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Abstract. Halterman corroles have been synthesized for the first time from pyrrole and 

Halterman’s aldehyde via Gryko’s “water-methanol method”. These were derivatized to the 

corresponding copper complexes and subsequently also to the β-octabromo complexes. 

Electronic circular dichroism spectra were recorded for the enantiopure copper complexes, 

affording the first such measurements for the inherently chiral Cu corrole chromophore. 

Interestingly, for a given configuration of the Halterman substituents, X-ray crystallographic 

studies revealed both P and M conformations of the Cu-corrole core, proving that the 

substituents, even in conjunction with β-octabromination, are unable to lock the Cu-corrole core 

into a given chirality. Indeed, the overall body of evidence strongly indicated a dynamic 

equilibrium between the P and M conformations. Such an interconversion, which presumably 

proceeds via saddling inversion, provides a rationale for our failure so far to resolve sterically 

hindered Cu corroles into their constituent enantiomers by means of chiral HPLC. 

Note: The crystal structures described in this paper have been deposited at the Cambridge 
Crystallographic Data Centre and been assigned the following deposition numbers: 
CCDC 1576180-1576182. 
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Introduction. The discovery of a new inherently chiral chromophore is a relatively uncommon 

occurrence. The concept, first introduced by Moscowitz and others over a half-century ago,1,2 

refers to molecular systems whose chirality cannot be ascribed to classic stereogenic elements, in 

particular stereogenic centers.3 Of particular interest from the point of view of chiroptical 

properties are inherently chiral chromophores with curved π-systems such as helicenes4 and 

certain fullerenes (e.g. D2-C76, D3-C78, D2-C80, and D2-C84).5 In the course of our own research 

on the coordination chemistry of corroles,6 we have discovered two different classes of 

inherently chiral chromophores.7 The first of these to be discovered, copper corroles, owe their 

chirality to an electronically driven saddling of the macrocycle, which allows an otherwise 

symmetry-forbidden Cu(dx2-y2)-corrole(π) orbital interaction.8,9,10,11,12 Steric crowding due to 

peripheral substituents can accentuate this saddling, but steric effects alone, in the absence of the 

electronic imperative, do not bring about saddling of the macrocycle.13 To our disappointent, so 

far we have not been able to resolve Cu corroles; chiral HPLC experiments have failed to resolve 

even highly saddled copper β-octabromo-14,15 and β-octakis(trifluoromethyl)-16,17 meso-

triarylcorroles.18 In contrast, a second class of inherently chiral metallocorroles, Mo19 and W20 

biscorroles, have been successfully resolved and the enantiomers of a W biscorrole have been 

chracterized via electronic circular dichroism spectroscopy.18 

Herein, we have revisited the challenge of synthesizing copper corroles in scalemic (i.e., 

enantiomerically enriched) form by appending chiral substituents on the corrole periphery – a 

strategy that proved successful. Toward that end, we synthesized the corrole analogue of a 

Halterman porphyrin via the oxidative condensation of enantiopure 1,2,3,4,5,6,7,8-octahydro-

1:4,5:8-dimethanoanthracene-9-carboxaldehyde (hereafter referred to as -CHO, where  refers 

to the Halterman substituent of either chirality) and pyrrole.21,22 A modified version of Gryko’s 

water-methanol method,23 employing higher dilutions (to solubilize the relatively nonpolar 

aldehyde) and longer reaction times (16-18 h), led to good yields (~40%) of the Halterman 

corroles (Figure 1). Copper was then inserted and the Cu complexes β-octabrominated with 

elemental bromine via standard protocols.8 Single-crystal X-structures were successfully 

obtained for three different Cu[ 3Cor] (Cor = corrole) derivatives. As discussed below, the 

structures clearly showed that the Halterman substituents in conjunction with β-octabromo-

substitution are unable to lock the Cu-corrole conformation into a given chirality, which may be 
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described by a P/M nomenclature as illustrated in Figure 2. The chemical implications of these 

findings are also discussed below. 

 
Figure 1. Synthesis of a Halterman corrole, where + denotes the (1S,4R,5R,8S)-1,2,3,4,5,6,7,8-
octahydro-1:4,5:8-dimethanoanthracen-9-yl substituent, which occurs in the (+)-isomer of the 
Halterman aldehyde;  denotes the same substituent of either chirality. 
 

 
Figure 2. Definition of saddling torsion angles (χ1- χ4). The inherent chirality of Cu corroles is 
defined here in terms of the sign of the C8-C9-C11-C12 (χ3) torsion angle. 
 
 Results and discussion. Table 1 presents crystal and refinement data for the three single-

crystal structures reported herein and Tables 2-4 present selected distances, angles, and torsion 

angles. In general, these structural parameters are similar to those of related Cu corrole structures 

reported in the literature. Some of the more notable aspects of the structures are as follows.  

 The X-ray structure of enantiopure Cu[ +
3Cor] (Figure 3 and Table 2) shows that all 

corrole units are identical and may be described as relatively mildly saddled, with only one 

moderately large saddling dihedral at ~38°. The + substituents have led to a uniform P 

configuration of the Cu-corrole ring system. In contrast, the enantiopure β-octabrominated 

complex Cu[Br8
–
3Cor] was found to contain two unique Cu[Br8

–
3Cor] units, one with M and 

the other with P configuration, both of which exhibit a strongly saddled Cu-corrole core with 

saddling dihedrals in the range 47-68°. There is some positional disorder involving the 10- – 
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group of the P-Cu[Br8
–
3Cor] unit; however, the enantiopurity of the molecule is not in 

question. 
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Table 1.  Crystal and refinement data for Cu Halterman corroles. 
Sample Cu[ +

3Cor] Cu[Br8
–

3Cor] Cu[Br8-5,15- ±
2-10-

∓Cor] 
Chemical Formula C69H63Cl4CuN4 C73.75H66.56Br8Cl0.41CuN4 C77.74H75.31Br8Cl1.71CuN4 

Formula mass 1153.57 1726.20 1828.90 
Crystal system Orthorhombic Monoclinic Monoclinic 
Space group P212121 C2 C2/c 

λ (Å) 0.7749 0.7749 0.7749 
a (Å) 11.8437(6) 11.5580(6) 11.4727(6) 
b (Å) 17.9042(9) 23.9229(12) 23.9890(12) 
c (Å) 26.3407(13) 25.9436(13) 25.9406(13) 
α (°) 90 90 90 
β (°) 90 91.359(2) 91.002(3) 
γ (°) 90 90 90 

Z 4 4 4 
V (Å3) 5585.6(5) 7171.4(6) 7138.2(6) 

Temperature (K) 100(2) 100(2) 100(2) 
ρ (g/cm3) 1.372 1.599 1.702 

Measured reflections 386855 428802 40786 
Unique reflections 23535 28900 8921 

Parameters 703 843 391 
Restraints 0 122 84 

Rint 0.0549 0.0618 0.0713 
Abs. struct. parameter 0.0300(14) 0.028(3) - 

θ range (°) 1.499 to 38.123 0.856 to 37.450 1.712 to 31.276 
R1, wR2 all data 0.0475, 0.1322 0.0397, 0.0929 0.0713, 0.1341 
S (GooF) all data 1.085 1.052 1.109 

Max/min res. Dens. 
(e/Å3) 

1.242/-1.653 1.114/-1.463 1.459/-1.119 

 
Table 2. Selected distances (Å), angles (°), and torsion angles (°) for Cu[ +

3Cor]. 
Distances 
N(1)-Cu(1)   1.8681(19) 
N(2)-Cu(1)   1.8808(18) 
N(3)-Cu(1)   1.8798(18) 
N(4)-Cu(1)   1.879(2) 

Angles 
N(1)-Cu(1)-N(4) 81.74(9) 
N(1)-Cu(1)-N(3) 169.48(9) 
N(4)-Cu(1)-N(3) 91.74(8) 
N(1)-Cu(1)-N(2) 90.68(8) 
N(4)-Cu(1)-N(2) 167.66(9) 
N(3)-Cu(1)-N(2) 97.08(8) 

Torsion angles 
C(3)-C(4)-C(6)-C(7)  -16.9(8) 
C(8)-C(9)-C(11)-C(12) 22.4(7) 
C(13)-C(14)-C(16)-C(17) -38.3(8) 
C(18)-C(19)-C(1)-C(2) 16.8(6) 
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Table 3. Selected distances (Å), angles (°), and torsion angles (°) for Cu[Br8

–
3Cor]. 

Distances 
Cu(1)-N(1)  1.910(3) 
Cu(1)-N(2)  1.914(3) 
Cu(2)-N(101)  1.915(3) 
Cu(2)-N(102)  1.915(3) 
 

Angles 
N(1)-Cu(1)-N(1)I 82.5(2) 
N(1)-Cu(1)-N(2)I 168.88(17) 
N(1)-Cu(1)-N(2) 90.71(15) 
N(2)I-Cu(1)-N(2) 97.3(2) 
N(101)II-Cu(2)-N(101) 82.92(19) 
N(101)-Cu(2)-N(102) 90.56(13) 
N(101)II-Cu(2)-N(102)II 90.57(13) 
N(101)-Cu(2)-N(102)II 168.49(14) 
N(102)-Cu(2)-N(102)II 97.35(19) 

Torsion angles 
C(3)-C(4)-C(6)-C(7)  67.4(15) 
C(8)-C(9)-C(9)I-C(8)I -59(2) 
C(2)-C(1)-C(1)I-C(2)I  -51.0(14) 
C(103)-C(104)-C(106)-C(107)  -67.6(11) 
C(108)-C(109)-C(109)II-C(108)II 50.2(15) 
C(102)-C(101)-C(101)II-C(102)II 47.4(12) 

Symmetry transformations used to generate equivalent atoms:  
I: -x+1, y, -z    II: -x+1, y, -z+1  
 
Table 4. Selected distances (Å), angles (°), and torsion angles (°) for Cu[Br85,15- ±

2-10- ∓Cor]. 
Distances 
N(1)-Cu(1) 1.906(4)  
N(2)-Cu(1) 1.921(4) 

Angles 
N(1)-Cu(1)-N(1)I 82.5(2) 
N(1)-Cu(1)-N(2) 91.02(17) 
N(1)-Cu(1)-N(2)I 168.95(19) 
N(2)-Cu(1)-N(2)I 96.7(2) 

Torsion angles 
C(3)-C(4)-C(6)-C(7) -63.0(18) 
C(8)-C(9)-C(9)#1-C(8)#1 57(2) 
C(2)-C(1)-C(1)#1-C(2)#1 47.9(16) 

Symmetry transformations used to generate equivalent atoms:  
I: -x+1, y, -z+1/2  
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Figure 3. Top and side views of the X-ray structure of Cu[ +

3Cor]. Thermal ellipsoids for this 
and all subsequent figures are shown at 50% probability.  
  

 
Figure 4. X-ray structure of Cu[Br8

–
3Cor] containing an equimolar distribution of the P (left) 

and M (right) conformations. The thermal ellipsoids have been drawn at 50% probability.  
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Figure 5. Top and side views of the molecular structure of racemic Cu[Br8-5,15- ±

2-10- ∓Cor]. 
The molecule shown is the P-Cu[Br85,15- -

2-10- +Cor] enantiomer and, for clarity, only the 
major orientation of the  groups are shown. The thermal ellipsoids have been drawn at 50% 
probability. 
  
 X-ray analysis revealed that the use of (±)- -CHO in the corrole synthesis and 

subsequent bromination leads almost exclusively to Cu[Br8-5,15- ±
2-10- ∓Cor] (i.e., a 

diastereomer of Cu[Br8
+

3Cor]/Cu[Br8
–

3Cor]), in which the Halterman substituent at the 10-

position has a different chirality relative to the 5- and 15-substituents (Figure 5 and Table 3). Not 

surprisingly, the two diastereomeric structures – Cu[Br8
–
3Cor] and Cu[Br85,15- ±

2-10- ∓Cor] 

– were found to be very similar in terms of key structural parameters such as Cu-N distances and 

saddling dihedrals. Also, as in the case of Cu[Br8
–

3Cor], the crystal structure of racemic 

Cu[Br8-5,15- ±
2-10- ∓Cor] revealed evidence of conformational multiplicity for both 

enantiomers. Thus, all three  groups on a given molecule were found to exhibit a small amount 

(~14%) of disorder, indicating that although a majority of the Cu-corrole units in the Cu[Br8-

5,15- -
2-10- +Cor] enantiomer exhibits a P conformation, a small proportion of the molecules 

(~14%) exhibits an M conformation. Obviously, analogous observations apply for the other 

enantiomer. 
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 The scalemic products Cu[ +
3Cor]/Cu[ –

3Cor] and Cu[Br8
+

3Cor]/Cu[Br8
–
3Cor] were 

also characterized via electronic circular dichroism (ECD) spectroscopy (Figure 6). The key 

spectral features clearly correspond to the Soret and Q bands of the complexes, indicating that 

they arise largely from the Cu-corrole moiety and not from the substituents. Observable ECD 

spectra also strongly suggest that the P and M conformations are present in unequal amounts in 

solution, in contrast to the 1:1 P/M ratio found in the X-ray structure of Cu[Br8
–

3Cor], implying 

a dynamic equilibrium between the P and M conformations in solution. Such a conclusion is also 

in accord with DFT calculations (Table 4), which indicate exceedingly small energy differences 

between the P and M conformations for all the molecules studied. 

 

 
Figure 6. Circular dichroism spectra of Cu[ +

3Cor]/Cu[ –
3Cor] and Cu[Br8

+
3Cor]/ 

Cu[Br8
–

3Cor]. 
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Table 4. OLYP/TZ2P relative energetics (eV) and saddling dihedrals (°). 

   Saddling dihedrala 

Molecule Conformation Erel  χ1 χ2/χ4 χ3 

Cu[ +
3Cor] P 0.094 25.5 

16.8(6) 

-42.1 

-16.9(8)/-38.3(8) 

33.4 

22.4(7) 
Cu[ +

3Cor] M 0.023 -24.1 42.2 -33.5 

Cu[5,15- +
2-10- –Cor] P 0.120 26.5 -43.4 36.0 

Cu[5,15- +
2-10- –Cor] M 0.000 -23.0 41.4 -33.9 

Cu[Br8
+

3Cor] P 0.081 50.1 

47.4(12) 

-69.4 

-67.6(11) 

64.8 

50.2(15) 
Cu[Br8

+
3Cor] M 0.018 -49.6 

-51.0(14) 
69.1 

67.4(15) 
-62.9 

-59(2) 
Cu[Br85,15- +

2-10- –Cor] P 0.101 50.0 
47.9(16) 

-68.6 
-63.0(18) 

63.8 
57(2) 

Cu[Br85,15- +
2-10- –Cor] M 0.000 -48.8 68.3 -63.7 

* The values in bold have been obtained from the crystallographic structures. 

 

 It is worth noting that the calculated energetics does not offer any insights into why 

racemic -CHO should selectively afford the H3[5,15- ±
2-10- ∓Cor] diastereomer as opposed 

to H3[ +
3Cor]/H3[ –

3Cor]. A comparison of the relative energies of the corresponding Cu 

complexes (in their lowest-energy conformations) proved unenlightening, since they are 

essentially identical. 

 

 Conclusion. In summary, the first Halterman corrole ligand has been synthesized in 

reasonably good yield and derivatized to the corresponding Cu complexes as well as to the β-

octabrominated Cu complexes. Access to the inherently chiral Cu-corrole chromophore in 

scalemic form has allowed us to record its electronic circular dichroism spectrum for the first 

time. Single-crystal X-ray structures were obtained for three different Cu complexes. Somewhat 

to our surprise, the structures proved that the Halterman substituents, even in conjunction with β-

octabromo-substitution, are unable to lock the Cu-corrole conformation into a given chirality. 

While in one sense this finding may be considered disappointing, in another sense it sheds 

valuable light on the dynamics of copper corroles. Together with our inability to resolve copper 

β-octabromo- and β-octakis(trifluoromethyl)- meso-triarylcorroles, the present results underscore 
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the facile interconversion of the P and M conformations of sterically hindered Cu corroles. 

Although we have not yet conclusively located a transition state for this process, we may 

speculate that saddling inversion provides for a plausible pathway. Finally, there can be no doubt 

that the present synthesis of Halterman corrole derivatives will open up the study of chiral 

metallocorroles as asymmetric catalysts, especially for group transfer24,25,26,27 reactions such as 

hydroxylation/epoxidation,28,29,30 aziridination,31,32,33 and cyclopropanation,34,35,36,37,38 an area 

where chiral metalloporphyrins already play a significant role.39,40,41 

 

Experimental Section 

Materials and Instruments. All reagents and solvents were used as purchased except pyrrole, 

which was purified by passing through a pad of basic aluminum oxide 60 (Activity I, 0.063-

0.200 mm particle size, Merck Millipore). The Halterman aldehydes (1S,4R,5R,8S)-

1,2,3,4,5,6,7,8-octahydro-1:4,5:8-dimethanoanthracene-9-carboxaldehyde and its enantiomer as 

well as the corresponding racemate were synthesized as reported.21 Free-base Halterman corroles 

were synthesized according to a modified version of Gryko’s method employing sterically 

hindered dipyrromethane.23 Copper complexes were prepared as previously described.8 Silica gel 

150 (35-70 μm particle size, Davisil) was generally used for column chromatography. Silica gel 

60 preparative thin-layer chromatography plates (20 x 20 cm; 0.5 mm thick, Merck) were used 

for final purification of all compounds. UV-vis spectra were recorded on an HP 8453 

spectrophotometer at room temperature in CH2Cl2. Proton NMR spectra were recorded on a 

Mercury Plus Varian spectrometer at 400 MHz in CDCl3 and referenced to residual CHCl3 at δ = 

7.26 ppm. High-resolution electrospray ionization (ESI) mass spectra were recorded on an LTQ 

Orbitrap XL spectrometer. 

 Common synthetic procedure for 5,10,15-tris[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-

octahydro-1:4,5:8-dimethanoanthracen-9-yl]corrole, H3[ +
3Cor], its enantiomer, and its 

racemate. To the Halterman aldehyde (480 mg, 2 mmol) thoroughly dissolved in MeOH (600 

mL) was added pyrrole (279 µL, 4 mmol), followed by a solution made from 37% HCl (16.5 

mL) diluted in distilled water (300 mL). The resulting mixture was stirred overnight for about 

16-17 h. The orange suspension obtained was extracted with CHCl3 and the organic phase was 

washed twice with distilled water. The olive-green organic phase was dried with anhydrous 

Na2SO4 and filtered. The filtrate was diluted with CHCl3 to a volume of 450 mL and refluxed for 

1 h with  p-chloranil (991 mg, 4 mmol). The suspension obtained was concentrated to a 
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minimum volume and chromatographed on a silica gel column with 1:1 n-hexane/CH2Cl2 as 

eluent, yielding the free-base corrole as the first brown band. Yield: 235 mg (38.2%). UV-Vis 

λmax (nm), ε x 10-4 (M-1cm-1): 388 (8.83), 399 (8.12), 419 (6.51), 548 (0.80), 703 (0.40). 1H 

NMR: δ -0.54 to 0.75 (br); 0.92 – 1.19 (br); 1.26 – 1.45 (m, br); 1.74 – 2.20 (m, br). HR-MS 

(ESI+, major isotopomer): [M + H]+ = 921.4901 (expt), 921.4891 (calcd). Elemental analysis 

found (calcd): C, 86.68 (87.16); H, 6.80 (6.77), N, 6.08 (6.07). 

 Synthesis of  copper 5,10,15-tris[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1:4,5:8-

dimethanoanthracene-9-yl]corrole, its enantiomer, and its racemate, Cu[ 3Cor]. Copper 

acetate (4 equiv, 43 mg) was added to a solution of the free-base (50 mg, 0.054 mmol) in 5 mL 

pyridine. After stirring for 20 min, the suspension was evaporated to a brown residue which was 

dissolved in a minimum volume of CHCl3 and eluted through a silica gel column with 7:3 n-

hexane/CH2Cl2. The copper corrole was eluted as brown bands. Yield: 47 mg (88.5 %). UV-Vis 

λmax (nm), ε x 10-4 (M-1cm-1): 411 (7.84), 541 (0.90), 653 (0.20). 1H NMR: δ 0.81 – 0.87 (m, 3 H, 

CH2); 0.92 – 1.01 (m, 3 H, CH2); 1.15 – 1.21 (m, 6 H, CH2); 1.35 (d, 2 H, CH2); 1.39 (d, 2 H, 

CH2); 1.44 (d, 2 H, CH2); 1.62 – 1.73 (m, 9 H, CH2); 1.77 – 1.88 (m, 9 H, CH2); 2.98 (br s, 2 H, 

CH); 3.09 (br s, 2 H, CH); 3.27 (br s, 2 H, CH); 3.37 (br d, 4 H, CH); 3.42 (br d, 2 H, CH); 7.02 

(d, 2 H, β-H); 7.04 (s,1 H, p-H); 7.09 (s, 2 H, p-H); 7.22 (br s, 2H); 7.39 (br d, 2 H, β-H); 8.01 (br 

s, 2 H, β-H). HR-MS (ESI+, major isotopomer): [M]+ = 982.4044 (expt), 982.4030 (calcd). 

Elemental analysis found (calcd): C, 81.10 (81.80); H, 5.86 (6.04); N, 5.32 (5.70). 

 Synthesis of copper 2,3,7,8,12,13,17,18-octabromo-5,10,15-tris(1,2,3,4,5,6,7,8-

octahydro-1:4,5:8-dimethanoanthracen-9-yl]corrole, Cu[Br8 3Cor]. The Cu[ 3Cor] starting 

material (30 mg, 0.03 mmol) was dissolved in CHCl3 (15 mL) and to the solution was added Br2 

(2.44 mmol, 125µL, 80 equiv), dissolved in CHCl3 (10 mL), in a dropwise manner over 20 min. 

The resulting suspension was stirred for 1 h, following which pyridine (203 µL, 2.52 mmol, 84 

equiv) dissolved in CHCl3 (10 mL) was added dropwise over 20 min. The resulting mixture was 

again stirred for 1 h and then shaken with an equal volume of 20% w/v aqueous Na2S2O7. The 

organic phase was then dried over anhydrous Na2SO4, filtered, and evaporated to a minimum. 

Column chromatography on silica gel with 13:7 n-hexane/CH2Cl2 resulted in brown bands, 

which were combined and evaporated to yield the crude product, which was further purified by 

crystallization from 1:1 CH3OH/CHCl3. Yield: 30 mg (62%). UV-Vis λmax (nm), ε x 10-4 (M-1cm-

1): 411 (5.54), 457 (7.52), 547 (1.47), 651 (0.72). 1H NMR: δ 1.07 – 1.18 (m, 6H, CH2); 1.21 –

1.36  (m, 8 H, CH2); 1.39 (d, 2 H, CH2); 1.42 – 1.48 (m, 4 H, CH2); 1.57 – 1.65 (m, 3 H, CH2); 
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1.74 – 1.94  (m, 11 H, CH2); 2.03 (d, 2 H, CH2); 2.65 (bd, 2 H, CH); 2.83 (bd, 2 H, CH); 3.20 (br 

d, 2 H, CH); 3.27 (br d, 2 H, CH); 3.33 (br d, 2 H, CH); 3.36 (br d, 2 H, CH); 7.15 (s,1 H, p-H); 

7.21 (s, 2 H, p-H). HR-MS (ESI+, major isotopomer): [M]+ = 1613.6810 (expt), 1613.6805 

(calcd). Elemental analysis found (calcd) : C 49.41 (49.83), H, 2.98 (3.18), N 3.66 (3.47). 

 X-ray structure determination. X-ray data for all three crystalline materials were 

collected on beamline 11.3.1 at the Advanced Light Source, employing a Bruker D8 

diffractometer equipped with a PHOTON100 CMOS detector operating in shutterless mode. The 

crystal was coated in protective oil prior to being mounted on a MiTeGen® kapton micromount 

and placed under a nitrogen stream at 100(2) K provided by an Oxford Cryostream 800 Plus low 

temperature apparatus. Diffraction data were collected using synchrotron radiation 

monochromated with Si(111) to a wavelength of 0.7749(1)Å. An approximate full-sphere of data 

was collected using a combination of phi and omega scans; multiple spheres of data were 

collected for Cu[ +
3Cor] and Cu[Br8

–
3Cor] to ensure that the absolute configuration could be 

reliably determined from anomalous scattering. The structures were solved by intrinsic phasing 

(SHELXT)42 and refined by full-matrix least squares on F2 (SHELXL-2014).43 All non-

hydrogen atoms were refined anisotropically. Hydrogen atoms were geometrically calculated and 

refined as riding atoms. Some disorder of the pendant groups was observed for Cu[ +
3Cor] and 

Cu[Br85,15- ±
2-10- ∓Cor], and these have been modelled over multiple sites. SQUEEZE 

analysis was used to determine the solvent content of the voids in Cu[Br85,15- ±
2-10- ∓Cor], as 

the solvent of crystallization was too disordered for modeling attempts. Additional 

crystallographic information has been summarized in Tables 1 to 4 and full details can be found 

in the crystallographic information files provided as Supporting Information. 
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