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Abstract

We report Monte Carlo (MC) simulations of the Lennard-Jones (LJ) fluid at the liquid-vapor interface in the critical region. A
slab-based tail method is associated with the MC simulations to approach as close as possible the critical point (T ∗ = 0.98T ∗C). We
investigate then the impact of system-sizes on the surface tension and coexisting densities by considering very large box dimensions
for which the surface tension is independent of system-sizes at low temperatures.
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1. Introduction

Most of the phenomena in surface science adhesion, wetting, lubrication [1, 2], nucleation [3, 4] involve the
combination of liquid-liquid, liquid-vapor, and liquid-solid interfaces. An understanding and control of the surface
tension is at the heart of many important industrial and practical processes. The molecular simulations have been
extensively used this last decade [5] to reproduce the interfacial tension at different thermodynamic conditions and to
describe the interface region in terms of specific arrangements [6, 2].

Since 1974 and so far, the calculation of the surface tension from two-phase simulations has been an area of
active research. This long-standing activity is explained by the fact that a number of factors such as the surface
area (See Figures 1a and 1b) [7, 8, 9, 10, 11, 12], the cutoff radius and the corresponding long-range corrections
[13, 14, 15, 16, 17, 18, 19, 20], the truncation of the potential and the force as well as the method used for the
calculation of the surface tension [21, 22, 23, 24, 25, 26, 27] make the simulated properties dependent on initial
conditions. All these issues have been addressed in a recent review [5]. A number of recommendations have been
proposed to resolve these issues leading now to an accurate calculation of the surface tension for reduced temperatures
less than 0.85 T ∗C .

For higher temperatures, the situation is far from being identical. Indeed, the cutoff-dependence on the surface
tension and coexisting densities is still stronger [28]. Recently, we have shown that it is possible to approach the
gas-liquid critical point of the Lennard-Jones fluid by performing two-phase simulations of a slab geometry. These
simulations have used a slab-based tail [17] methodology with large cutoff values. The main conclusions of this work
are that Monte Carlo simulations with the addition of long-range corrections to the energy during the course of the
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simulations using a reduced cutoff of r∗c = 6.4 reproduce quantitatively the dependencies of the densities and surface
tensions on the temperature close to the critical point. In the case of the modeling of methane, the real value of the
cutoff corresponds to rc = 6.4σ = 24 Å which is twice that used in most atomistic simulations [6, 26].

Whereas a reduced cutoff of r∗c = 3.0 is large enough to avoid any cutoff-dependence of the surface tension with a
slab-based tail method for temperatures far from the critical point (see Ref.12), an increase to r∗c = 6.4 is required to
provide reliable surface tensions and coexisting densities in the critical region [28]. A key question arises now : for
this large cutoff value of r∗c = 6.4, how do the size-effects affect the values of surface tension and coexisting densities
of the critical region ? The size-effects will be evaluated trough the variations of the interfacial area A = Lx × Ly

and the longitudinal dimension Lz where z represents the direction normal to the interface. It has been established,
at relatively low temperatures, that the size-effects led to oscillatory behaviors of the surface tension with the surface
area (Figure 1a) and the L∗z dimension (Figure 1b).
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Figure 1. Surface tensions [10] calculated with the truncated LJ potential and the LJ potential modified with the Guo and Lu slab-based tail
methodology at T ∗= 0.8 for a) different interfacial areas and b) L∗z dimensions. The dotted vertical lines represent the values of interfacial area and
of longitudinal dimensions L∗z investigated here.

To address this issue, we propose here to investigate LJ liquid-vapor systems close to the critical point with large
surface areas and longitudinal dimensions. Figures 1a and 1b show the values of surface areas (L∗x1, L

∗
x2, L

∗
x3) and

longitudinal dimensions (L∗z1, L
∗
z2, L

∗
z3) considered here. The details of the simulation in terms of box sizes and number

of LJ particles are given in Table 1.

2. Methodology

All the properties reported here refer to the Lennard-Jones (LJ) particle and are expressed in reduced LJ units
where T ∗ = kBT/ε, γ∗ = γσ2/ε, L∗ = L/σ, p∗ = pσ3/ε, ρ∗ = ρσ3 where T ∗, γ∗, L∗, p∗, ρ∗ represent the reduced tem-
perature, surface tension, length, pressure and density, respectively. MC simulations were performed in the constant-
NVT ensemble. All simulations were organized in cycles. Each cycle consisted of N translations. The equilibration
phase was composed of 500 000 cycles and the production phase of 2 × 106 cycles up to 5×1010 translation moves.
The maximum displacement which was adjusted during the equilibrium phase to give an acceptance ratio of 0.4, was
found to be close to 0.23 at T ∗ = 1.26 and to 0.26 at T ∗ = 1.28 in reduced LJ units. The thermodynamic and mechan-
ical properties were calculated every 20 cycles requiring the storage of 100 000 configurations. The statistical errors
for these properties were estimated using 5 superblocks averages of 20 000 configurations. The MC calculations were
carried out at two reduced temperatures T ∗ = 1.26 and 1.28 for a cutoff radius r∗c = 6.4.

In the Janeček approach, the long-range correction to the truncated potential is added to the truncated uST(ri j)
potential. Considering a system of N atoms, the total configurational energy UTOT is

UTOT =

N−1∑
i=1

N∑
j=i+1

uST(ri j) + ULRC (1)
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where ri j is the pair separation distance and uST(ri j) is the spherically-truncated Lennard-Jones potential defined by

uST(ri j) =

{
uLJ(ri j) ri j < rc
0 ri j ≥ rc .

(2)

uLJ is the Lennard-Jones (LJ) potential defined by ε and σ corresponding to energy and size parameters, respectively.
The simulation box is divided into Ns slabs of width ∆z = 0.13 (in LJ units). Each slab, which is parallel to the
interface, has a volume Vs = LxLy∆z and zk defines the centre of the kth slab. In Equation (1), ULRC is defined as

ULRC =
1
2

Ns∑
k=1

ulrc(zk) (3)

where the long-range correction energy of the slab k is

ulrc(zk) = ρ(zk)Vs

Ns∑
j=1

ρ(z j)w(|z j − zk |)∆z (4)

where the sum is over all the slabs in the box. ρ(zk) defines the density number of the slab k. The contribution
w(ξ) = w(|z j − zk |) is calculated by assuming a uniform distribution of atoms in the slab. For the Lennard-Jones
potential, the function w(ξ) is

w(ξ) =


4πεσ2

1
5

(
σ

rc

)10

−
1
2

(
σ

rc

)4 for ξ ≤ rc

4πεσ2

1
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(
σ

ξ

)10

−
1
2

(
σ

ξ

)4 for ξ > rc

(5)

Note that Equation (3) defines the long-range correction energy as a sum over slabs whereas the original paper [17]
considers the correction in terms of a molecule i at zi. Finally there is an improvement to the original version of
Janeček’s method proposed by MacDowell and Blas [29], which avoids the decomposition of the long-range correction
of the energy into local contributions and increases the speed of the calculation. The long-range corrections to the
energy are applied at each MC move although the density profile used to calculated the long-range corrections is
updated every 10 MC cycles [12].

The intrinsic part of the surface tension, γI, calculated using the Irving and Kirkwood [21, 22, 30, 31, 32, 33]
definition, uses the components pN(z) and pT (z) of the pressure tensor as a function of z

γI =

∫ Lz/2

−Lz/2

(
pN(z) − pT(z)

)
dz. (6)

Equation (6) is a mechanical definition of γ based upon the force acting across a unit area in the z-plane for one
interface. Due to the truncation of the potential, the long range corrections to the surface tension are calculated with
the Janeček approach as

γlrc(zk) =
Vs

A

[
pN,lrc(zk) − pT,lrc(zk)

]
(7)

The normal and tangential components of the long-range corrections of the pressure tensor are given by

pN,lrc(zk) = ρ(zk)
Ns∑
j=1

ρ(z j)πzz(|z j − zk |)∆z (8)
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and

pT,lrc(zk) =
1
2

(
pxx,lrc(zk) + pyy,lrc(zk)

)
= ρ(zk)

Ns∑
j=1

ρ(z j)
1
2

(
πxx(|z j − zk |)

+ πyy(|z j − zk |)
)
∆z (9)

where the operational expressions of the functions πxx(ξ), πyy(ξ) and πzz(ξ) can be found in Ref.12.

Table 1. Reduced surface tensions of the LJ fluid calculated at different surface areas A and L∗z dimensions where N represents the total number of
particles in the box. The different contributions of the surface tension, i.e, intrinsic, long range and total parts are given in LJ reduced units. < γ >
is calculated using the Irving-Kirkwood definition. The subscripts give the accuracy of the last decimal(s), i.e., 0.10437 means 0.104 ± 0.037. The
surface area A1 corresponds to 12.9 × 12.9 and the Lz1 dimension to 200.9 in reduced units.
L∗x × L∗y L∗z N Box γ∗I γ∗LRC γ∗

T∗ = 1.26
12.9 × 12.9 200.9 10796 A1Lz1 0.05510 0.0081 0.06310

16.1 × 16.1 200.9 16856 A2Lz1 0.0657 0.0121 0.0777

19.3 × 19.3 200.9 24259 A3Lz1 0.0637 0.0121 0.0757

12.9 × 12.9 267.9 16195 A1Lz2 0.08320 0.0131 0.09620

12.9 × 12.9 428.6 26992 A1Lz3 0.08937 0.0151 0.104 37

T∗ = 1.28
12.9 × 12.9 200.9 10796 A1Lz1 0.02710 0.0051 0.03210

16.1 × 16.1 200.9 16856 A2Lz1 0.03812 0.0101 0.04812

19.3 × 19.3 200.9 10796 A3Lz1 0.0383 0.0061 0.0453

12.9 × 12.9 267.9 16195 A1Lz2 0.04413 0.0081 0.05213

12.9 × 12.9 428.6 26992 A1Lz3 0.06113 0.0091 0.07013

3. Results and discussions

Figure 2 shows the profiles of the difference between the normal and tangential pressure components at T∗ = 1.28
for both surface areas. First, we observe that the profiles of p∗N(z∗) - p∗T(z∗) and γ∗(z∗) are in line with an expected
behavior of liquid-vapor interface at mechanical equilibrium. However, the peaks at the interface are much less marked
at T∗ = 1.28. The profiles of γ∗(z∗) shows that the bulk phases do not provide any contribution to the surface tension
and lead to flat portions on the profiles. Only the interface contributes to this property indicating that it is stable and
well-located. In other words, it is possible to simulate explicit interfaces of LJ fluid very close to the critical point
(0.98 T ∗C). T ∗C was estimated to 1.31 by GCMC-FSC simulations [34]. We also observe that a larger system-size
(A3Lz1) leads to a different surface tension. The difference of surface tension between these two surface areas comes
from the contribution of the interfaces, with peaks of slightly larger magnitudes for A1Lz1 . The fluctuations in the
bulk phases are identical between the two systems-sizes. As result, the investigation of the impact of the system-sizes
on the surface tension is relevant in the critical region at these two temperatures.

We now focus on the heart of this work, namely the effects of the system-sizes close to the critical point. Figure 3
and Table 1 show the dependencies of the surface tension on the interfacial area (L∗x =

√
(A)) and on the longitudinal

dimension (L∗z ) at both temperatures T ∗ = 1.26 and T ∗ = 1.28. We also report the impact of the box dimensions on the
liquid and vapor densities. First, we check that the surface tensions and coexisting densities respect the temperature
dependence even if the variation of temperature (∆T ∗ = 0.02) is weak. The decreases of the surface tension and
liquid density and the increase of the vapor density are always observed despite the system-size. Second, we are able

4



  

/ Chemical Physics Letters 00 (2018) 1–8 5

0.020

0.015

0.010

0.005

0.000

-0.005
p*

N
 - 

p*
T

-50 0 50
z*

0.04

0.02

0.00

-0.02
Ɣ* (z*)

 A3Lz1
 A1Lz1

)

Figure 2. Profiles of the difference p∗N(z∗) - p∗T(z∗) along the direction z∗ normal to the interface at T∗ = 1.28. The integral of these profiles are
represented by dotted lines on the right axis.

to provide very small values of surface tensions (smaller than 0.027 in reduced units) with a slab-based tail method.
The long range correction to the surface tension contributes to about 15 % of the total value. This tail contribution
can never be neglected even at high temperatures. With intensive MC calculations, we obtain very small values of
fluctuations in the surface tension making the comparison of the interfacial properties with different system-sizes
relevant.
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Figure 3. a) and c) Reduced surface tensions and b) and d) coexisting densities as a function of the interfacial area (L∗x =
√

(A)) and the longitudinal
dimension L∗z at two reduced temperatures T ∗ = 1.26 and 1.28. In parts b) and d), the liquid and vapor densities are represented by red points and
blue points on the right and left axes, respectively.
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Third, for lower temperatures (T ∗ < 0.85T ∗C), the maximum variation of the surface tension in the first oscillations
of γ∗ = f (L∗x) reaches 30% with the LJ truncated potential and decreases to 15% with the slab-based tail methodology
used here (see Figure 1). When the surface tension does not change any more with L∗x (from L∗x > 11), the values of γ
are identical within 0.8%. As shown in part b) of Figure 1, these same variations in γ∗ = f (L∗z ) are about 20% with the
Janeček method and the surface tension is independent on L∗z from L∗z = 60. The dimensions of the simulation boxes
simulated here (see Figure 1 and Table 1) are significantly larger than those recommended to avoid any size-effects
at smaller temperatures. Nevertheless, the size-effects are still noticeable for these very large box dimensions close
to the critical point. Actually, parts a) and c) of Figure 3 show variations of surface tension in the order of 35%
with the interfacial area (Figure 3a) and the longitudinal dimension (Figure 3c). It means that it is not possible to
reach a surface tension independent on the system-size close to the critical region within the range of system-sizes
investigated here. As expected as we approach TC , the size-effects become more important. We can draw the same
conclusions with the coexisting densities. The liquid density supports variations in the order of 20% whereas the
vapor density changes by 45% with L∗x and L∗z . This is an interesting result since it has been shown [35, 7] in the past
that the coexisting densities were not dependent on system-sizes for temperatures lower than 0.90T ∗C .

The density profiles of Figure 4 confirm the dependencies of the coexisting densities on system-sizes. For the
same interfacial area A1, the density profiles show a clear dependence on L∗z . The density profiles can be fitted to a
hyperbolic tangent function even if the agreement is less satisfactory in the interfacial region. The density profiles in
the bulk regions are less flat than at lower temperatures and the interface is more diffuse. This is the price to be paid
when we approach the critical point. In addition, a weak variation (∆T ∗ = 0.2) of temperature is clearly observable
on the profiles. Anyway, these profiles are rather well defined to allow an estimate of the coexisting densities. These
density profiles show that the interfacial thickness increases significantly as we approach TC . It is well-known that the
interfacial width coincides with the bulk correlation length [36, 37, 38] and thus diverges at T ∗C as d∗ ∼ (T ∗C − T ∗)ν.
We have shown in a recent paper [28] that this divergence of the interfacial thickness starts at T ∗ = 1.28 and that the
slope ν obtained by Monte Carlo simulations was equal to -0.52 ± 0.02 whereas the mean-field theory [30] predicts
ν = −1/2. In Figure 4b, we have represented the interfacial thickness d∗ as a function of T ∗C − T ∗. The values were
taken from a recent work [28] for which the dimensions of the system match are a bit smaller than those of A1Lz1.
The values d∗ calculated here are reported on this figure for different box dimensions. We observe a good agreement
with the value of d∗ calculated in A1Lz1 and strong deviations when the longitudinal box dimension L∗z is changing.
Actually, the strong dependence of the interfacial thickness on L∗z , illustrated in part a) of this figure, is confirmed on
this curve. We cannot conclude on the scaling exponent since additional simulations must be carried out with the box
dimensions used in this paper. To complete this comparison, we have represented in Figure 4c the surface tension
γ∗ as a function of T ∗C − T ∗. Our MC simulations [28] predict a slope µ of 1.12 ± 0.0.2 in γ∗ ∼ (T ∗C − T ∗) whereas
µ = 1.26 in the mean-field theory [30]. We observe here that changing Lz impacts strongly on the values of γ∗ when
approaching T ∗C .

4. Summary

The combination of a slab-based tail method with Monte Carlo simulations has been used to investigate the de-
pendencies of the coexistence properties close to the critical point at T ∗ = 0.98T ∗C . It has been established at low
temperatures (T ∗ < 0.85T ∗C) that the surface tension shows an oscillatory behavior with the interfacial area for in-
terfacial areas smaller than (L∗x × L∗y < 11 × 11). In this work, we took the route of using large box dimensions
for investigating the critical region. The main conclusion is that the surface tension and the coexisting densities are
system-sizes dependent even with very large box dimensions. The surface tension is dependent on both the interfacial
area and the longitudinal dimension. The variation of the surface tension as a function of L∗x or L∗z can reach 35%. The
liquid and vapor density significantly change with the box dimensions. None of these dependencies can be attributed
to large statistical fluctuations and unstable interfaces. All these factors have been controlled by doing intensive Monte
Carlo simulations with a slab-based tail method. We also report a strong dependence of the surface tension and the
interfacial thickness on the longitudinal dimension when approaching T ∗C .
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Figure 4. a) Density profiles of the LJ fluid at T ∗ = 1.26 and T ∗ = 1.28 for different system-sizes as indicated in Table 1. We add for discussion
the fits of these density profiles to a hyperbolic tangent function [28]; Log-log plots of the b) interfacial width d∗ and c) reduced surface tension γ∗

versus T ∗C − T ∗ where T ∗C was taken to 1.31 [34]. The dotted lines represent the least-square fits [28]. The interfacial widths and surface tensions
calculated in this work are represented for different box dimensions as indicated in the legend.

References

[1] A. C. Mendonca, P. Malfreyt, A. A. Padua, Interactions and ordering of ionic liquids at a metal surface, J. Chem. Theory. Comput. 8 (2012)
3348–3355.

[2] A. C. Mendonca, A. A. Padua, P. Malfreyt, Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: Prediction of
the friction, J. Chem. Theory. Comput. 9 (2013) 1600–1610.

[3] S. Auer, D. Frenkel, Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy, Nature 413 (2001)
711–713.

[4] S. Prestipino, A. Laio, E. Tosatti, Systematic improvement of classical nucleation theory, Phys. Rev. Lett. 108 (2012) 225701.
[5] A. Ghoufi, P. Malfreyt, D. J. Tildesley, Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface, Chem. Soc.

Rev. 45 (2016) 1387–1409.

7



  

/ Chemical Physics Letters 00 (2018) 1–8 8
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• We investigate the size-effects on the surface tension in the critical region  
• We approach the critical as close as possible with a slab-based tail Monte Carlo 

method. 
• The surface tension and coexisting densities are system-sizes dependent in the 

critical region. 
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