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Abstract. Alkyl and aryl isoselenocyanates are well-known intermediates in the synthesis of
various organoselenium compounds but the knowledge of the physicochemical properties of
simple unsaturated derivatives is still fragmentary. Vinyl-, 2-propenyl- and cyclopropyl
isoselenocyanates have been prepared by reaction of selenium in powder with the
corresponding isocyanides. The isoselenocyanates of this series, with a variable distance
between the N=C=Se group and the unsaturated or pseudo-unsaturated group, have been
studied by UV-photoelectron spectroscopy and quantum chemical calculations. For each of
these three isoselenocyanates, the exploration of conformers and geometrical optimization
always converge toward only one local minimum. The vinyl and cyclopropyl derivatives are
characterized by similar order of magnitude of interactions between the NCSe group and the
substituent, while for allylic compound two non-interacting moieties should be considered.
The same conclusions were obtained for vinylic and cyclopropylic sulfur and oxygen
derivatives.

Thus, the type and extent of interactions between the N=C=X (X = O, S, Se) group and an

unsaturated (vinyl, allyl or cyclopropyl) moiety are now clarified.
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1. Introduction.

Alkyl and aryl isoselenocyanates are very useful precursors or intermediates in the synthesis
of biologically active organoselenium cyclic compounds or selenoureas.'> However, the
synthesis and the physicochemical properties of simple unsaturated isoselenocyanates have
been little studied compared to those of alkylated derivatives. The synthesis of the simplest
organoselenocyanate, CH3;-NCSe, was first reported in 1965,° but so far only a few
functionalized derivatives have been synthesized. As an exception, the unsubstituted allyl
derivative, H,C=CHCH,NCSe, has been characterized as early as 1963, but in the presence
of the allyl selenocyanate (H;C=CHCH,SeCN) due to a [3,3]-sigmatropic rearrangement
between both forms. In a study on such rearrangements with selenium derivatives, Banert and
Toth® reported a pioneering work on the formation of the simplest allenyl isoselenocyanate
and substituted allenyl and vinyl derivatives. Recently the first preparation of the simplest
vinyl isoselenocyanate (H,C=CHNCSe) was reported and its microwave spectrum was

recorded.’

The use of UV-photoelectron spectroscopy assisted by theoretical calculations in quite recent

L2 and tellurols,13 has

studies on unsaturated isocyanides,10 selenols, selenocyanides,
clarified the nature of the interactions between the heteroatomic group and the unsaturated
substituent depending on the distance between the two functional groups. This approach was
particularly well adapted to reveal similarities and differences in the orbitals more or less
perturbed by the nature of interactions between groups. To the best of our knowledge, in the
case of isoselenocyanates, only the photoelectron spectra of alkylated and silylated derivatives
have been reported."*'® For a,p- or B,y-unsaturated isoselenocyanates, interactions between
NCSe and unsaturated groups can be identified and compared with those of a compound
having a pseudo-unsaturated substituent such as cyclopropyl isoselenocyanate, with reported
data on saturated isoselenocyanates and those of the isoelectronic oxygen or sulfur
derivatives. We report here the photoelectron spectra of vinyl-, allyl- and cyclopropyl-
isoselenocyanates 1-3 followed by the comparison of these spectra with those of the
corresponding oxygen 4-6 and sulfur derivatives 7-9 analyzed for this study (Chart 1). The

result of this study sheds some light to the understanding of the differences or similarities

between unsaturated isocyanates, isothiocyanates and isoselenocyanates.
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Chart 1. Vinyl-, allyl- and cyclopropyl-isoselenocyanates 1-3; vinyl-, allyl- and cyclopropyl-
isocyanates 4-6; vinyl-, allyl- and cyclopropyl-isothiocyanates 7-9.

Experimental Section
Materials.

Allyl isocyanate 5 and allyl isothiocyanate 8 were purchased from the Aldrich Company.
Vinyl isoselenocyanate 1°, cyclopropyl isocyanate 4 and vinyl isothiocyanate 7'7 have been

synthesized as reported.

Caution: Isoselenocyanates are foul-smelling liquids and potentially toxic species that should

be prepared under a well-ventilated hood.

Synthesis of allyl 2 and cyclopropyl isoselenocyanate 3. Into a one-necked cell equipped with
a stopcock were introduced under nitrogen the isocyanide (670 mg, 10 mmol), chloroform (10
mL), selenium powder (950 mg, 12 mmol), and few drops of tri-n-octylamine. The mixture
was immersed in a liquid nitrogen bath and degassed. The stopcock was closed, and the
mixture was heated at 50 °C (2) or 65 °C (3) overnight. The cell was then adapted to a
vacuum line equipped with a U-tube with stopcocks and immersed in a bath cooled at —45 °C.

The solution was heated to 60 °C and distilled in vacuo (0.1 mbar). The isoselenocyanate 2,3
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was selectively trapped at —45 °C. A second distillation can be performed to obtain a very

pure sample.

Allyl isoselenocyanate 2.”* Yield: 37 %, 540 mg. bpo impar = 60 °C. '"H NMR (CDCls, 400
MHz) & 4.18 (dt, 1H, *Jyu = 4.9 Hz, *Jun= 1.8 Hz, CH>-N), 5.32 (dt, 1H, *Jynuans = 15.0 Hz,
Jun = 1.8 Hz, HCH=C), 5.41 (dt, 1H, *Juneis = 10.1 Hz, *Jyu = 1.8 Hz, HCH=C), 5.82 (ddt,
1H, *Jititrans = 15.0 Hz, *Jineis = 10.1 Hz, Ty = 4.9 Hz, CH). >C NMR (CDCls, 100 MHz) &
47.5 (t, 'Ten = 155.3 Hz, CH,), 118.5 (t, 'Jey= 158.4 Hz, CH,=C), 124.8 (s, NCSe), 129.1 (d,
lJCHZ 160.6 Hz, CH,=CH). A few percent of two minor impurities were observed in the PE
and NMR spectra, the allyl selenocyanide coming from a [3,3]-sigmatropic rearrangement7’8

and the allyl isocyanide coming from the departure of the selenium atom.

Cyclopropyl isoselenocyanate 3. Yield: 47 %, 686 mg. bpo.imbar =~ 60 °C. "H NMR (CDCl;,
400 MHz) 8 0.89 (m, 2H, ¢-CH,), 0.99 (m, 2H, ¢-CH,), 2.93 (dddd, 1H, *Jyu="Juy= 7.3 Hz,
3Jun=">Jun= 3.7 Hz, CH). >C NMR (CDCls;, 100 MHz) & 8.46 (t, 'Jcy = 166.6 Hz, c-CH,),
25.5 (d brd, 'Jey = 190.7 Hz, CH), 118.4 (s brd, NCSe). HRMS calcd for C,HsN™Se™:
146.9587. Found: 146.959. IR [v (cm_l), gas phase] 3091 (w, vez), 3010 (m, vepp), 2924 (m),
2853 (w), 2142 (s, vncse), 1349 (5),1031 (m), 964 (m), 812 (m).

Computational Methods.

All calculations were performed using the Gaussian 09" software with the 6-31 1G(d,p) basis
set. DFT has been shown to predict various molecular properties of similar compounds
successfully.' All geometry optimizations were carried out with the range-separated hybrid
CAM-B3LYP*? functional. Frequency calculations were performed in order to verify that
the stationary points obtained were true energy minima. Possible conformers were
investigated and optimized to find the most stable one. First vertical ionization energy (/E ,,)
was calculated with ASCF-DFT, as a difference between ground states of cation and neutral
(IEy, = Ecation — preutraly a¢ the same geometry (of neutral system).”**° The TDDFT*"
approach was used for the calculation of higher ionization energies in combination with A
SCF-DFT method.”>'*? The vertical ionization energies were also calculated at the ab initio
level according to OVGF**** and SAC-CI**?7 (Symmetry Adapted Cluster/Configuration
Interaction) methods. We also use Koopmans’ theorem®® for a rough estimation of IE, within
frozen orbital approximation (IE; = —&X3.,,). Natural bonding analysis®®** was performed
with package included in Gaussian. Avogadro software*'** has been used as a visualization

tool for MOs.
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Photoelectron Spectroscopy.

The UV-PES spectra were recorded on a home-built (at the Institut of “Sciences Analytiques
et de Physico-Chimie pour DI’Environnement et les Matériaux” (IPREM)) three-part
spectrometer equipped with a main body device, He-I radiation source (21,21 eV and/or
48 eV) and a 127° cylindrical analyzer. The spectrometer works at constant analyzer energy
under 5.10° Torr working pressure and <107 Torr for channeltron (X914L) pressure. The
monitoring is done by a microcomputer supplemented by a digital-analogue converter (AEI
spectrum). The spectra resulting from a single scan are built from 2048 points and are
accurate within 0.05 eV. Spectra are calibrated with lines of xenon (12.13 and 13.44 eV) and
of argon (15.76 and 15.94 eV). The accuracy of the ionization potentials is + 0.03 eV for
sharp peaks and + 0.05 eV for broad and overlapping signals.

Compounds 1-3 and 5-8 were slowly vaporized under low pressure (10° Torr) inside
handmade three valves injector (3/4 inch diameter; 10 cm length; working temperature: -
190 °C < T < +300 °C) and the gaseous flow was then continuously and simultaneously

analyzed by UV-photoelectron spectrometry.

2. Results and Discussion
Calculated geometrical structures

To the best of our knowledge, conformational analyses on allyl isoselenocyanate 2 or
cyclopropyl isoselenocyanate 3 have not been investigated until now. In the allylic series, the
presence of two conformers in the gas phase was predicted for allyl isocyanate 5 * and allyl
isothiocyanate 8, ** but only one conformer was characterized for each of them by microwave
spectroscopy.*>* Microwave spectra of both conformers were recorded for cyclopropyl

. 47,48 49,50
1socyanate 6 " 9,

and cyclopropyl isothiocyanate the antiperiplanar conformer being
more abundant in both cases in the gas phase. For vinylic derivatives, theoretical calculations
concluded that for any HC=CHNCX (X = O, S, or Se) both CCNC synperiplanar (sp) and
antiperiplanar (ap) conformers should be present in the gas phase.”’ However, even if both
conformers were observed by microwave spectroscopy for H,C=CHNCO 4 with a major ap
conformer,> only the ap form was characterized for the sulfur’® and selenium derivative.” In
this recent study on vinyl isoselenocyanate 1, among the five different quantum chemical

methodologies employed, namely MP2, CCSD(T), CCSD, B3LYP and M062X, only MP2
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predicted the existence of a synperiplanar form, which has not been found in the microwave

spectra.

In order to elucidate the electronic structure differences of the three isoselenocyanates under
study, CAM-B3LYP functional and 6-311G(d,p) basis set were applied to calculate
geometrical structures of molecules 1-3. The selected geometrical parameters of most stable
conformers (see Computational Methods for more details) of vinyl, allyl and cyclopropyl

derivatives 1-9 are shown in Figure 1.

N [}
1.169 71 1.741
1.396 £ Se

174.3° 179.3°
1.741

2 1.424 N 1.168 C1

C
N | 195 C1 1164 o

4 1398 309 17430 5

N, C,
1.176, 1.589 o

158.8° 177.4°

Figure 1. Selected geometrical parameters of: vinyl isoselenocyanate 1, allyl
isoselenocyanate 2, cyclopropyl isoselenocyanate 3, vinyl isocyanate 4, allyl isocyanate S,
cyclopropyl isocyanate 6, vinyl isothiocyanate 7, allyl isothiocyanate 8 and cyclopropyl
isothiocyanate 9. Bond lengths are in angstrom, angles in degree. For 2, 5 and 8, the views in

alignment of C,-N bond allow to show the variation in dihedral angles C;-N-C,-Cs.

For each isoselenocyanate 1-3, the geometrical optimization and conformational analysis
always converge toward a unique local minimum (Figure 1). For vinyl isocyanate 4 and
cyclopropyl isocyanate 6, two conformers (local minima) were found, corresponding to
antiperiplanar and synperiplanar forms (C; symmetry). In both cases, the most stable
conformer is ap, as shown in Figure 1 (see Supporting Information for details). The
conformational analysis and geometrical optimization of allylisocyanate 5 and isothiocyanates

7-9 converge for each compound toward a unique local minimum as already observed for
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isoselenocyanates 1-3 (Figure 1). Despite that cyclopropyl isothiocyanate 9 has been
described under different conformers,” CAM-B3LYP functional only converges to ap
geometry. Results with B3LYP are slightly different since we found both ap and sp forms,
very close in energy (ap being the most stable). For R = vinyl, allyl or cyclopropyl in the R-
NCX series, we noted the same tendency of shortening C,-N and N-C; bonds, and
enlargement of the bond angle C,NC; in the order O, S, Se. Nitrogen center changes from
bent “sp™ hybridization in NCO to quasi-linear “sp” hybridization in NCSe. For the RNCO
series, the C,-N bond length is bigger when C,NC,; bond angle is smaller in order: 4, 6, 5. In
all cases, NCX is not linear; the smallest values for NCX angle correspond to the NCO (5:
173.9°; 4: 174.3°; 6: 174.5°), but the nearly linear framework is calculated for NCSe group (1:
178.5° 2: 179.0°; 3: 179.3°). The most remarkable parameter change is the dihedral angle
variation between allyl and NCX groups (C;-N-C,-Cs torsion angle): very different from a
synperiplanar conformation for NCO group (+49.9°), but close to a synperiplanar
conformation for NCS and NCSe groups (-6° and -12.1°, respectively. The bond length

between C; and heteroatom X is increasing, with respect to atomic radius of X.

The Natural Bonding Orbital (NBO) analysis of these compounds (Figure 2) gives more
precise information related to geometrical description. In the case of NCSe and NCS groups,
the N-C; bond looks like a triple bond (occupation close to 6 electrons), whereas C;-S and C;-
Se bonds correspond clearly to a single bond (occupation close to 2 electrons). Nitrogen has
no more its lone pair in these cases; these configurations correspond to R-N=C-X Lewis’
structure. For the NCO group, NBO’s occupations clearly indicate that N-C; bond should be
considered as a double bond (occupation close to 4 electrons) as well as the C;-O bond, with a
true lone pair localized on nitrogen. Such compounds correspond to R—-N=C=0O Lewis’
structure. These NBO results are consistent with previous geometrical description: for NCO
series, C;NC, bond angle increases while hybridization parameter A decreases (allyl:
138.6°/sp1'59; cyclopropyl: 139.3°/sp1'51; vinyl: 139.9°/sp1'42). For NCS and NCSe series, this

trend cannot be confirmed, due to a very low variation of parameter A (near 1.11+0.01).
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Figure 2. Natural Bonding Orbital (NBO) analysis of compounds 1-9. Numbers on bonds
correspond to NBO’s occupations (single bond close to 2; double bond close to 4; triple bond
close to 6; lone pair of nitrogen represented in grey). Natural electron configuration (2s”2p")

for nitrogen atom is given, and also sp* hybridization of nitrogen in C,-N bond.

Synthesis of Isoselenocyanates 1-3.

Vinyl 1, allyl 2 and cyclopropyl isoselenocyanate 3 have been synthesized by heating of a
mixture of the corresponding isocyanide with selenium in the presence of a base, the tri-n-
octylamine, and with chloroform as solvent. Purification was performed on a vacuum line by
selective trapping of the isoselenocyanates. Characterization was performed by 'H and *C
NMR spectroscopy and high-resolution mass spectrometry. In BC NMR spectroscopy, the
broad signal around & 125 ppm is typical of the NCSe chemical shift.

UV-photoelectron spectra assignments and theoretical evaluation of ionization energies

The photoelectron spectra of the vinyl isocyanate 4 52 and cyclopropyl isothiocyanate 9 >
have already been recorded and analyzed. However, for sake of consistency and to allow a
direct comparison between the compounds under current investigation, we also calculated the

IEs of previously published UV-PES results of compounds 4 ** and 9.* For the reliable
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assignment of PE bands, density functional theory [ASCF+TD-DFT (CAM-B3LYP)] and ab
initio (OVGF and SAC-CI) calculations of ionization energies using the 6-311G(d,p) basis set
have been carried out on optimized geometrical structures of 1-9. The comparison of the
theoretically predicted IEs and experimental data are summarized in Tables 1-3 and S1-S6 in
the Supp. Inf. section.

The recorded UV-photoelectron spectra of vinyl isoselenocyanate 1 and vinyl isothiocyanate
7 are depicted in Figure 3. The PE spectrum of isoselenocyanate 1 shows two first IEs at 8.9
eV and 10.8 eV, which are followed by a group of three broad bands at 12.8, 13.9 and 14.65
eV. The first intense PE band of isothiocyanate 7 is located at 9.1 eV and is well separated
from the less intense, right side shoulder at 9.6 eV. The sharp band at 11.1 eV is followed by
higher-energy ionizations at 12.9 and 13.85 eV.

9.1
13.85
Ui\[fw

CS

8 10 12 14 eV
8.9 TN\
(b) NCSe
14.65
13.9
10\8\/128
12 14 T eV

Figure 3. UV-Photoelectron spectra of (a) vinyl isothiocyanate 7; (b) vinyl

isoselenocyanate 1.

The assignment of these experimental results is corroborated by the theoretical
evaluation of ionization energies and is summarized in Table 1 for vinyl isoselenocyanate 1,

and in Table 3 for vinyl isothiocyanate 7, while Table 2 contains previously published UV-

10
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PES data of vinyl isocyanate 4.2 Also, the comparison of all UV-PES data of studied
compounds 1, 4, 7 with those of methyl isocyanate, isothiocyanate and isoselenocyanate, as
well as of the parent acids HNCO and HNCS, is useful. After some debate, the assignment of
UV-PES data of these compounds have been clarified using Penning ionization electron
spectroscopy.””® The experimentally determined first IEs for CH;NCX series (X = O: 10.67
eV; X = S: 9.35 eV; X = Se: 8.93 eV)" show clearly the significant influence of the
chalcogen atom on the energetic position of the corresponding HOMO. For these three alkyl
derivatives,'* the first and second ionization energies correspond to the out-of-phase (1" and ©
“*) MOs of the -NCX (X = O, S, Se) group. For the vinyl substituted RNCX series, the first
IEs of 1, 4 and 7 arise from the antibonding interaction between the ©'ncx and the we—¢c MOs
of vinyl substituent, while the third IEs are linked with the antibonding interaction between
the mnex and the me—¢c MOs. The contribution of the p orbital of sulfur and selenium,
respectively, is quite important, and these interactions lower the first IE value in comparison
with their oxygen analogue: IE = 9.8 ¢V for 4,°> 9.1 eV for 7 and 8.9 eV for 1. For the third
IEs, this destabilizing effect is even more pronounced and follows to the lower IE values
versus CH,=CH-NCO (12.65 eV) by 1.55 eV for 7 (11.1 eV) and by 1.85 eV for 1 (10.8 eV).
It should be stressed that the nature of the first IE of 1, 4 and 7 is substantially the same, but in
the case of the third IE, the bonding interaction between the vinyl group and the nitrogen lone
pair is privileged in 4, while the bonding interaction between nitrogen lone pair and mcs. is
noted in 1.

The second IEs of 1, 4 and 7 are attributed to the ©**Ncx in interaction with the ocn
(8.9 eV for 1; 11.28 eV for 4; 9.6 ¢V for 7), while the nature of the fourth, also of a’
symmetry, corresponds to the 7' nex in interaction with the oy in the case of 1 (12.8 ¢V) and
7 (12.9 eV), but to the fifth IE for 4 (14.97 eV); the fourth band of 4 (14.03 e¢V) is attributed
to the ¢"cy 1onization.

The comparison of these data for the first four IE values is presented on Figure 4.

11
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Table 1. Comparison of calculated and experimental ionization energies [eV] of vinyl

isoselenocyanate 1.

f

CAM-B3LYP
MO's nature CAM_'IE?LYP ASCF+TD- OVGF | SAC-CI | Exp.
TN DFT
a’ « \
. 7.751 8.621 8329 | 8825 | 89
TC NCSe — TTCC t
In 8.010 8.920 8.497 | 8522 | 8.9
T  NCSe
(Y QG
a 10.211 11.007 10.871 | 10.976 | 10.8
TlcC — TINCSe !
L , 12.532 12.991 12.995 | 13.064 | 12.8
T NCse- OcH | | ?Q‘
a 13.243 13.356 13.914 | 14.074 | 139
OCH, I se .> %
L
.o 13.611 13.967 14.606 | 14.668 | 14.65
1l Se, OCH

s

12
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Table 2. Comparison of calculated and experimental®® ionization energies [eV] of vinyl
isocyanate 4.

CAM-B3LYP

MO's nature CAM'ESLYP ASCF+TD- OVGF | SAC-CI | Exp.
¢ DFT
9 <
10
i ocs
12 .
a

14 TUNCO - TtCC .
15
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8.511 9.543 9.468 9.405 9.8

a
20 1 ' 10.199 11.277 10.992 11.087 | 11.28
2 T NCO ! \’
2 il ¢

26 all

27 Tcc+ NGO | g
28

11.699 12.816 12.563 | 12.640 | 12.65

33 a 12.868 13.866 14.186 | 14.150 | 14.03

34 GcH ﬁ

13.992 15.064 15.079 | 15.079 | 14.97

40 T NCo - Ocn é
41 ('

45 an

46 TINCO
47
48 #

15.023 15.708 15.897 | 15.854 | 15.43
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Table 3. Comparison of calculated and experimental ionization energies [eV] of vinyl

isothiocyanate 7.

—————————\
CAM-B3LYP
MO's nature CAM_%S;LYP ASCF+TD- | OVGF | SAC-CI | Exp.
v ) DFT
" 8.113 8.961 8.594 8.667 9.1
TUNCS — Tice I l
La* J%OQ 8.670 9.599 9.060 9.117 9.6
T 'NCS '
a 10.440 11.343 11.032 11.127 1.1
TCce — TINCS T\( .
a|
1 12.614 13.275 13.129 13.145 12.9
T NCS— OCH
a 13.272 14.114 14.259 14.306 | 13.85
GCH )
o a 13.970 15.038 14.666 14.815 141
n's; OcH
M
14
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Figure 4. Comparison of the first four experimental ionization energies [eV] of vinyl

50 The influence of the chalcogen atom in the series of vinyl isocyanates -N=C=X (X =

52 0O, S, Se) is clearly evidenced by the global lowering of all IEs with sulfur or selenium

containing -N=C=X functional group in comparison with -N=C=0. The HOMO energy

55 increases (IE decreases) by 0.7 eV for vinyl isothiocyanate and by 0.9 eV for vinyl
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isoselenocyanate in comparison with the vinyl isocyanate, respectively. It should be noted that
the next MO energies destabilizations are really significant if going from X =0to X =S or X
= Se, as for example for the 2" [Es: 1.68 eV for X =0 — X =S and 2.38 eV for X =S — X
= Se. The energy difference between the first and the third IEs corresponds to the strength of
vinyl substituent (mc=c) interaction with -N=C=X group and is the biggest one for CH,=CH-
NCO (2.85 eV), while for CH,=CH-NCS (2.0 e¢V) and CH,=CH-NCSe (1.9 eV) this
difference is significantly weaker.

It should be stressed that the theoretical evaluation of ionization energies (IEs) fits
very nicely with the Time-Dependent Density Functional Theory (TD-DFT) method,
combined with ASCF approach (ASCF+TD-DFT), while outer valence green function
(OVGF) and SAC-CI ab initio methods slightly underestimate two first IEs in the case of

isoselenocyanate 1 and isothiocyanate 7, versus experimental data, respectively.

Figure 5 displays the UV-PE spectra of allyl isoselenocyanate 2, allyl isocyanate 5 and
allyl isothiocyanate 8. The comparison of these experimental data with ASCF/TD-DFT,
OVGF and SAC-CI calculated IEs is presented in Tables S1 (for 2), S3 (for 5) and S5 (for 8)
in the Supporting Information. For the allyl isoselenocyanate 2 (the impurity at 8.2 eV
57,58

corresponds probably to Se, or polymeric selenium

first IEs (2: 8.75 eV) (8: 9.25 ¢V) are due to the nearly isolated -NCX ionizations (n"ncx and

) and allyl isothiocyanate 8, the two

" *Nex). The almost non-perturbed me—c ionization appears as the second band in the case of 2
(10.5 eV) and 8 (10.55 eV) and at the same value as for ethylene (10.55 eV).” The third,
fourth and fifth bands of 2 and 8 are attributed to the T ncx - Ocn, TNex - OcH, T NCX - OCC
MO’s ionizations, respectively. The situation is quite different for allyl isocyanate 5: the first
PE band (located at 10.25 eV) corresponds to the through-space antibonding interaction
between the t'Nco and the me—c MOs of allyl substituent, while the second IE is linked with
the through-space antibonding interaction between the 7 *Nneo and the 7. . . MOs (510.7 eV).
The third PE band of 5 is associated with the ©"*yco and the o .4 MOs (11.1 eV) and the
fourth one (13.0 eV) to the pseudo-rn of CHa.
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10.55 j?{i)
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12.3 A (c) = Ncse
8.75 U\ .
13.45
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Figure 5. UV-Photoelectron spectra of (a) allyl isocyanate 5; (b) allyl
isothiocyanate 8; (c) allyl isoselenocyanate 2, ¢ impurity, * allyl-
selenocyanate, ** allylisocyanide (see Experimental Section).

The influence of the chalcogen atom in the allyl substituent series is illustrated by the
comparison of the first four experimental ionization energies of allyl isocyanate 5, allyl
isothiocyanate 8 and allyl isoselenocyanate 2 (Figure 6). As noted for vinyl derivatives, the
replacement of the oxygen atom by sulfur causes a destabilization of HOMO (1 eV), while for
selenium this destabilization is more important (1.5 eV). The same tendency, but of greater
impact is observed with allyl derivatives for HOMO-1 (X=0 - X=S1.45¢eV; X=0—> X
= Se 1.95 eV). The most important difference concerns the isocyanate unit interacting through
space with allyl substituent, whereas it does not take place for isothiocyanate 8 and
isoselenocyanate 2. Keeping with this, we can consider rather two isolated moieties in the

case of the H,C=CH-CH,-NCS and H,C=CH-CH,-NCSe molecules.
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The comparison between vinyl isocyanate and allyl isocyanate shows much weaker

interaction between allyl (0.85 eV) than vinyl (2.85 eV) and -NCO functional group.

IE (eV)
8.0
Tr*NCSe
T\ e
" 8.75
9.0 T Nes
™\
9.25
10.0 .
T neo™ Meg
10.25
. Moo Tec
T nco™ Mee 10.55 10.5
10.7
11.0 Tr*1,Nco+TrcC
11.1
12.0
"lNCSe_GCH
123
Tes™Ocn
12.6 12.6
* ", -0
13.0 Ot nco ; - 12.85 Nese e
’ 13.0 Tyes™Och
NCO NCS NCSe
5 8 2

Figure 6. Comparison of the first four experimental ionization energies [eV] of allyl

isocyanate 5, allyl isothiocyanate 8 and allyl isoselenocyanate 2.

To study cyclopropyl derivatives, a new compound, the cyclopropyl isoselenocyanate 3, has
been synthesized. For cyclopropyl isothiocyanate 9,>* it has been reported that the interaction
of Walsh orbitals ws and wa of the cyclopropyl ring with the two out-of-plane combinations
of m, of the isothiocyanato group (IE = 9.09 eV: m(NCS)-wa; IE = 9.45 eV: mp(NCS)-ms)
lowers the first and second IEs of the corresponding methyl isothiocyanate by 0.26 and 0.15

eV, respectively. The UV-photoelectron spectra of cyclopropyl isoselenocyanate 3 and

18
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cyclopropyl isocyanate 6 are shown in Figure 7, and the corresponding IE calculations in
comparison with experimental data are given in Tables S2 and S4. For the consistency of
comparison, the known PE spectrum of cyclopropyl isothiocyanate 9 >* and its interpretation
are reported in Table S6. The low-energy band of cyclopropyl isoselenocyanate 3 at 8.45 eV
(a”) arises from the ionization of the m"Ncse orbital in antibonding interaction with the Walsh
orbital wa, while the second band at 8.6 eV, (a’) is assigned mainly to the ©"*Ncse. The ©4 -
T'nese (@7) and os - 5 *nese (a) MO’s ionizations appear at 10.95 eV and 11.4 eV,
respectively. The first IE of cyclopropyl isocyanate 6 (9.9 eV, a”) arises from the removal of
an electron from the w'\co in antibonding interaction with the Walsh %0 orbital A, While the
second IE (10.75 eV, a’) is assigned to the 1" "xco in antibonding interaction with the Walsh
orbital wg. The next two ionizations (12.3 eV, a’; 12.7 eV, a”) correspond to the ws - T "Neco
and wa - T'nco, respectively. Higher energy ionizations are due to the 6c.p, oc.c and bonding
combinations of 1 NCO moiety with Walsh orbitals. As for cyclopropyl isoselenocyanate 3,
higher energy ionizations are due to the cc.y, oc.c and bonding combinations of 1 NCO

moiety with Walsh orbitals.

(a) I}NCO

14.65

o 7

9.9 I
Jw \/
é 1'0

12 14 eV

10.95 (b) l}NCSe

1.4 135
l

I
U 131
8.6
8.45 w
T T T
8 10 12

Figure 7. UV-Photoelectron spectra of (a) cyclopropyl isocyanate 6; (b) cyclopropyl

T
14 eV

isoselenocyanate 3.
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Figure 8 summarizes the first four experimental ionization energies of cyclopropyl isocyanate

6, cyclopropyl isothiocyanate 9 > and cyclopropyl isoselenocyanate 3.

IE (eV)
8.0
n*NCSe_wA
8.45
0.64 g " se
- e -7 g Trl*NCSe
9.0 v*NCS_wA i
©9.09
0.81 HUNCS_(‘)S
9.45
’ 25 2.8
T nco™Wa. 7
10.0 9.9 157
2.14 2.28
Tr“Nco_wS’
10.75 WyTycse
11.0 028 _—--""anoF
D 10.95
WyThes | - -~
£ 11.23 WM s
238 1.55 033__--" 114
1.47,° W | -
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12.0 //// 0.57
W 0| -~ .
12.3 )
L
12.7
13.0

I}NCO [}NCS I}NCSe

6 9 3

Figure 8. Comparison of first four experimental ionization energies [eV] of cyclopropyl

isocyanate 6, cyclopropyl isothiocyanate 9 ** and cyclopropyl isoselenocyanate 3.

The comparison of the first four experimental ionization energies of cyclopropyl
isocyanate 6, cyclopropyl isothiocyanate 9 ** and cyclopropyl isoselenocyanate 3 shows a
significant stabilizing (withdrawing) effect of oxygen atom since, as noted for vinyl and allyl
derivatives, all IEs correspond to lower energy (higher IE values) than those of the sulfur or
selenium -NCX functional group. The measure of the Walsh orbitals (wa and wg) interaction

with -NCX moiety can be considered as an energy difference between m'xcx-0a (or T "Nex-

os) and ®a-T"Nex (or ®s-1t*nex). The highest value of 2.8 eV is obtained for m'Nco-®a / ©a-
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Page 20 of 40



Page 21 of 40

oNOYTULT D WN =

'nco of cyclopropyl isocyanate 6 and means that Walsh orbitals in this context have the same
contribution as the vinyl substituent does (2.85 eV). A slightly weaker input is conferred to

the sulfur (2.14 eV) and selenium derivatives (2.5 eV).

Finally, the three photoelectron spectra of isoselenocyanates 1-3 can be compared to
each other. As can be seen from the comparison of the first four experimental ionization
energies of vinyl isoselenocyanate 1, allyl isoselenocyanate 2 and cyclopropyl
isoselenocyanate 3 (Figure 9), the vinyl and cyclopropyl isoselenocyanates present
similarities such as stronger interactions between the NCX functional group and the
substituent (vinyl and cyclopropyl, respectively), while in the case of allyl and —NCSe

functional groups two non-interacting moieties should be considered.
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Figure 9. Comparison of first four experimental ionization energies [eV] of compounds 1-3.

3. Conclusion

For the vinyl series H,C=CH-N=C=X (X = O, S, Se), all IEs of selenium and sulfur
derivatives are lowered in comparison with the corresponding isocyanate, showing a decrease
of the strength of the vinyl substituent (7 c-c) interaction with the -N=C=X functional group.
Similar effects were observed for cyclopropyl derivatives between the pseudo-unsaturated
cyclopropyl substituent and the N=C=X moiety. Such an interaction between the functional
groups in the allylic series was only observed for the oxygen derivative. The Figure 10

summarizes the comparisons between the first IE of these nine compounds. The influence of
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the vinyl, cyclopropyl and allyl substituents on the first [E of R-NCX (X = Se, O, S) is clearly
demonstrated. For X = Se, due to the weak interaction between the substituent and the -NCSe
functional group, the higher lying HOMO is found for the cyclopropyl substituent. In the case
of X = O, strongly interacting —-NCO moiety and vinyl substituent, follow to the higher energy
of HOMO in comparison with its cyclopropyl and allyl derivatives. The -NCS functional
group is much less sensitive to a change of environment.

Thanks to the synthesis, theoretical calculations and photoelectron spectroscopy of the
selenium derivatives, the type and extent of the interaction between the N=C=X (X = O, S,
Se) group and an unsaturated (vinyl, allyl) or pseudo-unsaturated (cyclopropyl) moiety are
now clarified as well as the comparison of the interactions with the substituent for each

heteroatom.

IE, (eV)
8.0

Y

NCSe

9.0

NCS

)
|
Y

10.0 Z oo

& |
Q
le}

Figure 10. Comparison of first experimental ionization energies [eV] of compounds 1-9.

Supporting Information.
The SI part contains computational details (optimized geometries, energies, conformer
studies) about compounds 1-9 and Tables (S1-S6) of comparison of calculated and

experimental ionization energies [eV] for compounds 2, 3, 5, 6, 8, 9.
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