8.39 (dd, 1H, J = 4.7 and 1.9 Hz), 10.13 (br 

s, 1H); 13C NMR (CDCl3) δ 64.0 (2CH), 65.1 (2CH), 69.4 (5CH), 95.4 (C), 111.6 (CH), 112.9 (C), 

128.5 (2CH), 129.2 (2CH), 131.6 (CH), 139.4 (C), 143.4 (CH), 154.4 (CH), 157.9 (C), 198.4 (C). Anal. 

Calcd for C22H18FeN2O (382.24): C, 69.13; H, 4.75; N, 7.33. Found: C, 69.24; H, 4.96; N, 7.51. 

Crystal data for 10l. C22H18FeN2O, M = 382.23, T = 150 K, triclinic, P -1, a = 7.9601(9), b = 

8.0753(9), c = 14.2210(16) Å, α = 75.571(4), β = 87.859(4), γ = 72.932(4) °, V = 845.67(17) Å3, Z = 2, 

d = 1.501 g cm-3, µ = 0.905 mm-1. A final refinement on F2 with 3892 unique intensities and 238 

parameters converged at ωR(F2) = 0.0894 (R(F) = 0.0332) for 3657 observed reflections with I > 2σ(I). 

CCDC 1811746. 

5.4.9. 2-(3-Pyridylamino)benzophenone (9m). The general procedure 4 (reaction time: 24 h) using 

3-iodopyridine (1.8 g) and 2-aminobenzophenone (5, 1.1 g) gave 9m (eluent: heptane-AcOEt 70:30) in 

88% yield (1.4 g) as a yellow oil: Rf (heptane-AcOEt 80:20) 0.08; IR (ATR): 698, 748, 926, 938, 1156, 

1249, 1315, 1448, 1509, 1576, 1625, 3029, 3056, 3264 cm-1; 1H NMR (CDCl3) δ 6.79 (ddd, 1H, J = 
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8.1, 6.9 and 1.2 Hz), 7.31 (br s, 1H), 7.33 (d, 1H, J = 7.7 Hz), 7.38 (td, 1H, J = 7.7, 7.0 and 1.5 Hz), 

7.46-7.50 (m, 2H), 7.54-7.58 (m, 2H), 7.61 (d, 1H, J = 8.1 Hz), 7.70-7.73 (m, 2H), 8.39 (br s, 1H), 8.68 

(br s, 1H), 10.1 (br s, 1H); 13C NMR (CDCl3) δ 114.6 (CH), 117.9 (CH), 120.8 (C), 124.2 (CH), 128.3 

(2CH), 128.5 (C), 129.6 (2CH), 131.8 (CH), 134.4 (CH), 135.1 (CH), 137.7 (CH), 139.5 (C), 144.0 

(CH), 144.4 (CH), 147.1 (C), 199.4 (C). Anal. Calcd for C18H14N2O (274.32): C, 78.81; H, 5.14; N, 

10.21. Found: C, 79.05; H, 5.33; N, 10.28. 

5.5. N-arylation-cyclization of 2-ketoanilines 

5.5.1. General procedure 5: To the required aniline (1.5 mmol) and iodide (the amount is given in 

the product description) in Bu2O (2 mL) were successively added activated Cu34 (19 mg, 0.30 mmol) 

and K2CO3 (0.43 g, 3.0 mmol). The mixture was degassed and refluxed under argon (the reaction time 

is given in the product description). After cooling to room temperature, the expected compound was 

isolated as described in the product description. 

5.5.2. 11-Methyl[1]benzothieno[2,3-b]quinoline (4p). The general procedure 5 (reaction time: 24 h) 

using 2-iodobenzothiophene (2.2 mmol, 0.57 g) and 2-aminoacetophenone (0.18 g) gave 4p after 

filtration of the precipitate, washing with water (10 mL) and heptane (10 mL), dissolution in CH2Cl2 

(20 mL), filtration to remove copper and evaporation of the solvent. The product was isolated in 46% 

yield (0.17 g) as a beige powder: mp 172 °C; Rf (heptane-AcOEt 80:20) 0.45; IR (ATR): 702, 728, 751, 

823, 855, 928, 1071, 1110, 1165, 1183, 1302, 1359, 1425, 1461, 1515, 1575, 1608, 1737, 3060 cm-1; 

1H NMR (CDCl3) δ 3.19 (s, 3H), 7.46-7.53 (m, 2H), 7.57 (ddd, 1H, J = 8.3, 7.7 and 1.3 Hz), 7.74 (ddd, 

1H, J = 8.3, 7.6 and 1.3 Hz), 7.83-7.88 (m, 1H), 8.12 (dd, 1H, J = 8.5 and 0.7 Hz), 8.27 (dd, 1H, J = 8.6 

and 0.8 Hz), 8.34-8.39 (m, 1H); 13C NMR (CDCl3) δ 16.0 (CH3), 123.3 (CH), 124.2 (CH), 125.0 (CH), 

125.4 (CH), 125.6 (C), 126.1 (CH), 126.8 (C), 127.5 (CH), 128.8 (CH), 129.5 (CH), 134.1 (C), 138.6 

(C), 140.4 (C), 147.0 (C), 163.0 (C). Anal. Calcd for C16H11NS (249.32): C, 77.08; H, 4.45; N, 5.62; S, 

12.86. Found: C, 77.13; H, 4.56; N, 5.64; S, 12.75. Crystal data for 4p. C16H11NS, M = 249.32, T = 

150 K, monoclinic, P 21/n, a = 15.5283(13), b = 9.1423(6), c = 17.4157(15) Å, β = 106.444(2) °, V = 
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2371.3(3) Å3, Z = 8, d = 1.397 g cm-3, µ = 0.250 mm-1. A final refinement on F2 with 5353 unique 

intensities and 357 parameters converged at ωR(F2) = 0.1896 (R(F) = 0.0806) for 3124 observed 

reflections with I > 2σ(I). CCDC 1811748. 

5.5.3. 11-Phenyl[1]benzothieno[2,3-b]quinoline (6p). The general procedure 5 (reaction time: 24 h) 

using 2-iodobenzothiophene (2.2 mmol, 0.57 g) and 2-aminobenzophenone (5, 0.27 g) gave 6p after 

filtration over celite® using AcOEt (20 mL), removal of the solvent and purification by chromatography 

on silica gel (eluent: heptane). The product was isolated in 64% yield (0.30 g) as a yellow powder: mp 

179 °C (lit.36a 175-177 °C); 1H NMR (CDCl3) δ 6.79 (dd, 1H, J = 8.2 and 0.5 Hz), 7.09 (ddd, 1H, J = 

8.3, 7.3 and 1.2 Hz), 7.37-7.48 (m, 4H), 7.62 (ddd, 1H, J = 8.5, 1.4 and 0.5 Hz), 7.64-7.71 (m, 3H), 

7.77 (ddd, 1H, J = 8.4, 6.7 and 1.5 Hz), 7.81 (ddd, 1H, J = 8.0, 1.0 and 0.6 Hz), 8.19 (ddd, 1H, J = 8.5, 

1.1 and 0.6 Hz); 13C NMR (CDCl3) δ 123.0 (CH), 124.7 (CH), 125.5 (CH), 125.6 (CH), 125.7 (C), 

126.0 (C), 126.7 (CH), 127.9 (CH), 128.2 (CH), 129.0 (CH), 129.1 (2CH), 129.6 (2CH), 129.7 (CH), 

133.2 (C), 136.5 (C), 138.7 (C), 143.9 (C), 147.3 (C), 163.3 (C). The spectral data are analogous to 

those described previously.36a 

5.5.4. 5-Phenylbenzothieno[2,3-b][1,8]naphthyridine (8p). The general procedure 5 (reaction time: 

24 h) using 2-iodobenzothiophene (1.2 mmol, 0.31 g) and 2-amino-3-benzoylpyridine (7, 0.30 g) gave, 

after removal of the solvent and purification by chromatography on silica gel (eluent: heptane-AcOEt 

70:30), 8p in 63% yield (0.24 g) as a beige powder: mp 252 °C; Rf (AcOEt) 0.53; IR (ATR): 702, 723, 

742, 761, 781, 820, 882, 1018, 1054, 1100, 1147, 1183, 1312, 1367, 1381, 1454, 1581, 1592, 3049 cm-

1; 1H NMR (CDCl3) δ 6.85 (d, 1H, J = 7.9 Hz), 7.12 (ddd, 1H, J = 8.3, 7.3 and 1.2 Hz), 7.41-7.47 (m, 

3H), 7.66-7.71 (m, 3H), 7.84 (d, 1H, J = 8.1 Hz), 8.04 (d, 1H, J = 7.4 Hz); 13C NMR (CDCl3) δ 123.1 

(CH), 124.9 (CH), 125.5 (CH), 126.9 (C), 128.4 (CH), 129.1 (2CH), 129.4 (CH), 129.7 (2CH), 132.4 

(C), 135.3 (C), 135.9 (CH), 139.0 (C), 144.5 (C), 153.4 (C), 154.2 (C), 166.5 (C), 2CH not seen. Anal. 

Calcd for C20H12N2S (312.39): C, 76.90; H, 3.87; N, 8.97; S, 10.26. Found: C, 77.06; H, 4.01; N, 9.05; 

S, 10.29. 
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5.5.5. 11-Methyl[1]benzofuro[2,3-b]quinoline (4q). The general procedure 5 (reaction time: 24 h) 

using 2-iodobenzofuran (2.2 mmol, 0.54 g) and 2-aminoacetophenone (0.18 g) gave 4q after filtration 

of the precipitate, washing with water (10 mL) and heptane (10 mL), dissolution in CH2Cl2 (20 mL), 

filtration to remove copper and evaporation of the solvent. The product was isolated in 57% yield (0.20 

g) as a beige powder: mp 187 °C (lit.37a 189-190.5 °C); IR (ATR): 719, 744, 757, 853, 1021, 1102, 

1191, 1208, 1310, 1386, 1456, 1463, 1513, 1592, 1607, 1738, 3060 cm-1; 1H NMR (CDCl3) δ 3.15 (s, 

3H), 7.41 (td, 1H, J = 7.6 and 1.1 Hz), 7.55 (td, 1H, J = 7.8 and 1.3 Hz), 7.59 (ddd, 1H, J = 8.3, 6.9 and 

1.3 Hz), 7.64 (br d, 1H, J = 8.1 Hz), 7.76 (ddd, 1H, J = 8.3, 6.8 and 1.4 Hz), 8.12-8.17 (m, 2H), 8.21 

(dd, 1H, J = 8.5 and 0.9 Hz); 13C NMR (CDCl3) δ 15.3 (CH3), 112.1 (CH), 116.1 (C), 123.3 (CH), 

123.4 (C), 123.5 (CH), 124.0 (CH), 124.9 (CH), 126.2 (C), 128.7 (CH), 129.2 (CH), 129.5 (CH), 140.8 

(C), 146.0 (C), 155.7 (C), 162.2 (C). 

5.5.6. 11-Phenyl[1]benzofuro[2,3-b]quinoline (6q). The general procedure 5 (reaction time: 24 h) 

using 2-iodobenzofuran (2.2 mmol, 0.54 g) and 2-aminobenzophenone (5, 0.27 g) gave 6q after 

filtration over celite® using AcOEt (20 mL), removal of the solvent and purification by chromatography 

on silica gel (eluent: heptane-CH2Cl2-AcOEt 80:15:5). The product was isolated in 85% yield (0.38 g) 

as a pale pink powder: mp 208 °C (lit.37d 204-206 °C); 1H NMR (CDCl3) δ 7.06-7.11 (m, 1H), 7.12 (td, 

1H, J = 7.8 and 1.0 Hz), 7.44-7.51 (m, 2H), 7.54-7.57 (m, 2H), 7.61 (d, 1H, J = 8.2 Hz), 7.63-7.71 (m, 

3H), 7.74-7.82 (m, 2H), 8.21 (dd, 1H, J = 8.4 and 0.5 Hz); 13C NMR (CDCl3) δ 111.9 (CH), 115.7 (C), 

122.5 (C), 123.0 (CH), 123.2 (CH), 125.1 (CH), 125.7 (C), 126.3 (CH), 128.7 (CH), 129.1 (CH), 129.1 

(CH), 129.2 (2CH), 129.4 (2CH), 129.7 (CH), 135.5 (C), 144.1 (C), 146.3 (C), 156.0 (C), 162.2 (C). 

Crystal data for 6q. C21H13NO, M = 295.32, T = 150 K, triclinic, P -1, a = 6.9518(5), b = 10.5357(8), 

c = 10.7838(9) Å, α = 113.375(3), β = 95.636(3), γ = 94.534(3) °, V = 715.45(10) Å3, Z = 2, d = 1.371 g 

cm-3, µ = 0.084 mm-1. A final refinement on F2 with 3245 unique intensities and 218 parameters 

converged at ωR(F2) = 0.1585 (R(F) = 0.0681) for 2802 observed reflections with I > 2σ(I). CCDC 

1811745. 
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5.5.7. 5-Phenylbenzofuro[2,3-b][1,8]naphthyridine (8q). The general procedure 5 (reaction time: 6 

h) using 2-iodobenzofuran (1.2 mmol, 0.29 g) and 2-amino-3-benzoylpyridine (7, 0.30 g) gave, after 

removal of the solvent and purification by chromatography on silica gel (eluent: heptane-AcOEt 70:30), 

8q in 70% yield (0.25 g) as a beige powder: mp 261 °C; Rf (AcOEt) 0.53; IR (ATR): 702, 723, 742, 

761, 781, 820, 1054, 1100, 1147, 1183, 1215, 1312, 1367, 1381, 1454, 1581, 1592, 3049 cm-1; 1H 

NMR (CD3OD) δ 7.12-7.22 (m, 2H), 7.52-7.66 (m, 5H), 7.66-7.78 (m, 3H), 8.29 (d, 1H, J = 8.3 Hz), 

9.05 (br s, 1H); 13C NMR ((CD3)2CO/CDCl3) δ 112.7 (CH), 116.9 (C), 121.8 (CH), 122.7 (C), 123.7 

(CH), 124.5 (CH), 129.2 (C), 130.2 (2CH), 130.2 (2CH), 130.3 (CH), 130.7 (CH), 135.3 (C), 136.1 

(CH), 145.7 (C), 153.9 (CH), 155.1 (C), 156.9 (C), 164.7 (C). Anal. Calcd for C20H12N2O (296.33): C, 

81.07; H, 4.08; N, 9.45. Found: C, 81.13; H, 4.35; N, 9.32. 

5.5.8. 4-Phenylfuro[2,3-b]quinoline (6r).58 The general procedure 5 (reaction time: 24 h) using 2-

iodofuran (2.2 mmol, 0.43 g) and 2-aminobenzophenone (5, 0.27 g) gave 6r after filtration over celite® 

using AcOEt (20 mL), removal of the solvent and purification by chromatography on silica gel (eluent: 

heptane-AcOEt 50:50). The product was isolated in 61% yield (0.22 g) as a beige powder: mp 118 °C; 

1H NMR (CDCl3) δ 6.74 (dd, 1H, J = 2.7 and 0.4 Hz), 7.43-7.65 (m, 6H), 7.73 (ddd, 1H, J = 8.4, 6.8 

and 1.5 Hz), 7.78 (d, 1H, J = 2.7 Hz), 7.97 (ddd, 1H, J = 8.5, 1.4 and 0.6 Hz), 8.19 (ddd, 1H, J = 8.5, 

1.3 and 0.6 Hz); 13C NMR (CDCl3) δ 121.4 (CH), 124.1 (C), 125.5 (CH), 126.6 (CH), 128.1 (CH), 

128.7 (CH), 128.7 (2CH), 128.8 (CH), 129.2 (CH), 130.2 (2CH), 130.5 (C), 136.3 (C), 143.0 (C), 147.1 

(C), 163.1 (C). 

5.6. Cyclization of the N-arylated 2-ketoanilines 

5.6.1. General procedure 6: The cyclized products were prepared by adapting a literature 

procedure.38 To the required N-arylated 2-ketoaniline (1.0 mmol) in CH3CO2H (3 mL) was added 96% 

H2SO4 (2.8 mmol, 0.15 mL). The mixture was stirred at 110 °C. The reaction time is given in the 

product description. After cooling to room temperature, water (5 mL) was added and the mixture was 

basified using 25% NH4OH. Extraction using AcOEt (3x20 mL), removal of the solvent and 
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purification by chromatography on silica gel (the eluent is given in the product description) led to the 

expected compound. 

5.6.2. 2-Amino-9-phenylacridine (6e).59 The general procedure 6 (reaction time: 15 min) using 2-(4-

aminophenylamino)benzophenone (7e, 0.29 g) gave 6e (eluent: heptane-AcOEt 50:50) in 59% yield 

(0.16 g) as an orange powder: mp 84 °C; Rf (AcOEt) 0.62; IR (ATR): 700, 729, 752, 826, 907, 1029, 

1072, 1140, 1171, 1242, 1294, 1363, 1418, 1448, 1483, 1559, 1608, 1636, 3191, 3327 cm-1; 1H NMR 

(CDCl3) δ 3.93 (br s, 2H), 6.67 (d, 1H, J = 2.5 Hz), 7.29 (dd, 1H, J = 9.2 and 2.5 Hz), 7.35 (ddd, 1H, J 

= 8.7, 6.5 and 1.2 Hz), 7.42 (d, 2H, J = 6.8 Hz), 7.55-7.61 (m, 4H), 7.64 (ddd, 1H, J = 8.7, 6.5 and 1.4 

Hz), 8.12 (d, 1H, J = 9.2 Hz), 8.19 (d, 1H, J = 8.7 Hz); 13C NMR (CDCl3) δ 104.2 (CH), 124.6 (CH), 

125.7 (CH), 125.8 (C), 126.3 (CH), 126.8 (C), 128.2 (CH), 128.4 (CH), 128.6 (2CH), 129.7 (CH), 

130.6 (2CH), 131.1 (CH), 136.8 (C), 143.1 (C), 143.6 (C), 145.4 (C), 146.7 (C). 

5.6.3. 2-Amino-9-methylacridine (4e). The general procedure 6 (reaction time: 10 min) using 2-(4-

aminophenylamino)acetophenone (2e, 0.23 g) gave 4e (eluent: heptane-AcOEt 50:50) in 94% yield 

(0.20 g) as an orange powder: mp 218 °C (lit.60 210-211 °C); Rf (AcOEt) 0.45; 1H NMR (CDCl3) δ 

2.98 (s, 3H), 4.07 (br s, 2H), 7.23-7.31 (m, 2H), 7.50 (t, 1H, J = 7.7 Hz), 7.65 (t, 1H, J = 7.6 Hz), 8.08 

(d, 1H, J = 9.1 Hz), 8.16 (dd, 2H, J = 8.7 and 4.2 Hz); 13C NMR (CDCl3) δ 13.7 (CH3), 102.6 (CH), 

124.2 (CH), 124.4 (CH), 125.5 (CH), 126.1 (C), 127.1 (C), 128.3 (CH), 130.2 (CH), 131.6 (CH), 138.1 

(C), 143.5 (C), 144.8 (C), 146.4 (C). 

5.6.4. 2-Chloro-9-methylacridine (4h). The general procedure 6 (reaction time: 10 min) using 2-(4-

chlorophenylamino)acetophenone (2h, 0.25 g) gave 4h (eluent: heptane-AcOEt 80:20; Rf 0.32) in 92% 

yield (0.21 g) as a pale yellow powder: mp 126 °C (lit.61 124-125 °C); 1H NMR (CDCl3) δ 3.08 (s, 3H), 

7.58 (ddd, 1H, J = 8.8, 6.6 and 1.3 Hz), 7.68 (dd, 1H, J = 9.2 and 2.3 Hz), 7.78 (ddd, 1H, J = 8.8, 6.6 

and 1.4 Hz), 8.16 (dd, 1H, J = 9.3 and 0.5 Hz), 8.18-8.25 (s, 3H); 13C NMR (CDCl3) δ 13.9 (CH3), 

123.3 (CH), 124.6 (CH), 125.9 (C), 126.0 (C), 126.2 (CH), 130.2 (CH), 130.4 (CH), 131.1 (CH), 131.5 

(C), 132.1 (CH), 141.6 (C), 146.8 (C), 148.6 (C). 
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5.6.5. 9-Phenyl-2-bromoacridine (6i). The general procedure 6 (reaction time: 15 min) using 2-(4-

bromophenylamino)benzophenone (7i, 0.35 g) gave 6i (eluent: heptane-AcOEt 90:10) in 46% yield 

(0.15 g) as a yellow powder: mp 129 °C; Rf (heptane-AcOEt 80:20) 0.41; IR (ATR): 670, 701, 749, 

788, 818, 860, 934, 950, 1000, 1012, 1056, 1143, 1269, 1331, 1411, 1428, 1453, 1469, 1494, 1537, 

3060 cm-1; 1H NMR (CDCl3) δ 7.42-7.46 (m, 3H), 7.61-7.65 (m, 3H), 7.69 (d, 1H, J = 8.7 Hz), 7.78-

7.82 (m, 2H), 7.85 (d, 1H, J = 1.1 Hz), 8.15 (d, 1H, J = 9.3 Hz), 8.26 (d, 1H, J = 8.6 Hz); 13C NMR 

(CDCl3) δ 120.0 (C), 125.6 (C), 126.2 (CH), 126.4 (CH), 127.0 (CH), 128.7 (CH), 128.8 (2CH), 129.9 

(CH), 130.5 (CH), 130.5 (2CH), 131.6 (CH), 133.7 (CH), 135.4 (C), 146.5 (C), 147.3 (C), 149.1 (C), 

1C not seen. Anal. Calcd for C19H12BrN (334.22): C, 68.28; H, 3.62; N, 4.19. Found: C, 68.44; H, 3.70; 

N, 4.11. 

5.6.6. 2-Bromo-9-methylacridine (4i). The general procedure 6 (reaction time: 10 min) using 2-(4-

bromophenylamino)acetophenone (2i, 0.29 g) gave 4i (eluent: heptane-AcOEt 80:20; Rf 0.36) in 95% 

yield (0.26 g) as a yellow powder: mp 121 °C; IR (ATR): 663, 710, 746, 822, 850, 911, 1048, 1150, 

1324, 1373, 1413, 1516, 1554, 1602, 1623, 3050 cm-1; 1H NMR (CDCl3) δ 3.05 (s, 3H), 7.57 (ddd, 1H, 

J = 8.9, 6.5 and 1.3 Hz), 7.76-7.80 (m, 2H), 8.07 (d, 1H, J = 9.2 Hz), 8.18 (dt, 1H, J = 8.8 and 0.9 Hz), 

8.22 (dt, 1H, J = 8.8 and 1.0 Hz), 8.39 (d, 1H, J = 2.1 Hz); 13C NMR (CDCl3) δ 13.9 (CH3), 119.8 (C), 

124.6 (CH), 125.8 (C), 126.2 (CH), 126.6 (C), 126.8 (CH), 130.3 (CH), 130.5 (CH), 132.1 (CH), 133.4 

(CH), 141.5 (C), 146.9 (C), 148.7 (C). The spectral data are analogous to those reported previously.62 

5.6.7. 9-Phenyl-2-(trifluoromethyl)acridine (6j). The general procedure 6 (reaction time: 10 min) 

using 2-(4-(trifluoromethyl)phenylamino)benzophenone (7j, 0.34 g) gave 6j (eluent: heptane-AcOEt 

90:10) in 96% yield (0.31 g) as a pale yellow powder: mp 158 °C; Rf (heptane-AcOEt 80:20) 0.38; IR 

(ATR): 668, 706, 753, 829, 963, 1059, 1115, 1140, 1168, 1179, 1260, 1285, 1308, 1421, 1616, 1641, 

3048 cm-1; 1H NMR (CDCl3) δ 7.43-7.52 (m, 3H), 7.62-7.67 (m, 3H), 7.74 (ddd, 1H, J = 8.8, 1.5 and 

0.8 Hz), 7.85 (ddd, 1H, J = 8.8, 6.5 and 1.4 Hz), 7.90 (dd, 1H, J = 9.1 and 2.0 Hz), 8.03 (pent, 1H, J = 

1.1 Hz), 8.31 (dt, 1H, J = 8.8 and 1.0 Hz), 8.39 (dt, 1H, J = 9.2 and 0.9 Hz); 13C NMR (CDCl3) δ 123.8 
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(C), 124.2 (q, C, J = 271 Hz), 125.2 (q, CH, J = 2.8 Hz), 125.4 (q, CH, J = 4.9 Hz), 125.7 (C), 126.6 

(CH), 127.2 (CH), 127.4 (q, C, J = 32.2 Hz), 128.8 (2CH), 129.1 (CH),129.9 (CH), 130.5 (2CH), 131.3 

(CH), 131.3 (CH),135.0 (C), 149.1 (C), 149.2 (C), 150.2 (C). Anal. Calcd for C20H12F3N (323.32): C, 

74.30; H, 3.74; N, 4.33. Found: C, 74.38; H, 3.87; N, 4.40. 

5.6.8. 9-Methyl-2-(trifluoromethyl)acridine (4j).62 The general procedure 6 (reaction time: 30 min) 

using 2-(4-(trifluoromethyl)phenylamino)acetophenone (2j, 0.28 g) gave 4j (eluent: heptane-AcOEt 

80:20; Rf 0.36) in 98% yield (0.26 g) as an orange powder: mp 152 °C; 1H NMR (CDCl3) δ 3.19 (s, 

3H), 7.63 (ddd, 1H, J = 8.9, 6.6 and 1.3 Hz), 7.85 (ddd, 1H, J = 8.0, 6.6 and 1.4 Hz), 7.90 (dd, 1H, J = 

9.4 and 2.2 Hz), 8.23-8.32 (m, 2H), 8.34 (d, 1H, J = 9.1 Hz), 8.59 (ddd, 1H, J = 2.0, 1.3 and 0.7 Hz); 

13C NMR (CDCl3) δ 14.0 (CH3), 123.2 (q, CH, J = 4.9 Hz), 124.1 (C), 124.4 (q, C, J = 271 Hz), 124.8 

(CH), 125.0 (q, CH, J = 3.0 Hz), 126.0 (C), 126.4 (CH), 127.2 (q, C, J = 32.1 Hz), 130.4 (CH), 131.2 

(CH), 131.7 (CH), 144.6 (C), 148.6 (C), 149.6 (C). Crystal data for 4j. C15H10F3N, M = 261.24, T = 

150 K, monoclinic, P 21/n, a = 12.813(3), b = 6.7599(15), c = 14.414(3) Å, β = 109.355(7) °, V = 

1177.9(4) Å3, Z = 4, d = 1.473 g cm-3, µ = 0.120 mm-1. A final refinement on F2 with 2699 unique 

intensities and 173 parameters converged at ωR(F2) = 0.1675 (R(F) = 0.0655) for 1457 observed 

reflections with I > 2σ(I). CCDC 1811747. 

5.6.9. 4-Phenylthieno[2,3-b]quinoline (6k). The general procedure 6 (reaction time: 30 min) using 

2-(2-thienylamino)benzophenone (7k, 0.28 g) gave 6k (eluent: AcOEt) in 80% yield (0.21 g) as a beige 

powder: mp 118 °C (lit.63 119-120 °C); 1H NMR (CDCl3) δ 7.11 (d, 1H, J = 6.3 Hz), 7.44-7.62 (m, 

7H), 7.74 (ddd, 1H, J = 7.7, 6.7 and 1.4 Hz), 7.86 (ddd, 1H, J = 8.6, 1.5 and 0.7 Hz), 8.21 (ddd, 1H, J = 

8.6, 1.5 and 0.7 Hz); 13C NMR (CDCl3) δ 121.4 (CH), 124.1 (C), 125.5 (CH), 126.5 (CH), 128.1 (CH), 

128.6 (CH), 128.7 (2CH), 128.8 (CH), 129.2 (CH), 130.2 (2CH), 130.4 (C), 136.3 (C), 143.0 (C), 147.0 

(C), 163.1 (C). 

5.6.10. 4-Methylthieno[2,3-b]quinoline (4k). The general procedure 6 (reaction time: 10 min) using 

2-(2-thienylamino)acetophenone (2k, 0.22 g) gave 4k (eluent: CH2Cl2) in 61% yield (0.12 g) as an 
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orange powder: mp 89 °C (lit.63 91-92 °C); 1H NMR (CDCl3) δ 3.00 (s, 3H), 7.47 (d, 1H, J = 6.3 Hz), 

7.55 (d, 1H, J = 6.3 Hz), 7.58 (ddd, 1H, J = 8.6, 6.7 and 1.2 Hz), 7.55 (d, 1H, J = 6.3 Hz), 8.13-8.19 (m, 

2H); 13C NMR (CDCl3) δ 15.5 (CH3), 120.2 (CH), 124.3 (CH), 124.9 (C), 125.3 (CH), 127.5 (CH), 

129.1 (CH), 129.2 (CH), 131.0 (C), 138.7 (C), 146.6 (C), 163.1 (C). 

5.6.11. 10-Phenylbenzo[b]-1,5-naphthyridine (6m). The general procedure 6 (reaction time: 2 h) 

using 2-(3-pyridylamino)benzophenone (7m, 0.27 g) gave 6m (eluent: heptane-AcOEt 70:30) in 54% 

yield (0.14 g) as a yellow powder: mp 121 °C; Rf (heptane-AcOEt 80:20) 0.08; IR (ATR): 700, 751, 

762, 788, 937, 1023, 1073, 1107, 1128, 1156, 1254, 1317, 1422, 1452, 1468, 1509, 1578, 1626, 1731, 

2851, 2922, 3061, 3288 cm-1; 1H NMR (CDCl3) δ 7.50 (ddd, 1H, J = 8.8, 6.6 and 1.2 Hz), 7.52-7.64 

(m, 5H), 7.67 (dd, 1H, J = 8.8 and 3.8 Hz), 7.83 (ddd, 1H, J = 8.8, 6.6 and 1.4 Hz), 7.89 (ddd, 1H, J = 

8.8, 1.4 and 0.7 Hz), 8.30 (dt, 1H, J = 8.8 and 1.0 Hz), 8.57 (dd, 1H, J = 8.8 and 1.8 Hz), 9.04 (dd, 1H, 

J = 3.8 and 1.7 Hz); 13C NMR (CDCl3) δ 124.6 (CH), 126.6 (CH), 127.4 (C), 127.5 (CH), 128.3 (2CH), 

128.6 (CH), 129.8 (CH), 130.7 (CH), 131.1 (2CH), 135.3 (C), 137.5 (CH), 138.5 (C), 144.9 (C), 147.7 

(C), 149.4 (C), 151.9 (CH). Anal. Calcd for C18H12N2 (256.31): C, 84.35; H, 4.72; N, 10.93. Found: C, 

84.49; H, 4.70; N, 11.07. 

5.6.12. 10-Methylbenzo[b]-1,5-naphthyridine (4m). The general procedure 6 (reaction time: 30 

min) using 2-(3-pyridylamino)acetophenone (2m, 0.21 g) gave 4m (eluent: heptane-AcOEt 80:20; Rf 

0.11) in 57% yield (0.11 g) as a yellow oil: IR (ATR): 710, 752, 785, 819, 858, 951, 1046, 1144, 1247, 

1374, 1423, 1452, 1476, 1514, 1556, 1623, 1733, 2925, 3061 cm-1; 1H NMR (CDCl3) δ 3.33 (s, 3H), 

7.63 (ddd, 1H, J = 8.8, 6.6 and 1.3 Hz), 7.68 (dd, 1H, J = 8.8 and 3.8 Hz), 7.83 (ddd, 1H, J = 8.8, 6.6 

and 1.4 Hz), 8.24 (dt, 1H, J = 8.8 and 1.0 Hz), 8.32 (ddd, 1H, J = 8.8, 1.5 and 0.7 Hz), 8.51 (dd, 1H, J = 

8.8 and 1.7 Hz), 9.07 (dd, 1H, J = 3.8 and 1.7 Hz); 13C NMR (CDCl3) δ 12.6 (CH3), 124.8 (CH), 125.3 

(CH), 126.3 (CH), 127.9 (C), 130.3 (CH), 130.6 (CH), 137.8 (CH), 139.5 (C), 144.3 (C), 145.1 (C), 

148.8 (C), 150.6 (CH). Anal. Calcd for C13H10N2 (194.24): C, 80.39; H, 5.19; N, 14.42. Found: C, 

80.42; H, 5.47; N, 14.38. 
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5.6.13. 8,14-Dimethyldibenzo[b,j][1,7]phenanthroline (4n). The general procedure 6 (reaction 

time: 1.5 h) using N,N’-(1,3-phenylene)-2,2’-bis(2-aminoacetophenone) (2n, 0.34 g) gave 4n (washing 

with water and, next, heptane) in 70% yield (0.22 g) as a beige powder: mp 180 °C; IR (ATR): 738, 

753, 818, 855, 928, 1019, 1093, 1181, 1305, 1359, 1461, 1498, 1515, 1608, 1734, 2925, 3059 cm-1; 1H 

NMR (CDCl3) δ 3.10 (s, 3H), 3.90 (s, 3H), 7.64-7.72 (m, 1H), 7.79-7.88 (m, 1H), 7.92 (d, 1H, J = 9.8 

Hz), 8.24 (d, 1H, J = 9.8 Hz), 8.28 (br d, 3H, J = 8.6 Hz), 8.37 (ddd, 1H, J = 8.5, 1.4 and 0.6 Hz), 8.52 

(ddd, 1H, J = 8.7, 1.4, 0.6 Hz). These 1H NMR data are as described previously.35 13C NMR (CDCl3) δ 

14.0 (CH3), 19.7 (CH3), 124.0 (C), 124.0 (C), 124.2 (CH), 125.4 (CH), 125.7 (C), 126.1 (CH), 126.5 

(CH), 127.3 (CH), 128.2 (C), 129.3 (CH), 129.7 (CH), 130.1 (CH), 130.1 (CH), 130.7 (CH), 140.3 (C), 

145.8 (C), 147.7 (C), 147.8 (C), 150.2 (C), 151.5 (C). 

5.6.14. 7,14-Dimethylquino[2,3-b]acridine (4o). The general procedure 6 (reaction time: 1 h) using 

N,N’-(1,4-phenylene)-2,2’-bis(2-aminoacetophenone) (2o, 0.34 g) gave 4o (eluent: AcOEt) in 90% 

yield (0.28 g) as a beige powder: mp 211 °C (lit.35 211.5-213 °C) ; IR (ATR): 753, 830, 975, 1019, 

1101, 1129, 1146, 1184, 1454, 1593, 1609, 1738, 2924, 3049 cm-1; 1H NMR (CDCl3) δ 2.80 (s, 6H), 

7.68 (ddd, 2H, J = 8.3, 6.8 and 1.3 Hz), 7.83 (ddd, 2H, J = 8.3, 6.8 and 1.4 Hz), 7.84 (s, 2H), 8.21 (dd, 

2H, J = 8.5 and 0.8 Hz), 8.27 (dd, 2H, J = 8.5 and 0.7 Hz). These 1H NMR data are as described 

previously.35 13C NMR (CDCl3) δ 19.6 (2CH3), 123.3 (2C), 124.6 (2CH), 126.6 (2C), 126.9 (2CH), 

129.6 (2CH), 129.9 (2CH), 133.8 (2CH), 142.3 (2C), 146.8 (2C), 150.6 (2C). Crystal data for 4o. 

C22H16N2, M = 308.37, T = 150 K, monoclinic, P 21/c, a = 12.4194(11), b = 13.3041(13), c = 9.3331(8) 

Å, β = 92.897(4) °, V = 1540.1(2) Å3, Z = 4, d = 1.330 g cm-3, µ = 0.078 mm-1. A final refinement on F2 

with 3509 unique intensities and 219 parameters converged at ωR(F2) = 0.1209 (R(F) = 0.0480) for 

2717 observed reflections with I > 2σ(I). CCDC 1811749. 

5.7. Antiproliferative activity 

The antiproliferative activity was studied in the A2058 (ATCC® CRL-11147) cell line. A2058 are 

highly invasive human epithelial adherent melanoma cells, derived from lymph nodes metastatic cells 
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obtained from a 43 years male patient. They are tumorigenic at 100% frequency in nude mice, and 

considered as very resistant to anticancer drugs. All cell culture experiments were performed at 37 °C. 

Cells were grown to confluence in 75 cm² flasks in DMEM supplemented with 10% fetal calf serum 

(FCS) and 1% penicillin-streptomycin (Dominique Dutscher, France) in a 5% CO2 humidified 

atmosphere. Molecules were solubilized in DMSO at 10-3 M and diluted in the cell culture medium to 

obtain 2.10-5 M solutions. Confluent cells were trypsinized and centrifuged in FCS at 1500 g for 5 min. 

The supernatant containing trypsin was discarded and the cell pellet was suspended in cell culture 

medium to obtain a 4.104 cell.mL-1 suspension. At t0, 50 µL of the 2.10-5 M molecules solutions were 

deposited in a 96-wells flat bottom microplate, and 50 µL of the cell suspension were added. The 2000 

cells were then grown for 72 h in the cell culture medium containing 10-5 M molecules. At t72, 20µL of 

a 5g.L-1 MTT solution were added in each well of the microplate, allowing living cells containing a 

functional mitochondrial succinate deshydrogenase to metabolize MTT to the corresponding blue 

formazan salt for 4 h. The cell culture medium was removed using an Eppendorf epMotion 5070 

pipeting robot (Eppendorf, France) and formazan crystals were dissolved in 200 µL DMSO. 

Microplates were placed at 37 °C for 5 min to solubilize formazan crystals and absorbance was read at 

550 nm using a VERSAmax microplate reader (Molecular devices, France). The percentage of growth 

inhibition was calculated as GI (%) = 100 - ((A550 nm sample – A550 nm BG) / (A550 nm control – 

A550 nm BG)) x 100 with: 

- A550 nm sample: median absorbance of 8 wells containing cells treated with 10-5 M molecule 

- A550 nm BG: median background absorbance of 8 wells containing control cell culture medium + 

1% DMSO 

- A550 nm control: median absorbance of 8 wells containing cells grown in control cell culture 

medium + 1% DMSO. 

Data are expressed as GI (%) + sem (%) from 3 independent assays. 

5.8. Kinase activities 
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The kinase activities were assayed using the ADP-GloTM bioluminescent kinase assay kit (Promega, 

Madison, WI) according to the recommendations of the manufacturer. Reactions were carried out in a 

final volume of 5 µL for 30 min at 30 °C in ADP-Glo buffer (40 mM Tris pH 7.5, 20 mM MgCl2 and 

0.1 mg/mL of BSA). After that, 5 µL of ADP-GloTM Kinase Reagent was added to stop the kinase 

reaction. After an incubation time of 50 min at room temperature, 10 µL of Kinase Detection Reagent 

was added for 1 h at room temperature. The transmitted signal was measured using the Envision 

(PerkinElmer, Waltham, MA) microplate luminometer and expressed in Relative Light Unit (RLU). 

Assays were performed in the absence or presence of 10 µM or 1 µM of tested compounds. Peptide 

substrates were obtained from Proteogenix (Oberhausbergen, France). The following kinases were 

analyzed during this study: CDK2/CyclinA (cyclin-dependent kinase-2, human, kindly provided by Dr. 

A. Echalier-Glazer, Leicester, UK); CDK5/p25 (human, recombinant, expressed in bacteria); 

CDK9/CyclinT (human, recombinant, expressed by baculovirus in Sf9 insect cells); PIM1 (human 

proto-oncogene, recombinant, expressed in bacteria); SscGSK-3α/β (glycogen synthase kinase-3, 

porcine brain, native, affinity purified); Haspin-kd (human, kinase domain, amino acids 470 to 798, 

recombinant, expressed in bacteria); Aurora B (human, recombinant, expressed by baculovirus in Sf9 

insect cells, SignalChem, product #A31-10G); MmCLK1 (from Mus musculus, recombinant, expressed 

in bacteria); LmCK1 (from Leishmania major, recombinant, expressed in bacteria); RnDYRK1A-kd 

(Rattus norvegicus, amino acids 1 to 499 including the kinase domain, recombinant, expressed in 

bacteria, DNA vector kindly provided by Dr. W. Becker, Aachen, Germany); SscCK1δ/ε (casein kinase 

1δ/ε, porcine brain, native, affinity purified). To validate the kinase assay, model inhibitors were used 

for each tested enzyme: Barasertib (AZD1152-HQPA, #S1147, purity 97.31%, Selleckchem) for 

Aurora B; Staurosporine from Streptomyces sp. (#S5921, purity ≥95%, Sigma-Aldrich) for SscCK1δ/ε 

and LmCK1; Indirubin-3’-oxime (#I0404, purity ≥98%, Sigma-Aldrich) for SscGSK-3α/β, PIM1, 

CDKs, RnDYRK1A and MmCLK1; CHR-6494 (#SML0648, purity ≥98%, Sigma-Aldrich) for Haspin. 
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