
HAL Id: hal-01771481
https://univ-rennes.hal.science/hal-01771481

Submitted on 5 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional connectivity in replicated urban landscapes
in the land snail (Cornu aspersum)

Manon Balbi, Aude Ernoult, Pedro Poli, Luc Madec, Annie Guiller,
Marie-Claire Martin, Jean Nabucet, Véronique Beaujouan, Eric Petit

To cite this version:
Manon Balbi, Aude Ernoult, Pedro Poli, Luc Madec, Annie Guiller, et al.. Functional connectivity
in replicated urban landscapes in the land snail (Cornu aspersum). Molecular Ecology, 2018, 27 (6),
pp.1357-1370. �10.1111/mec.14521�. �hal-01771481�

https://univ-rennes.hal.science/hal-01771481
https://hal.archives-ouvertes.fr


A
cc

ep
te

d
 A

rt
ic

le
MISS MANON  BALBI (Orcid ID : 0000-0002-1915-8639) 

Article type      : Original Article 

Title: Functional connectivity in replicated urban landscapes in the land snail (Cornu 
aspersum) 

Running title: Connectivity in replicated urban landscapes 

Authors : 

Manon BALBI; UMR 6553 Ecosystems, Biodiversity, Evolution (Ecobio), CNRS, Université 
Rennes 1, 35042 Rennes, France; manon.balbi@gmail.com 

Aude ERNOULT ; UMR 6553 Ecosystems, Biodiversity, Evolution (Ecobio), CNRS, Université 
Rennes 1, 35042 Rennes, France; aude.ernoult@univ-rennes1.fr 

Pedro POLI ; UMR 6553 Ecosystems, Biodiversity, Evolution (Ecobio), CNRS, Université 
Rennes 1, 35042 Rennes, France; pvpoli@gmail.com  

Luc MADEC; UMR 6553 Ecosystems, Biodiversity, Evolution (Ecobio), CNRS, Université 
Rennes 1, 35042 Rennes, France ; luc.madec@univ-rennes1.fr 

Annie GUILLER ; Edysan FRE 3498, CNRS, Université de Picardie Jules Vernes, 80000 Amiens ; 
France ; annie.guiller@u-picardie.fr  

Marie-Claire MARTIN ; UMR 6553 Ecosystems, Biodiversity, Evolution (Ecobio), CNRS, 
Université Rennes 1, 35042 Rennes, France; marie-claire.martin@univ-rennes1.fr  



A
cc

ep
te

d
 A

rt
ic

le

. 

Jean Nabucet ; UMR LETG, CNRS, Université de Rennes 2, EPHE-PSL, Université d’Angers, 
Université de Bretagne Occidentale, Université de Caen Normandie, Université de Nantes, 
Place du Recteur Henri Le Moal, 35043 Rennes Cedex, France ; jean.nabucet@uhb.fr 

Véronique Beaujouan, Unité de Recherche Paysage et Ecologie ESA ; Agrocampus Ouest ; 
49045 Angers ; France ; veronique.beaujouan@agrocampus-ouest.fr 

Eric J. PETIT; ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, 35042 Rennes, 
France; eric.petit@inra.fr  

Corresponding author: Manon Balbi, UMR 6553 Ecosystems, Biodiversity, Evolution 
(Ecobio), CNRS, Université Rennes 1, 263 Avenue Général Leclerc, 35042 Rennes Cedex, 
France; manon.balbi@gmail.com 

Abstract 

Urban areas are highly fragmented and thereby exert strong constraints on individual 

dispersal. Despite this, some species manage to persist in urban areas, such as the garden 

snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using 

landscape genetic approaches, we combined study area replication and multi-scale analysis 

to determine how landscape composition, configuration, and connectivity influence snail 

dispersal across urban areas. At the overall landscape scale, areas with a high percentage of 

roads decreased genetic differentiation between populations. At the population scale, 

genetic differentiation was positively linked with building surface, the proportion of borders 

where wooded patches and roads appeared side-by-side and the proportion of borders 

combining wooded patches and other impervious areas. Analyses based on pairwise genetic 

distances validated the isolation-by-distance and isolation-by-resistance models for this land 

snail, with an equal fit to least-cost paths and circuit-theory-based models. Each of the 12 

landscapes analyzed separately yielded specific relations to environmental features, 
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whereas analyses integrating all replicates highlighted general common effects. Our results 

suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, 

corresponding to active dispersal, unfavorable habitats (wooded and impervious areas) 

isolate populations. This work upholds the use of replicated landscapes to increase the 

generalizability of landscape genetics results, and shows how multi-scale analyses provide 

insight to scale-dependent processes. 

Keywords 

gene flow, resistance-based models, urban, landscape genetics, Gastropoda, isolation by 

distance 

Introduction 

Cities are growing around the world, and they contain an increasing proportion of the 

human population (United Nations, 2015). Urbanization is regarded as a major threat to 

global biodiversity (Grimm et al., 2008; McKinney, 2006). Urban areas are characterized by 

their high degree of fragmentation, where habitat patches are generally restricted to small 

vegetated areas isolated from each other by an inhospitable matrix (Cadenasso, Pickett, & 

Schwarz, 2007; Forman, 2014). Habitat patches are also altered by multiple anthropic 

disturbances and frequent habitat transformation (Ramalho & Hobbs, 2012). Habitat 

fragmentation affects population genetic structure and dynamics, with potential deleterious 

effects on population persistence (Keyghobadi, 2007). To limit fragmentation effects, 

maintaining landscape connectivity (i.e. the degree to which the landscape facilitates or 

impedes movement, Taylor, Fahrig, Henein, & Merriam, 1993) is an important tool in 
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conservation biology. Landscape connectivity is influenced by structural (referring to the 

physical relationships of landscape elements) and functional (based on the movement of 

organisms through the landscape, Taylor, Fahrig, & With, 2006) components. Functional 

landscape connectivity can be assessed by associating genetic population structure with 

landscape features (Baguette, Blanchet, Legrand, Stevens, & Turlure, 2013; Manel, 

Schwartz, Luikart, & Taberlet, 2003). When applied to urban areas, landscape genetics 

approaches have shown that urbanization limits gene flow among populations and thus 

increases genetic differentiation (M. T. J. Johnson & Munshi-South, 2017). Urban areas act 

as barriers between non-urban populations located around cities (e.g. bobcats, Lynx rufus, 

Lee et al., 2012; pine marten, Martes martes, Ruiz-González et al., 2014; solitary bee, 

Colletes floralis, Davis, Murray, Fitzpatrick, Brown, & Paxton, 2010) and between intra-urban 

populations (e.g. white-footed mouse, Peromyscus leucopus, Munshi-South, 2012; Munshi-

South & Kharchenko, 2010; Munshi-South, Zolnik, & Harris, 2016). Such barrier effects were 

linked to particular urban features such as major transport infrastructures (Holderegger & Di 

Giulio, 2010; Lee et al., 2012), buildings, bodies of water (common wall lizard, Podarcis 

muralis, Beninde et al., 2016, European hedgehog, Erinaceus europaeus, Braaker, Kormann, 

Bontadina, & Obrist, 2017). Moreover, features favoring gene flow, such as urban green 

spaces or canopy cover (M. T. J. Johnson & Munshi-South, 2017; Munshi-South, 2012), have 

also been identified. However, studies that focus on intra-urban populations are under-

represented and knowledge is lacking on the way particular urban landscape features and 

connectivity influence genetic exchange, especially for organisms with restricted mobility 

(La Point, Balkenhol, Hale, Sadler, & van der Ree, 2015; Storfer, Murphy, Spear, 

Holderegger, & Waits, 2010). 
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Major challenges remain in understanding dispersal processes across landscapes using 

landscape genetics approaches. These approaches are not always generalizable because 

they neglect two main issues, (1) landscapes replication and (2) multi-scale landscape 

analyses (Holderegger & Wagner, 2008; Pflüger & Balkenhol, 2014; Richardson, Brady, 

Wang, & Spear, 2016; Segelbacher et al., 2010). Landscape replication is necessary to 

expand the scope of inference of landscape genetics. Multiple and independent landscapes 

need to be evaluated (Segelbacher et al., 2010), with the landscape itself as a study unit. 

Replication offers the opportunity to extract general landscape effects across all replicates 

but also to focus on the specific contribution of each landscape. The few studies using 

replicated landscapes show that generalization was not straightforward and that 

extrapolating from one landscape to another could be misleading (Castillo et al., 2016; Hand 

et al., 2016; Richardson et al., 2016; Villemey et al., 2016). For example, by comparing 

twelve landscapes, Short Bull et al. (2011) found that the features influencing American 

black bear gene flow were different between landscapes and were those with the highest 

variation within each landscape. Landscape replicates should be homogeneous in terms of 

landscape characteristics when seeking generalization. At least, post-hoc statistical controls 

can justify that landscape metrics vary in the same way across landscapes. Urban landscapes 

are good candidates for keeping a certain level of homogeneity among replicates because 

cities broadly share similar compositions and fragmentation levels due to similarly altered 

environmental conditions (Groffman et al., 2017; Parris, 2016). However, to date no studies 

of urban gene flow have used replicated landscapes across multiple cities (M. T. J. Johnson 

& Munshi-South, 2017). 
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Central to landscape ecology is the idea that landscape patterns and processes are scale 

dependent (Wiens, 1989). Multiple spatial scale approaches are thus recommended to 

obtain a thorough picture of landscape effects on the genetic structure of populations 

(Pflüger & Balkenhol, 2014; Wagner & Fortin, 2013), with recent research documenting how 

multiple scale analysis supports distinct and scale dependent landscape effects (e.g. 

Angelone, Kienast, & Holderegger, 2011; Dionne, Caron, Dodson, & Bernatchez, 2008; Hand 

et al., 2016; Millette & Keyghobadi, 2015). However, most studies still evaluate landscape – 

genetic relationships at a single spatial scale (Manel & Holderegger, 2013; Waits, Cushman, 

& Spear, 2016), which might result in the lack of a particular landscape effect because of 

limited scale and/or inferential power. An additional difficulty is that landscape genetic 

inferences made at one scale are difficult to extrapolate to another scale and may lead to 

erroneous management recommendations (Dudaniec et al., 2013). For example, Murphy, 

Evans, & Storfer (2010) showed that the landscape variables in association with genetic 

structure of the western toad (Anaxyrus boreas) were different when they considered 

several scales (or hierarchical levels, i.e. within or between genetic clusters). Within clusters, 

significant landscape variables corresponded to localized processes (e.g. growing season 

precipitation) whereas connectivity between clusters was explained by more general, broad-

scale metrics (e.g. topography). Only the proportion of impervious surfaces (including roads) 

was significant both within and between clusters, showing the effect of fragmentation at 

different scales. Different hierarchical levels of analysis can be used, but so far most 

landscape genetic studies have focused on pairwise distance analysis (i.e. matrix quality 

effect between population pairs), so that the effects of overall landscape or local 

environmental conditions are most often ignored (DiLeo & Wagner, 2016).  

Analysis at the overall landscape scale is rare because it requires replicated landscapes and 
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integrating these landscapes into a single analysis. Consideration of the overall landscape 

scale provides an opportunity to assess the intensity of gene flow and to compare it among 

landscapes, using metrics of landscape composition and configuration. The degree of 

homogeneity among landscapes can be assessed and associated with specific effects on the 

overall genetic structure. Moreover, it provides clues to interpret potential overall 

landscape effects, e.g. urban green spaces or green waste management, which may 

influence the probability of passive dispersal events and lead to overall population 

homogenization.  

At a finer spatial scale, local conditions such as habitat amount and habitat spatial structure 

(respectively linked to resource availability and fragmentation) play a major role in 

population ecology (DiLeo & Wagner, 2016). For example, local conditions can influence 

population size (and consequently genetic drift) and dispersal through density-dependent 

processes (Baguette & Van Dyck, 2007; Dahirel, Vardakis, Ansart, & Madec, 2016; Pflüger & 

Balkenhol, 2014).  

Pairwise FST approaches classically compare genetic differentiation indices to different 

scenarios testing the effects of matrix quality on dispersal success (Pflüger & Balkenhol, 

2014). The simplest scenario is the isolation-by-distance model (IBD), which refers to limited 

dispersal across space based on Euclidean distances between populations. Based on 

functional connectivity concepts, isolation-by-resistance (IBR) models hypothesize that low 

resistant areas exchange a greater number of individuals (McRae, 2006). The classically used 

resistance-based models are least-cost-path (LCP, Adriaensen et al., 2003) and circuit-

theory- (CT-) based analyses (McRae, Dickson, Keitt, & Shah, 2008). The different scenarios 
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based on these two models can vary according to the resistance value sets, habitat types, 

and environmental conditions, which support assessing of their relative performances (e.g. 

Braaker et al., 2017; Dupont, Torres-Leguizamon, René-Corail, & Mathieu, 2017; Fenderson 

et al., 2014). 

The effects of landscape fragmentation vary depending on organism mobility (Concepción, 

Moretti, Altermatt, Nobis, & Obrist, 2015). Low-mobility organisms can survive in relatively 

small habitat patches (Braaker, Ghazoul, Obrist, & Moretti, 2014). However, they tend to be 

intensively affected by fragmentation (and habitat loss, Öckinger et al., 2010; Piano et al., 

2017) when they move among distant habitat patches to disperse or move away from 

disturbances. Despite their low degree of mobility, organisms such as terrestrial Gastropods 

can persist and are largely spread across urban landscapes (Barbato, Benocci, Caruso, & 

Manganelli, 2017). The garden snail Cornu aspersum (Gastropoda, Helicidae, formely Helix 

aspersa) is a widespread, synanthropic species (Ansart, Madec, & Guiller, 2009; Barbato et 

al., 2017; Kerney, Cameron, & Bertrand, 2006). It has poor mobility (a maximum of 10-50 

meters per month during activity periods, Dahirel, Vardakis, et al., 2016; Dan, 1978) due to 

the extremely high cost associated with movement, in energy (foot muscle contraction) and 

water (mucus production, Denny, 1980). C. aspersum lives in aggregated colonies connected 

by low ongoing gene flow. Spatial distances between populations strongly influence genetic 

differentiation (Arnaud, 2003; Arnaud et al., 1999; Selander & Kaufman, 1975). Moreover, 

snails are very sensitive to the type of substrate they are moving through, so their 

movements can be facilitated by road verges and hedgerows (Arnaud, 2003), while roads 

drastically limit them (Baur & Baur, 1990). 
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We used methodological approaches which aim at identifying the diversity of landscape 

effects on dispersal, based on landscape replication and multi-scale analyses. Landscape 

composition and configuration were characterized in each landscape and local 

environments, and functional connectivity scenarios were applied between population 

pairs. Resistance-based models (LCP and CT analyses) were compared in association with 

different sets of resistance values varying in distribution functions. For each scale, 

population differentiation was quantified using landscape, population, and pairwise FST, 

respectively. Based on a replicated study design, the effects of overall landscape, local 

environment, and functional connectivity were assessed across and among twelve distinct 

urban landscapes. We expected the amount of favorable habitats (i.e. vegetation) to 

decrease population divergence whereas unfavorable land cover (roads, buildings) would 

increase it through fragmentation and barrier effects. We also expected IBR scenarios to 

better explain population structure than simple IBD models as snails have restricted 

dispersal capacities and are sensitive to landscape composition.  

Materials and methods 

Study sites and sampling design 

The sampled sites were located in 3 different French urban agglomerations: Angers (Long-

Term Ecological Research site [LTER] Zone Atelier Loire - 47°28’N, 0°33’W), Rennes (LTER 

Zone Atelier Armorique - 48°06’N, 1°40’W), and Lens (50°25’N, 2°49’W). In each urban 

agglomeration, we selected 4 landscape windows, named “landscapes”. The 12 landscapes 

measured 1.3 km in diameter (SD=0.3 – Fig. 1) with land cover consisting of 43% (SD=12) of 

green infrastructures (wooded and herbaceous areas), while all the other surfaces were 

artificial (buildings, roads, asphalt surfaces, detailed in Fig. 2). 
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In each of the 12 landscapes, 10 snail populations were collected. C. aspersum discrete 

colonies have been estimated as panmictic units of 25 - 70 m in diameter (Arnaud et al., 

1999; Madec, 1989; Selander & Kaufman, 1975). In this study, a population referred to 

individuals spatially aggregated across a maximum distance of 50m. Populations were on 

average 580 m (SD = 125) apart in each landscape. We sampled 21 individuals (SD = 3) in 

each population. Sampling took place from June to October 2015 in Angers and Rennes, and 

from April to November 2014 in Lens. Snails were found on lawns, at the base of hedgerows, 

along walls or sidewalks. A total of 2,600 snails was sampled.  

Genetic data  

DNA extraction, locus amplification and genotyping were performed as described in Arnaud, 

Madec, Guiller, & Deunff (2003) and Guiller, Arnaud, Vautrin, & Solignac (2000), with slight 

modifications. Garden snails were genotyped at seven microsatellite loci (Table S1). 

Total genomic DNA was extracted from foot muscle tissue (of fresh snails) mixed with 500 

μL of 10% Chelex-100 suspension preheated to 60°C and 15 μL of Proteinase K (10 mg/mL). 

Samples were incubated overnight at 55°C. Then they were mixed twice at 100°C for 15 

minutes. 

The seven microsatellite loci were multiplexed in three distinct PCR reactions ([Ha6, Ha8], 

[Ha2, Ha10, Ha11], [Ha14, Ha16]). PCR amplifications were carried out in a total volume of 

15 μL containing 7 μL of MyTaq TM Mix (Bioline), 0.5 μL of each primer (0.2 μM 

concentration), 1.25 μL of extracted DNA sample, and completed with sterilized water. 

Cycling was performed with one 5-min step at 94°C, 35 cycles of 30 s at 94°C, 30 s at 51.4°C 

for [Ha6, Ha8] and [Ha14, Ha16] loci or at 54 °C for [Ha2, Ha10, Ha11], 30 s at 72°C, and one 

final 5-min step at 72°C before incubation at 4°C. Prior to genotyping with an ABI 3130 XL 
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automated DNA sequencer (Applied Biosystems), 1.25 μL of amplified DNA were mixed with 

0.25 μL of GeneScanTM 500 ROXTM dye size standard (Applied Biosystems) and 10 μL of Hi-

DiTM Formamide for 5 min at 95°C. 

Alleles were scored using GeneMapper 4.1 (Applied Biosystems). Genotypic linkage 

disequilibrium and departures from Hardy Weinberg (HW) equilibrium were tested in each 

population using Fstat 2.9 (Goudet, 2001). Genotypic (linkage) disequilibrium was altogether 

non-significant (except for one test in LF1 – adjusted p-value <0.05), so all markers were 

considered as independent. Significant departures from HW equilibrium (adjusted p-value 

<0.05) were found in 10% of the 834 tests, with two loci showing the greatest deviations 

from HW equilibrium in Rennes landscapes (Ha16 and Ha11 - Table S2). We suspected null 

alleles, whose frequencies were mostly low (mean = 0.067; SD = 0.064, Table S3), but 

occasionally reached >0.2 in Rennes landscapes. We thus computed landscape FST, 

population FST, and pairwise FST values by correcting for the presence of null alleles with an 

expectation maximization method using FreeNA software (Chapuis & Estoup, 2007). 

Landscape FST was estimated including all sampled populations in each landscape. 

Population-specific FST was estimated between the focal population and all other 

populations in each landscape, reflecting the genetic differentiation of a population as 

compared to all other populations (Gaggiotti & Foll, 2010; Pflüger & Balkenhol, 2014). 

Pairwise FST was estimated between population pairs in each landscape. Allele frequencies 

and heterozygosities were computed with R (R Core Team, 2015) and hierfstat R package 

(Goudet & Jombart, 2015). Mean expected heterozygosity ranged from 0.69 to 0.85 

(depending on landscape). The mean number of alleles was 7.7, and ranged between 5.7 

and 10.3 (Table 2). 
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Landscape metrics and connectivity map modeling 

For each city, a high resolution (5 × 5 m) land cover map was produced from GIS Data from 

the National Geographic Institute of France (BD TOPO (c) IGN - 2010). The maps 

distinguished 6 land cover classes: building, wooded areas, herbaceous areas, water bodies, 

transport infrastructures (roads and railways), and other impervious asphalt surfaces (e.g. 

parking lots, sidewalks – Fig. 1, Fig. 2, and Table 1). We computed simple landscape metrics 

applied to each land cover class (except water surfaces, which were rare) using two spatial 

pattern analysis programs, Fragstat v.4 (Mcgarigal, Cushman, Neel, & Ene, 2002) and 

Chloé2012 (Boussard & Baudry, 2014). The percentage of landscape occupied by each 

characterized landscape composition (PLAND) and the mean area of patches for each land 

cover class (AREA (MN)) reported the landscape fragmentation level. As Cornu aspersum can 

detect boundaries between land cover types during exploration (Dahirel, Séguret, Ansart, & 

Madec, 2016), we quantified another fragmentation metric that was the proportion of 

borders combining two different specified adjacent land cover classes (RATE COUPLE, Fig. 

S1). These 20 landscape metrics (i.e. 5 land cover classes each for PLAND and AREA metrics, 

10 combinations for RATE COUPLE) were computed at the landscape (the 12 landscapes - 

1.3 km diameter) and population scales, with a buffer radius of 70 m around each 

population location, corresponding to the estimated panmictic unit size for the population 

scale (Fig. 1).  

Regarding pairwise FST analysis, landscape connectivity was estimated with two different 

resistance-based models. These models are based on landscape resistance values that 

reflect the energetic cost for an individual to move, its willingness to move, and/or the risk 

of moving across each habitat class (Zeller, McGarigal, & Whiteley, 2012). Populations are 

linked to each other across resistance maps (on which resistance values are applied to each 
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land cover class) by different algorithms, searching for optimal (less resistant) pathways. 

Least-cost-path (LCP) analyses predict the optimal path with the lowest cumulated 

resistance, whereas circuit-theory- (CT-) based models integrate all available pathways 

(McRae et al., 2008). To determine resistance values, hierarchization of land cover classes 

was adapted from the 4-level fuzzy coding system used by Falkner, Obrdlík, Castella, & 

Speight (2001) to describe the degree of association of molluscan species to habitat types. 

Herbaceous areas were the most favorable habitat. Wooded and impervious areas were less 

favorable, followed by transport infrastructure. Building and water bodies were the least 

permeable areas (Table 1). Resistance-based model performance is known to vary with the 

transformation function applied to resistance values (Chardon, Adriaensen, & Matthysen, 

2003; Rayfield, Fortin, & Fall, 2010). We created three sets of resistance values varying in 

transformation function: linear, exponential, and logarithmic functions, bounded from 1 to 

100 (Table 1). LCP lengths were extracted with Graphab software (Foltête, Clauzel, & Vuidel, 

2012) and cumulated resistance (from CT-based analysis) with Circuitscape (McRae et al., 

2008). Geographic Euclidean distances were also computed (ArcGIS, ESRI, and R-package g-

distance, van Etten, 2017). All Euclidean and resistance distances were log-transformed and 

used in distinct regression analyses. 

Statistical analyses 

We first described the overall genetic structure of our data set by means of a hierarchical 

analysis of molecular variance using the R package hierfstat (Goudet & Jombart, 2015). 

At the landscape scale, we tested whether landscape FST was related to any landscape 

metrics with linear models by frequentist hypothesis testing (F statistics in ANOVA). Because 

of the small sample size (12 landscapes), landscape metrics were tested one after the other 
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in the linear model.  

For both population and pairwise FST analyses, the whole dataset (i.e. the 120 populations 

and 574 pairs included in the 12 landscapes) was used in linear mixed models integrating 

landscape identity as a random factor. Despite the hierarchical sampling design, landscape 

identity could not be nested within the three cities because of model overfitting 

considerations. The number of levels would be too small (four landscapes) per random 

factor (city; Bolker et al., 2009). 

 At the population scale, the relation between population FST and local landscape metrics 

was analyzed in two steps. First, we used automated model selection (R package MuMin, 

Bartoń, 2016) to compare additive mixed models that included a maximum of 10 variables 

(the number of 20 landscape metrics was too large for our sample size: 12×10 populations, 

Forstmeier, Wagenmakers, & Parker, 2017). We retained all variables included in models 

that were within 2 AICc units from the best model (Burnham & Anderson, 2002) and 

computed the model-averaged importance of these variables. Then, we focused on 

landscape-specific effects by analyzing models built with each of the retained variables 

(fixed factor) and including a random slope to the random factor (Bates, Mächler, Bolker, & 

Walker, 2014). Random effect variations were highlighted by likelihood ratio tests (LRT) by 

comparing models with and without random slopes (see Jaffé et al., 2016). 

 Pairwise FST (standardized with a logit function, Rousset, 1997) were used as the dependent 

variable, and resistance-based (least-cost lengths or cumulated resistances) or Euclidean 

distances were used as the independent variable in linear mixed models (random intercept 

and slope). Linear mixed models were compared based on their AICc values (J. B. Johnson & 

Omland, 2004; Row, Knick, Oyler-McCance, Lougheed, & Fedy, 2017). The correlation 

structure of the maximum likelihood population effect (MLPE, Clarke, Rothery, & Raybould, 
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2002; Jaffé et al., 2016; Peterman, Connette, Semlitsch, & Eggert, 2014; Van Strien, Keller, & 

Holderegger, 2012) was added to the pairwise FST models. MLPE parameterization 

accounted for the covariate structure of allelic frequencies between populations in each 

landscape, corresponding to the proportion of the variance linked to the correlation 

between pairwise distances. The R package nmle (Pinheiro, Bates, DebRoy, Sarkar, & R-core 

Team, 2016) was used with corMLPE R function (https://github.com/nspope/corMLPE). The 

contribution of landscape-specific effects was highlighted by LRT, comparing models with 

and without a random slope (Jaffé et al., 2016).  

Moreover, landscape-specific effects were analyzed by linear models computed for each 

landscape (as classically done in non-replicated landscape studies – e.g. Dupont, Torres-

Leguizamon, René-Corail, & Mathieu, 2017). This one-by-one landscape approach was 

applied to population and pairwise FST analyses. Metrics were separately tested in each 

model by hypothesis testing (F statistics in ANOVA). Focusing on population FST, we tried to 

determine why some landscape metrics were relevant as fixed factors in the whole dataset 

linear mixed model whereas they performed satisfactorily only in a few landscapes when 

landscapes were analyzed separately. We compared landscape metric values with 

permutation tests between the group of landscapes with relevant metrics and the group of 

remaining landscapes (see Short Bull et al., 2011). 
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Results 

Landscape FST 

Landscape FST values varied among landscapes (range: 0.035- 0.15; Fig. 3, Table 2; see also 

the Supplementary text for a global overview of the genetic structure across cities, 

landscapes and populations and Fig. S2). The percentage of transport infrastructure was the 

only landscape metric (from a total of 20) with a significant relationship with landscape FST

(slope estimate (SE) = -0.011 (0.004); F value = 8.2 on 1 and 10 DF; p-value = 0.017; R² = 0.43 

– Fig. 3). Globally, populations were genetically more differentiated when landscapes

comprised a low percentage of transport infrastructure (mainly roads). 

Population FST 

Model selection retained three metrics included in models within 2 AICc units from the best 

model. Population FST values were positively correlated with the average surface of buildings 

(AREA building), the proportion of wooded/transport infrastructure borders (RATE COUPLE 

w/t) and wooded/impervious borders (RATE COUPLE w/i – Table 3). We focused on models 

associating one of the three retained metrics as a fixed factor and the landscape random 

factor with random intercept and slope. Variability among landscapes (random effects) was 

detected for these three models (LRT and random estimate ranges – Table 3). When each 

landscape was analyzed separately, the links between population FST and landscape metrics 

were not consistent across landscapes (fixed factor p-value <0.05 in less than three 

landscapes out of the 12 landscapes for each of the 20 landscape metrics: PLAND, AREA, 

RATE_COUPLE for each land cover class). Only the average surface of buildings (AREA 
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building) and proportion of wooded/ transport infrastructure borders (RATE COUPLE w/t) 

were positively related with population FST in 3 different landscapes ([AF2, AF4, RF2] and 

[LF2, RF2, RF3], respectively). We tested whether the non-significance of the average 

surface of buildings in some landscapes was linked with a reduced surface occupied by 

buildings, which may have been non-limiting for individual dispersal. AREA building was 

higher in the group of significant landscapes (mean (SD) = 437 (288) sq.m vs. mean (SD) = 

315 (297) sq.m – permutation test, p = 0.04). No difference was detected for RATE COUPLE 

w/t values. 

Pairwise FST 

Regarding pairwise analysis with the whole dataset (landscapes as a random factor), several 

models had lower AICc values than the null model (i.e. without any fixed factor – Table 4). 

These models included Euclidean distances or LCP distances for exponential, linear and 

logarithmic distributions of resistance values, and CT distances for all distributions of 

resistance values. Among those, three models equally outperformed the model with 

Euclidean distances: two models with LCP distances (logarithmic and exponential 

distributions) and one model with CT distances (exponential distribution - Table 4). We 

focused on the Euclidean distance model (i.e. the isolation by distance [IBD] model) to study 

variability among landscape random effects because among satisfactory models it was the 

most parsimonious model (regarding its intrinsic simplicity relative to resistance-based 

models). The likelihood ratio test of this IBD model with or without a random slope was 

significant (LR = 7.98; p = 0.018). The magnitude of the landscape-specific IBD effect varied 

across landscapes. The mean IBD slope for all landscapes (fixed effect estimate) was 0.010, 
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while landscape-specific IBD slopes (random effect estimates) ranged from -0.010 (AF2) to 

0.014 (LF1, Fig. 4). When landscapes were analyzed separately (one linear model per 

landscape), null models (without any fixed effect) had the lowest AICc values in 11 

landscapes. Only landscape LF3 had LCP distance models (all distributions of resistance 

values) better than the null model (delta AICc >2). 

Discussion 

We studied the population genetic structure of the garden snail (Cornu aspersum), an 

organism with restricted dispersal, across 12 fragmented urban landscapes. We aimed to 

generalize our results across landscapes and highlight the diversity of relationships between 

landscape and genetic patterns, by means of landscape replication and multi-scale analyses. 

Three different scales of analysis yielded diverse relationships between landscape structure, 

composition, functional connectivity, and population differentiation. We showed at the 

landscape scale that transport infrastructures decreased genetic differentiation, suggesting 

these infrastructures facilitate passive dispersal events across cityscapes in the land snail. At 

the population scale, building surfaces, the proportion of borders combining wooded areas 

and roads or wooded areas and impervious surfaces increased genetic differentiation. These 

local factors may reduce (short) active dispersal movements. We also documented isolation 

by distance and isolation by resistance for the species in urban matrices. Relationships 

between genetic differentiation and landscape characteristics were highly variable among 

landscapes, supporting the necessity to replicate landscapes. 
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Landscape structure and scales 

At the landscape scale, populations were genetically more differentiated when roads were 

in low proportion. Roads are mainly recognized to act as barriers to dispersal (Balkenhol & 

Waits, 2009; M. T. J. Johnson & Munshi-South, 2017). However, in our case, no barrier effect 

was detected at the landscape scale. Instead, we detected a positive effect of roads on gene 

flow, meaning that roads were not only permeable but also facilitated gene flow. The 

potential role of roads as dispersal corridors has already been documented in the alpine 

newt (Ichthyosaura alpestris, Prunier et al., 2014) and is often linked with road verge effects. 

Gene flow can be favored by the presence of vegetated road verges known to facilitate 

animal dispersal (Holderegger & Di Giulio, 2010) and favor snail dispersal movements 

(Arnaud, 2003; Baur & Baur, 1990). Another interpretation could be that roads increase 

events of passive dispersal. Snails have a great potential for passive dispersal associated 

with human activities (e.g. Aubry, Labaune, Magnin, Roche, & Kiss, 2006): some of their 

biological traits favor passive dispersal events, such as easily transported dormant stages or 

human-associated habitat requirements (Medley, Jenkins, & Hoffman, 2015).  

At the local environment scale, populations located close to large (enough) building areas 

were genetically different from the others. Based on these results, buildings can be 

considered as local fragmenting elements that impede gene exchange between the focal 

population and the others, and limit population size. Despite the wide acceptance that 

buildings fragment cityscapes, this effect has rarely been precisely identified (but see 

Beninde et al., 2016) and is more often included in a general effect attributed to urban 

infrastructure (associated with roads and impervious areas, e.g. Davis et al., 2010; Delaney, 
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Riley, & Fisher, 2010; Munshi-South et al., 2016; Ruiz-González et al., 2014; Watts, 

Rouquette, Saccheri, Kemp, & Thompson, 2004). The amount of borders associating wooded 

areas and roads or wooded and impervious areas was related to increased population 

differentiation, and by consequence showed a barrier effect. Wooded areas are not an 

optimal habitat for Cornu aspersum (Falkner et al., 2001) or other land snails (Rosin, Lesicki, 

Kwieciński, Skórka, & Tryjanowski, 2017). At this local scale, the proximity of wooded areas 

to roads (or other impervious areas) resulted in fragmented wooded patches and may have 

decreased habitat quality. A typical case was street trees associated with asphalt, covering 

the ground under the tree canopy (e.g. Fernández-Juricic, 2000). We could also hypothesize 

that garden snails present in these wooded/road borders ran higher risks of mortality due to 

the negative effects of roads (e.g. crushing, dehydration, pollution, Balkenhol & Waits, 2009; 

Forman, 2003).  

Landscape- and population-related analyses extracted different significant landscape 

effects, adding to the scale-dependent effects that have been documented in a few studies 

(Angelone et al., 2011; Keller, Holderegger, & van Strien, 2013; Razgour et al., 2014; 

Worthington Wilmer et al., 2008). An intriguing result of our study was that roads had 

contrasting effects depending on scale, facilitating dispersal at large distances and impeding 

it at shorter distances. Scale-dependent effects are easily understood when accounting for 

different dispersal mechanisms, such as passive and active dispersal (Worthington Wilmer 

et al., 2008). These authors have documented that passive and active dispersal can be 

influenced by different landscape features in an aquatic snail. We suggest here that the 

same landscape feature can have contrasting effects depending on the dispersal 
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mechanism, with roads increasing passive dispersal but impeding active dispersal in the land 

snail. Our results also show that extrapolation across spatial scales can be misleading, and 

we encourage the study of multiple scales in landscape genetic studies (Keller et al., 2013).  

Relevance of resistance-based models 

IBD was validated as expected for a species with limited and highly costly dispersal 

movements (Bohonak, 1999). Few resistance-based models outperformed the IBD model 

(LCP associated with logarithmic and exponential resistance value distribution and CT with 

exponential distribution). It was difficult to determine which distribution of resistance 

values performed best. Basically, the difference between distributions was the classification 

of intermediate-quality habitat classes, considered as rather favorable and similar to a 

secondary habitat (exponential distribution) or largely costly and risky (logarithmic 

distribution). The exponential distribution has been illustrated as a better distribution to 

apply to resistance values (e.g. Braaker, Moretti, et al., 2014; Driezen, Adriaensen, 

Rondinini, Doncaster, & Matthysen, 2007; Trainor, Walters, Morris, Sexton, & Moody, 2013). 

However, the best transformation may depend on the type of biological data used to 

calculate resistance values (e.g. genetic distance or daily movement, Braaker et al., 2017). In 

our study, LCP and CT performed equally well with the exponential distribution, and it was 

not possible to resolve competing assumptions (e.g. single or multiple optimal paths). 

Circuit-theory-based analysis is commonly highlighted as more informative than LCP about 

gene flow (Coulon et al., 2004; Garrido-Garduño, Téllez-Valdés, Manel, & Vázquez-

Domínguez, 2016; La Point, Gallery, Wikelski, & Kays, 2013; McRae et al., 2008), but 

comparisons have seldom been made in urban landscapes. Urban landscape characteristics 
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could lead to different relative performance between LCP and CT-based models. Highly 

contrasted land cover, restricted habitat, or high landscape fragmentation may indeed 

reduce the number of potential pathways and movement success probability and thereby 

limit the added value of CT analysis. 

Landscape replication 

We showed that single landscape analyses led to various (sometimes opposite) conclusions 

about the effects of landscape on genetic structure. Gathering several landscape data in 

linear mixed models increased statistical power and provided more robust conclusions: for 

example, we validated the IBD model and identified landscape characteristics that influence 

dispersal that would not have been detected otherwise. Moreover, the mixed model offered 

the opportunity to study specific effects of landscape through random effect analysis. 

However, this opportunity to study the whole dataset of replicated landscapes with a mixed 

model seems to be rarely used (Castillo et al., 2016; Short Bull et al., 2011; Villemey et al., 

2016; but see Jaffé et al., 2016, who did not replicate landscapes but species).  

The correspondence between our general conclusions and landscape-specific contributions 

(single landscape analyses) was not straightforward. For example, at the population FST 

scale, landscape metrics that were significant in at least 3 landscapes were also significant in 

the analysis of the whole dataset. Variability in landscape-specific results illustrates the 

difficulty of generalizing results from single-landscape studies. Several arguments can be 

advanced to explain this variability across landscapes (Richardson et al., 2016). First, 
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landscapes influence organisms in a heterogeneous way (e.g. Short Bull et al., 2011). In the 

case of the garden snail, the average surface occupied by buildings was a significant and 

positive predictor of population differentiation only in the three landscapes in which 

building surface was the highest. Second, statistical power may be too low to detect and 

quantify landscape effects when analyzing single landscapes (Jaquiéry, Broquet, Hirzel, 

Yearsley, & Perrin, 2011). For example, analyses of pairwise distances in single landscape 

sorted the null model as the best one although a highly significant IBD was found when 

analyzing the whole dataset. Disentangling the relative importance of these and other 

factors on the differences expressed across landscapes is an interesting topic linked to 

replicated study designs that would deserve further investigations. 

Genetic differentiation using FST  

FST is a robust metric widely used to describe population genetic structure (Holsinger & 

Weir, 2009) and indirectly measures effective dispersal (successful gene flow) across 

evolutionary time scales (Broquet & Petit, 2009). It is important to keep in mind that 

patterns of genetic differentiation result from a dynamic equilibrium between drift and 

dispersal, which are forces with opposite effects on population divergence. Genetic drift 

induces lower genetic differentiation between large populations compared to small ones 

independently of dispersal rate (Jaquiéry et al., 2011). However, the contribution of genetic 

drift is rarely determined (but see Prunier, Dubut, Chikhi, & Blanchet, 2015). Moreover, 

certain amount of time is required to reach an equilibrium after a landscape transformation 

or a disturbance. This time lag is difficult to assess because it depends on multiple 

demographic and landscape factors (Epps & Keyghobadi, 2015). A time lag between 
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landscape and genetic patterns may be frequent in urban landscapes due to high rates of 

area transformation and disturbance (Ramalho & Hobbs, 2012).  

We studied three different scales separately with three FST computing variations (landscape, 

population, and pairwise FST). It could be interesting to integrate data from each scale 

analysis into one model to quantify the relative contribution of each scale. The use of gravity 

models may be promising in explaining gene flow as a function of landscape predictors 

measured at both population and pairwise levels (DiLeo & Wagner, 2016; Murphy, Dezzani, 

Pilliod, & Storfer, 2010; Pflüger & Balkenhol, 2014).  

Conclusion  

We used landscape replication to highlight the effects of landscape composition, 

configuration and connectivity models on genetic differentiation of garden snail 

populations. Replication gave access to robust conclusions about the overall effects of 

landscape on population structure by linear mixed model analysis and the consideration of 

different scales of analysis. Relationships between landscape and genetic structure were 

also partly landscape- and scale-dependent. 
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Tables and Figures 

Table 1: Habitat classes, description, hierarchization (Hier) and resistance value sets; Exp : 
exponential, Log: logarithmic, Lin: linear 

Table 2: Genetic statistics for each landscape: Number of sampled individuals (Tot nb), 
Mean Fis, mean observed heterozygosities (Ho), mean expected heterozygosities (He), 
mean number of alleles per locus, landscape FST (FSTg). 

Study 
area 

Tot nb Mean Fis Ho He Mean allele nb FSTg 

AF1 224 0.047 0.803 0.843 10.20 0.048 

AF2 229 0.091 0.775 0.852 10.33 0.041 

AF3 211 0.124 0.736 0.840 9.73 0.035 

AF4 212 0.104 0.750 0.838 9.25 0.052 

LF1 198 0.103 0.622 0.693 5.88 0.124 

LF2 210 0.080 0.669 0.727 5.88 0.116 

Habitat class Description Hier Exp Log Lin 

Herbaceous 
Garden, lawn, grassland, ruderal area, 

herbaceous plant, bush, hedge, isolated trees 
1 1 1 1 

Wooded Grove, tree, wood 2 13 50 33 

Impervious 
Asphalt surfaces other than roads, parking lots, 

sidewalks 
2 13 50 33 

Transport 
infrastructure 

Road, railway 3 37 80 67 

Building Building, construction site 4 100 100 100

Water Canal, ditch, pond 4 100 100 100
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LF3 174 0.076 0.701 0.759 6.24 0.098 

LF4 191 0.065 0.717 0.766 6.68 0.059 

RF1 235 0.219 0.596 0.764 8.14 0.081 

RF2 233 0.250 0.548 0.731 7.13 0.151 

RF3 232 0.289 0.529 0.743 6.94 0.115 

RF4 244 0.293 0.509 0.720 5.71 0.110 

Grand 
mean 

216 0.145 0.663 0.773 7.68 0.086 

Table 3: Population FST analysis, regressions summarized according to landscape metrics 
associated with model-averaged importance, fixed estimate, standard error and range of 
the random estimates from random slope models; LRT ratio and level of significance, p-
value: ***<0.001; *<0.05. 

Landscape metrics 
Model- 

averaged 
importance 

Fixed estimate
Fixed 

SE 

Random 
estimate 

range 
 LRT 

RATE COUPLE 

wooded/ impervious 
0.74 0.63 0.32 [-0.68; 0.88]

4.7 

* 

RATE COUPLE 

wooded / transport infr. 
0.56 0.61 0.49 [-1.82; 2.78]

24.4

*** 

AREA building 0.51 0.27 0.17 [-0.53; 1.13]
30.1

*** 
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Table 4: Pairwise FST analyses with distances as a fixed factor, fixed estimate and standard 
error, AICc, and ΔAICc. Distances were extracted from least-cost-path (LCP) or circuit-theory 
(CT) analyses based on different distributions of resistance values: exponential (exp), 
logarithmic (log), linear (lin), and Euclidean distance (Euc) 

Distance Fixed estimate Fixed SE AICc ΔAICc 

LCP.log 0.0094 0.0035 -2287.6 0

CT.exp 0.0272 0.0090 -2287.1 0.5

LCP.exp 0.0096 0.0032 -2286.9 0.7

Euc 0.0099 0.0035 -2284.3 3.3  

LCP.lin 0.0091 0.0032 -2284.1 3.5

CT.lin 0.0223 0.0074 -2283.0 4.6

CT.log 0.0203 0.0068 -2281.4 6.2

null NA NA -2270.5 17.1



A
cc

ep
te

d
 A

rt
ic

le

. 

Figure 2: Percentage of each land cover class in the 12 landscapes. AF: Angers, LF: Lens, RF: 
Rennes.  
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Figure 3: Landscape FST and percentage of surfaces occupied by transport infrastructures in 
each landscape; linear regression (line): R² = 0.43; slope estimate = -0.011  
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Figure 4: Isolation by Euclidean distance (IBD) in the 12 landscapes, fixed effect (black line) 
and landscape-specific random effect (grey dotted lines). 


