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Abstract 

We report the synthesis, characterization and the optoelectronic properties of a series of four 

new luminescent iridium(III) complexes 1-4, of the form [Ir(C^N)2(N^N)]PF6 [where C^N is 

the nonconjugated benzylpyridinato (bnpy) and N^N is a neutral diimine ancillary ligand] with 

the goal of investigating the impact of the methylene spacer between the coordination moieties 

of the C^N ligand on the optoelectronic properties of the complexes. The crystal structures of 

1-3 illustrate two possible orientations of the methylene unit of the bnpy ligand. The formation 

of these two separate conformers is a result of the conformational flexibility of the bnpy ligand. 

In complexes 3 and 4, mixtures of the two conformers were observed by 1H-NMR spectroscopy 

in CDCl3 at room temperature, whereas only a single conformer is detected for 1 and 2. Detailed 

DFT calculations corroborate ROESY experiments, accounting for the presence and relative 

populations of the two conformers. The optoelectronic properties of all four complexes, 

rationalized by the theoretical study, demonstrate that the interruption of conjugation in the 

C^N ligands results in a reduced electrochemical gap but similar triplet state energies and lower 

photoluminescence quantum yields compared to the reference complexes R1-R4. Depending 

on the nature of the N^N ligand, we observe (1) marked variations of the ratio of the conformers 

at ambient temperature and (2) phosphorescence ranging from yellow to red. 

 

Introduction 

One of the most promising and explored classes of luminescent transition metal 

complexes are those based on iridium(III) as they show excellent photo- and thermal stabilities. 

They are typically highly efficient emitters with relatively short phosphorescent emission 

lifetimes, and their emission energy can be easily tuned as a function of ligand design.1-2 The 

most widely studied class of iridium complexes are heteroleptic bis-cyclometalated complexes 

of the form [Ir(C^N)2(L^X)]n+, where C^N is the cyclometalating ligand and L^X is either a 

monoanionic ligand such as acetylacetonate (acac, n = 0), or a neutral diimine ligand such as 
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2,2'-bipyridine (bpy, n = 1). The main strategies for tuning the emission energy of these 

complexes are the decoration of the ligands with either electron-withdrawing or electron-

donating substituents, and the modification of the coordinating heterocycles.1,3-5 The C^N 

ligands nearly always form five-membered chelates, typically based on 2-phenylpyridine 

(ppyH). Strategies involving interruption of the conjugation in these C^N ligands, such as going 

from a five-membered chelate to a six-membered chelate that incorporates a methylene spacer, 

are far less explored. Indeed, examples of photoactive iridium complexes incorporating six-

membered chelate C^N ligands remain rare and belong to two categories depending on the 

presence of conjugated6-8 or nonconjugated9-12 bidentate chelating ligands.  

 

To date, to the best of our knowledge, all iridium complexes employing nonconjugated 

six-membered chelate C^N ligands have included either a pyrazole9,11 or benzyl-derived N-

heterocyclic carbene10 coordinating moiety as part of the ligand. Surprisingly, the use of 

pyridine, such as with 2-benzylpyridinato (bnpy), has not yet been explored in the design of 

photoactive iridium complexes; this ligand has only been reported for iridium complexes used 

in catalysis.13-14 The two C^N-coordination moieties in bnpy are separated by a methylene 

spacer, which fully interrupts the π-conjugation within the C^N ligands. This allows the 

decoration of the pyridine without influencing the electronic properties of the phenyl ring and 

therefore the HOMO level of the complex; the HOMO being typically located on the phenyl 

rings of the C^N ligands and the iridium d-orbitals.3 In the present study, we have targeted a 

series of four new cationic Ir(III) complexes (Chart 1) of the form [Ir(bnpy)2(N^N)](PF6), where 

the N^N ligand is a neutral diimine chelate, with the goal to evaluate whether breaking the 

conjugation within the C^N ligands can aid in pushing the emission to the blue, which has been 

an active research theme in the Zysman-Colman group.15-23 Complexes 1 and 2 contain 

bipyridine-based ancillary ligands [1, N^N = bpy; 2 = 4,4'-di-tert-butyl-2,2'-bipyridine 

(dtBubpy)] while complexes 3 and 4 each contain two 5-membered heterocycles in the electron 
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deficient 2,2'-bithiazole (bthz) and the electron-rich 1H,1'H-2,2'-biimidazole (biim) ligands, 

respectively. The motivation for the choice of N^N ligands was to have a series of ligands that 

(1) spanned a wide electronic range and (2) whose bite angles varied in order to assess what 

impact, if any, this has in conjunction with the C^N ligands. The optoelectronic properties of 

these complexes are explored and compared with benchmark complexes (R1-R4, see Chart 1) 

where the bnpy ligands have been replaced with ppy; R1-R3 have been previously reported15,24 

while R4 is new. The physical and photophysical properties of these complexes are 

corroborated by density functional theory (DFT) and time-dependent DFT (TD-DFT) 

investigations. 

 

 

Chart 1. Synthesized and characterized complexes (1-4) and reference complexes (R1-R4) in 

this study. 

 

Results and Discussion 

Complexes 1-4 were obtained as their hexafluorophosphate salts from the chloro-

bridged dimer [Ir(bnpy)2Cl]2, upon reaction with the corresponding N^N ancillary ligand and 
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subsequent anion exchange with NH4PF6 following standard reaction conditions; complex R4 

was obtained analogously using [Ir(ppy)2Cl]2.25-26 In the first step, [Ir(bnpy)2Cl]2 was 

quantitatively obtained as a yellow solid by treatment of bnpyH with IrCl3.6H2O in a 3:1 

mixture of 2-ethoxyethanol/H2O (125 °C, 24 h). This dimer was then cleaved with the 

appropriate N^N ligand in 1:1 mixture of CH2Cl2/MeOH (40 °C, 18 h) to afford the cationic 

Ir(III) complexes as their chloride salts. After column chromatography on silica (eluent: 5% 

MeOH in CH2Cl2) followed by an ion exchange with aqueous NH4PF6, complexes 1-4 were 

isolated in excellent yield (78% - 91%) as their hexafluorophosphate salts. The ancillary ligands 

for 3 (bthz)24 and 4 (biim)20 were obtained according to previous reports. All complexes were 

characterized by 1H, 13C and 31P NMR spectroscopy, HR-ESI mass spectrometry, elemental 

analysis, and melting point determination (see Figures S1−S19 in the Supporting Information 

for NMR and HR-ESI-mass spectra). The structures of complexes 1−3 and the chloride salt of 

R4, R4.Cl, were determined by single crystal X-ray diffraction.  

 

Crystal Structures 

Single crystals of sufficient quality of 1-3 and R4.Cl were grown from vapor diffusion 

of a CH2Cl2 or acetone solution of the complex with diethyl ether acting as the anti-solvent. 

The structures of 1-3 and R4.Cl were determined by single-crystal X-ray diffraction (Figure 1, 

R4.Cl is shown in Figure S20 in the SI). All three (1-3) complexes possess a distorted 

octahedral geometry, with the two bnpy ligands in complexes 1-3 coordinated to iridium to 

form a six-membered chelate ring. The pyridine rings of the C^N ligand are disposed in a 

mutually trans arrangement while the cyclometalating carbon atoms are trans to the nitrogen 

atoms of the N^N ligand, presenting an analogous binding mode to the majority of cationic 

Ir(III) complexes such as R1-R4.Cl. In 1–3 the Ir-CC^N bonds are noticeably shorter [2.022(5) 

– 2.052(7) Å for 1–3; 1.988(6) – 2.016(7) for R4.Cl] than the Ir-NN^N bonds, which range from 

2.148(5) to 2.203(4) Å [2.153(5) – 2.184(5) Å for R4.Cl]. These bond lengths are all similar to 
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the analogous bond lengths in R1-R3.15,24,27-28 The bite angles of the N^N ligands in 1-3 vary 

from 75.24(15)-77.8(2)° [76.1(2)° for R4.Cl], which are again similar to the reference 

complexes R1-R3. The bite angles of the bnpy ligands vary between 87.97(13) and 87.98(13)° 

for 3, 88.1(3) and 88.3(6)° for 1, and 88.8(2) and 89.2(3)° for 2; reflecting the increasing steric 

demand of the different N^N ligands. These bite angles are in the same range as those observed 

in a related complex using a different nonconjugated C^N ligand with a methylene spacer, 

[Ir(dFbpz)2(pymbi)]PF6 [where dFbpzH is 1-(2,4-difluorobenzyl)-1H-pyrazole and pymbi 3-

methyl-1-(2-pyridyl)-benzimidazolin-2-ylidene-C,C2], the bite-angle across the dFbpz ligand 

being 88.80°.11 As expected, the bite angles of the bnpy ligands are significantly larger than 

those seen in the reference complexes, which contain five-membered ring C^N chelates [R1: 

80.00°, R2: 80.42°, R3: 80.60° and R4.Cl: 80.1(3)–80.7(2)°]. 

 

 

Figure 1. Solid-state structures of complexes 1-3, with thermal ellipsoids drawn at the 50 % 

probability level. Hydrogen atoms, PF6
-
 counterions, solvent molecules and minor components 

of disorder are omitted for clarity. Note the different orientations of the bnpy ligand in 1 and 2 

vs 3. Color codes are: C = grey, N = light purple, S = yellow and Ir = blue. 

 

In the X-ray structures, the conformation of the bnpy ligands in complexes 1 and 2 

differs from that in 3. Complexes 1 and 2 are found solely as one conformer where the pyridine 
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rings of the C^N ligand are orientated towards the N^N ligand, whereas, in 3, the other 

conformer, where the methylene groups point towards the N^N ligand, is observed, despite this 

being the minor conformer observed by 1H NMR (see below). Given the small differences 

between the conformer free energies computed in solution for 3 (see below), it is not surprising 

that packing effects can affect the equilibrium and that the most favored conformer differs in 

solution and in the solid-state. Complex 1 crystallizes in the polar space group P21, so individual 

crystals could be enantiopure, resulting from conglomerate crystallization; however the Flack 

parameter [0.305(7)] indicates the likelihood of individually racemic crystals being present. 

Complexes 2 and 3 crystallize in centrosymmetric space groups (P3� and P1�, respectively), so 

exist as racemates in the crystalline state. 

 

Solution-State NMR studies 

The room temperature 1H NMR spectra in CDCl3 of 1-4 are depicted in Figure 2. 

Complexes 1 and 2 each show one set of two doublets in the region of δ = 4.80 - 3.30 ppm, 

corresponding to the diastereotopic methylene protons of the C^N ligand, the result of magnetic 

nonequivalence imparted by the proximal iridium stereocenter. By contrast, there are two sets 

of two doublets with an integration ratio of 1:1.2 in the same region of 1H NMR spectrum of 3. 

Furthermore, two sets of aromatic signals are also apparent, which implies the presence of two 

conformers (designed as a and b, see below) in solution. Two conformers, in a ratio of 1:0.2 for 

conformer a:conformer b, are also present in 4 as observed by 1H NMR. This phenomenon was 

previously reported in related neutral Ir(III) complexes containing 1-(2,4-difluorobenzyl)-1H-

pyrazole (dFbpzH) as the C^N ligands and was associated with restricted conformational 

flexibility of six membered C^N chelates.9  
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Figure 2. Room-temperature 1H-NMR spectra of complexes 1-4 in CDCl3. 

 

This presence of two conformers prompted us to perform DFT calculations (see the 

Supporting Information for more details). For each of the complexes, we could optimize stable 

structures for both conformers, differing in orientation of the methylene bridge of the C^N 

ligand, as shown in Figure 3 for complex 3 (see Figure S21 the SI for 4). The conformer 3a has 

the same orientation of the methylene bridge as found in the solid state by X-ray 

crystallography, whereas the geometry of 3b is analogous to those found in the crystal structures 

of 1 and 2 (see above). For all compounds, both conformers belong to the C2 point group. Given 

that DFT calculations have been performed in MeCN solution, the DFT-determined bond 

lengths reasonably match their experimental counterparts, e.g., the Ir-CC^N bonds are 2.02 Å 

long by DFT and 2.022(5) – 2.052(7) Å for 1–3 long in the X-ray, whereas the Ir-NC^N distances 

are 2.10 Å according to the calculation and 2.069(4) – 2.098(11) Å for 1–3 in the solid-state 

structure. 
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Figure 3. DFT-optimized geometry of conformers 3a (left) and 3b (right). Hydrogen atoms are 

omitted for clarity. 

 

The chemical exchange cross-peaks (red highlighted) in the 2D ROESY spectrum 

indicate the existence of a dynamic equilibrium between conformers 3a and 3b in solution 

(Figure 4). Furthermore, the ROESY enables assignment of 1H resonances to each of the 

conformers. The NOE cross-peak (blue highlighted) between doublets at 4.54 and 8.18 ppm is 

only possible for conformer 3a that has one proton of methylene bridge close (2.56 Å according 

to DFT) to the aromatic proton of the N^N ligand (Figure 3). By contrast, this NOE 

enhancement is not observed for conformer 3b due to a longer distance between the methylene 

bridge and the N^N ligand (5.12 Å according to DFT).    
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Figure 4. 2D ROESY spectrum of 3 in CDCl3 at room temperature. The blue and red cross-

peaks indicate magnetization transfer due to  NOE and chemical exchange, respectively.  The 

cross-peak between doublets at 4.54 and 8.18 ppm enables assignment of those resonances to 

conformer 3a.  

 

DFT computed relative free energies and theoretical Boltzmann distribution can be 

found in Table 1. As can be seen, there is a remarkable agreement between the ratio of the two 

conformers determined by theory and experimentally from the relative integral intensities of 

methylene group 1H resonances (Table 1). There seems to be a global trend that the steric stress, 

that decreases in the 1~2 > 3 > 4 series, makes conformer a more accessible in the latter 

compounds (3a and 4a) than in the former (1a and 2a). The DFT determined distances between 

the (closest) hydrogen atoms of the methylene and N^N ligand are: 2.15, 2.14, 2.23 and 2.28 

Å, in 1a, 2a, 3a and 4a, respectively. For 3, we attempted to optimize by DFT a mixed 

conformer with one of the ligands in each conformation, but this induces a steric clash and the 

optimization process led back to one of the two conformers. This clearly suggests that the 

3a 3b 
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transition from one conformation to the other should be a concerted process in which the two 

ligands simultaneously change their conformation. We therefore searched for the corresponding 

transition state, and we could locate it 66 kJ.mol-1 above the most stable 3b structure on the free 

energy scale. This indicates that while thermal equilibration between the two conformers is 

attainable at room temperature, the interconversion will not be rapid, which is consistent with 

the fact that two separate sets of signals could be detected on the NMR timescale. The 

corresponding imaginary frequency mode at 40.5 icm-1 is given in the SI (see video S1).  

 

The interconversion of conformers 3a and 3b was also studied by variable temperature 

NMR spectroscopy from 280 to 315 K. The variable-temperature 1H NMR studies showed 

considerable dependence of equilibrium constant, K, on the temperature (Figure S22).  Analysis 

of the Van’t Hoff plot yielded the following thermodynamic parameters ∆Go
298 = -0.63 ± 0.05 

kJ.mol-1, ∆Ho = 7.3 ± 0.4 kJ.mol-1 and ∆So = 26.6 ± 1.5 J.mol-1.K-1, indicating that at 298 K 3b 

is moderately more stable than 3a. The rate constants of interconversion between the two 

conformers were derived from the intensity of the exchange cross peaks in the ROESY spectra 

(Figure S23). The corresponding activation parameters determined from an Eyring analysis are 

summarized in Table 2. The activation energy obtained experimentally for 3b to 3a (72.2 ± 3.2 

kJ.mol-1) is in very good agreement with the DFT calculation (66.6 kJ.mol-1). Surprisingly both 

Eyring and Van’t Hoff plot analysis suggest large positive entropy for the isomerization of 3a 

to 3b. These significant entropic changes were not reproduced by DFT calculations, but we note 

that the entropic term is the most approximated thermodynamic term in the traditional DFT 

calculations of total and reaction (free) energies.      

 

Table 1. Comparison of relative DFT Gibbs energies of the conformers 1b - 4b with respect to 

conformers 1a - 4a, respectively (∆Go), Boltzmann ratio, corresponding equilibrium constant, 
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K, at 298 K and ratio of conformers derived from relative integral intensities of methylene 

group 1H resonances.    

 1 2 3 4 

∆Go / kJ.mol-1 -13.4 -9.6 -2.1 5.4 

Boltzmann ratio (a:b) 0.004:1 0.02:1 0.43:1 1:0.11 

K  223 48.2 2.33 0.113 

Ratio of conformers a:b  0:1 0:1 0.83:1 1:0.17 

  

Table 2. Activation parameters for the interconversion between conformers 3a and 3b for 

complex 3 obtained by Eyring plot analysis of the rate constants for conformer interconversion 

at various temperatures.  

Conformer �����	

‡

 

/ kJ.mol-1 

��‡	 

/ kJ.mol-1 

�‡	 

/ J.mol-1.K-1 

3a 70.6 ± 4.9 80.0 ± 2.4 31.6 ± 8.1 

3b 72.2 ± 3.2 71.9 ± 1.6 -0.8 ± 5.5 

 

Electrochemical properties 

The electrochemical behavior for 1-4 and R4 was evaluated by cyclic voltammetry (CV) 

and differential pulse voltammetry (DPV) in deaerated MeCN solution containing n-Bu4NPF6 

as the supporting electrolyte and ferrocene/ferrocenium (Fc/Fc+) as the internal reference. The 

potentials are referenced with respect to SCE (Fc/Fc+ = 0.38 V in MeCN)29 at 298 K. The 

electrochemistry data, obtained at a scan rate of 100 mV s-1, can be found in Table 3 (including 

data from R1-R4) and the voltammograms are shown in Figure 5 (R4 is shown in Figure S24 

in the SI). All complexes show a quasi-reversible single electron oxidation peak, which is 

attributed to the Ir(III)/Ir(IV) redox couple with contributions from the phenyl rings of the bnpy. 

Throughout the series, complexes 1-4 are easier to oxidize than their corresponding reference 

complexes R1-R4 with cathodic shifts ranging from 0.09 to 0.40 V as the result of the 

interruption of the π-conjugation. The absence of a conjugated coordinating pyridine results in 
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a destabilized HOMO, compared to the analogous ppy reference complexes; for instance, 

according to DFT the HOMO is 0.24 eV lower in R1 than in 1 (see Figure S25). For instance, 

the oxidation potential of 1 at 1.12 V is significantly shifted to less positive potential than that 

of R1 (��/�
�� 	= 1.27 V).15 A more dramatic cathodic shift of 400 mV is observed for 2 (��/�

��  = 

0.91 V) compared to R2 (��/�
��  = 1.31 V).16 The oxidation potential of 3 at 1.15 V is similar to 

1 and, likewise is easier to oxidize than R3 (��/�
��  = 1.24 V).24 The oxidation potential of 4 at 

1.05 is modestly cathodically shifted by 7 mV compared to 1 and by 10 mV compared to R4 

(��/�
��  = 1.15 V). The cathodic shifting of the complexes 2 and 4 compared to that of 1 reflect 

the more electron-rich nature of the ancillary ligand, which serves to modulate the electronics 

of the iridium center.  

 

Complexes 1-3 show monoelectronic reversible first reduction waves, reflecting a 

reduction of the ancillary ligand in each case. No reduction wave was detected for 4, a feature 

also found for related biim-containing cationic Ir(III) complexes such as 

[(dFppy)2Ir(biim)](PF6) (where dFppy = 2-(2,4-difluorophenyl)pyridinato).20 The 

voltammograms for R4 however show two irreversible reduction waves at -1.95 V and -2.29 

V. The reversible reduction potentials for 1-3 are in a similar range to those of R1-R3 and other 

related cationic Ir(III) complexes where N^N-based reduction is well-documented.30 The 

reduction potential of 1 at -1.38 V is the same as that found for R1.15 Complex 2, bearing the 

electron-rich dtBubpy N^N ligand, is more difficult to reduce than 1, with ��/�
���	= -1.58 V.  This 

reduction potential is significantly cathodically shifted however compared to R2 (��/�
���	= -1.40 

V). In contrast the reduction potential for 3 is shifted anodically by 270 mV to -1.11 V compared 

to 1, which is similar to that of R3 (��/�
���	= -1.15 V).24 A second, irreversible reduction wave at 

-1.81 V is observed for 3, also present in the voltammogram of R3.  
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In acetonitrile, the DFT-computed HOMO levels in acetonitrile of the major conformer 

of complexes 1-4 are -5.67 eV (1b), -5.63 eV (2b), -5.69 eV (3b), -5.74 eV (4a), respectively. 

The HOMO levels inferred from the CV data are systematically slightly higher in energy 

compared to the DFT data at -5.54 eV (1), -5.33 eV (2), -5.57 eV (3) and -5.47 eV (4). A notable 

destabilization of the experimentally determined HOMO of 1 and 2 is observed compared to 

their respective reference complexes R1 (-6.07 eV) and R2 (-6.11 eV); the same trend is found 

but is less pronounced when comparing the HOMO energies of 3 and 4 to R3 (-5.85 eV) and 

R4 (-5.57 eV). This destabilization is consistent with the interruption of the electronic 

communication between the phenyl ring and the electron-withdrawing pyridine in the C^N 

ligands. 

 

The DFT computed LUMO energies in acetonitrile of 1-4 are -2.42 eV (1b), -2.23 eV 

(2b) and -2.82 eV (3b); the calculated LUMO energy for 4a is -1.59 eV. The LUMO levels for 

1-3 could be straightforwardly estimated from the CV data and the experimental results are in 

line with the computed trends. The experimentally inferred LUMO of 2 (����� = -2.84 eV) is 

destabilized compared to 1 (����� = -3.04 eV) as a result of the presence of the electron-

donating t-butyl substituents on the N^N ligand. This effect is more pronounced than that 

observed between R1 and R2 (����� = -3.42 eV and -3.40 eV, respectively). The presence of 

the strongly π-accepting bithiazole N^N ligand in 3 leads to a significant stabilization of the 

LUMO (����� = -3.31 eV) compared to those of 1 and 2. Complex 3, however, exhibits a more 

stabilized LUMO level (����� = -3.31 eV) than R3 (����� = -2.76 eV). The HOMO-LUMO 

gap of complexes 1 and 2 (experiment: 2.50 and 2.49 eV, theory: 3.25 and 3.40 eV for 1 and 2, 

respectively) are larger than that of 3 (experiment 2.26 eV, theory: 2.87 eV) but are all smaller 
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compared to their reference complexes R1-R3 (experiment 2.65, 2.71 and 2.39 eV, 

respectively).  

Figure 5. Cyclic voltammograms (in solid lines) and differential pulse voltammetry (in dotted 
lines) for 1-4 carried out in degassed MeCN at a scan rate of 100 mV s-1, with Fc/Fc+ as the 
internal reference, referenced to SCE (0.38 V vs. SCE).29  

Table 3. Electrochemical properties of 1-4 and R1-R4 

 Electrochemistrya 

 ��/�
��   / V ∆��

 / mV ��/�
 !" / V ∆��

 / mV ∆� !"��
b / V ��#$#

c / eV �%&$#
c / eV 

1 1.12 78 -1.38 74 2.50 -5.54 -3.04 

2 0.91 75 -1.58 77 2.49 -5.33 -2.84 

3 1.15 140 
-1.11, 

-1.81d 
80 2.26 -5.57 -3.31 

4  1.05 75  n.d.e - - -5.47 - 

R1f 1.27 56 -1.38 55 2.65 -6.07 -3.42 

R2f 1.31 106 -1.40 87 2.71 -6.11 -3.4 
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R3g 1.24 - -1.15 - 2.39 -5.85 -2.76 

R4 1.15 91 
-1.95, d  

-2.29 d 
- 3.10 -5.57 -2.47 

a in degassed MeCN at a scan rate of 100 mV s-1 with Fc/Fc+ as internal reference, and referenced 
with respect to SCE (Fc/Fc+ = 0.38 V in MeCN);29 b ∆Eredox is the difference (V) between first 
oxidation and first reduction potentials; c EHOMO/LUMO = -[Eox/red vs Fc/Fc+ + 4.8] eV;31 d 

irreversible; e not detectable in MeCN; f from ref 15; g from ref 24. 

 

Photophysical properties 

The UV-Visible absorption spectra of 1-4, recorded in MeCN at 298 K, are shown in 

Figure 6 and the data are summarized in Table S2; the spectrum of R4 is shown in Figure S26 

in the SI. All complexes show intense high-energy (ε on the order of 2.0-3.5 × 104 M-1 cm-1) 

absorption bands below 280 nm that are attributed to 1π–π* ligand-centered (1LC) transitions 

localized on the ancillary ligand, analogous to the corresponding bands found for their reference 

complexes R1-R4.15,24 The UV-vis spectrum of 3 is dominated by a moderately intense energy 

band at 322 nm (ε = 1.7 × 104 M-1 cm-1) and a second less intense band at 374 nm (ε = 0.5 × 

104 M-1 cm-1). This absorption profile is similar to that for R324 and those observed in related 

systems containing thiazole-based ancillary ligands.32-33 Complex 4 shows moderately intense 

bands at 386 nm (ε = 0.4 × 104 M-1 cm-1), which are also present in both R4 and 

[Ir(dFppy)2(biim)]+.20 Similar to the bands observed for R1-R4, 1-4 show weak bands (ε on the 

order of 103 M-1 cm-1) in the region of 440-490 nm and tailing to 550 nm. To probe the nature 

of the low-lying transitions in these complexes, we have used TD-DFT. For 1, the TD-M06 

calculations yield the four lowest singlet excited-states at 534 nm (f=0.003), 426 nm (f=0.002), 

413 nm (f=0.010) and 399 nm (f=0.083). The former corresponds to a HOMO to LUMO 

transition (see Figure 7) and can therefore be ascribed to a CT from the phenyl rings of the C^N 

ligand and the metal atom to the bipyridine. The second involves a HOMO-2 to LUMO 

transition and is clearly MLCT. The third is a HOMO-1 to LUMO+1 transition and can 
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therefore be characterized as mainly an ILCT, the electronic density moving from the phenyl 

(and in part the metal) to the pyridyl rings of the C^N ligands. The fourth transition is 

characterized by HOMO-1 to LUMO character and is also CT in nature, similar to the first 

band. For the R1 molecule, the two lowest TD-DFT singlets are located at 483 nm (f=0.0004) 

and 404 nm (f=0.064). In R1, the HOMO and LUMO have the same electronic distribution as 

in 1, but both HOMO-1 and LUMO+1 are more delocalized than in 1 (see Figure S25 in the 

SI), which is the consequence of breaking of the π-conjugation due to the methylene unit. For 

2, the four lowest singlet excited-states are calculated at 500 nm (f=0.003), 415 nm (f=0.008), 

406 nm (f=0.007) and 385 nm (f=0.098). There is therefore a moderate hypsochromic 

displacement of the transitions between the ground state and the first, second and fourth singlet 

excited states as a consequence of the presence of the more electron-rich dtBubpy N^N ligand 

in 2, and a smaller shift for the third state, which is itself consistent with the fact that this 

transition does not involve the bipyridine in 1 nor in 2. Indeed, the nature of the states and the 

shapes of the orbitals in 2 are essentially unchanged compared to 1. In 3, the four lowest-lying 

singlet excited-states are at 638 nm (f=0.002), 486 nm (f=0.002), 443 nm (f=0.096) and 413 nm 

(f=0.014), and they mainly correspond to HOMO to LUMO, HOMO-2 to LUMO, HOMO-1 to 

LUMO and HOMO to LUMO+1 transitions, respectively. In 3, the strongest low-lying 

transition is therefore significantly bathochromically shifted compared to 1, which fits 

experimental trends (Figure 6). The frontier MOs of 3b are displayed in Figure S27 in the SI 

and the same nature as in 1 is found but for the LUMO+2 that is centered on the pyridyl of the 

C^N ligand in 3 rather than ancillary ligand in 1. In 4, TD-DFT locates the lowest singlet states 

at higher energy than in 1-3: 392 nm (f=0.001, HOMO-LUMO), 380 nm (f=0.001, HOMO-

LUMO+1), 359 nm (f=0.007, HOMO-LUMO+2) and 353 nm (f=0.165, HOMO-1-LUMO+1). 

The topology of the MOs of 4b are displayed in Figure S28 in the SI and it is notable that the 

LUMO and LUMO+1 are inverted compared to 3, but the nature of the most intense low-lying 

intense CT band is conserved.  
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Figure 6. UV−vis absorption spectra in MeCN at 298 K of complexes 1-4. 

 

  

Figure 7. a) Representation of the Kohn-Sham molecular orbitals for 1. b) spin density 

difference of the lowest triplet state in its optimal geometry (two views). 
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The photoluminescence properties of 1-4 were investigated at 298 K in degassed MeCN 

and in polymethyl methacrylate (PMMA) doped films (5 wt% of complex in PMMA). The 

spectra are shown in Figure 8a, whereas Figure 8b shows the spectra in 2-

methyltetrahydrofuran (2-MeTHF) glass at 77 K. The photophysical data of 1-4 and R1-R4 are 

summarized in Table 4. The emission spectrum of R4 in degassed MeCN is shown in Figure 

S29 in the SI. Upon photoexcitation (λexc = 420 nm for 1-3 and 400 nm for 4) each of the 

emission profiles observed at room temperature is broad and unstructured, which is consistent 

with an emission from a mixed MLCT/LLCT state (Figure 7b), similar in character to that 

observed for R1-R324,34 and R4. In solution, the emission maxima are ordered from 580, 585, 

602 and 655 nm for 4, 2, 1 and 3, respectively. The emission energy of 1 is the same as that for 

R1 (λPL = 602 nm in MeCN).15 Complexes 2 and 3 are very slightly shifted (6 nm, 174 cm-1, 

and 3 nm, 70 cm-1) compared to R2 and R3 (λem = 591 nm in MeCN15 and λem = 658 nm in 

MeCN).24 Comparing 4 to R4 (λPL = 489 nm) a much larger shift of 91 nm (3209 cm-1) is 

observed.  

 

The photoluminescence quantum yields in MeCN (ΦPL, MeCN) for 1-4 are low (<10%) 

and each complex shows a ΦPL that is reduced compared to the corresponding reference 

complexes, except complex 3. For instance, the ΦPL, MeCN for 1 and 2, at 3% and 8%, are lower 

than that of R1 and R2, at 9% and 27%, respectively.15 The ΦPL, MeCN for 3 is 3%, which is 

similar to that for R3 (2%).24 Complex 4 is very weakly emissive with a ΦPL, MeCN smaller than 

1%, significantly lower than its R4 counterpart (ΦPL, MeCN = 66%), showing the deleterious 

effect of the bnpy ligand in this case. Note that 4 is the only complex in the series for which 

conformer a is the most stable in the ground electronic state at room temperature, and this 
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specific arrangement has an influence on the resulting photophysical properties as shown by 

DFT studies (see below).  

 

 The increased conformational flexibility of the C^N ligands is the likely culprit for the 

reduced ΦPL values in 1-4 compared to R1-R4. To gain more insights, we performed DFT 

optimizations of the lowest triplet excited-states. We computed a 0-0 phosphorescence 

wavelength of 654 nm, 620 nm, 793 nm and 510 nm for 1, 2, 3 and 4, respectively. Despite the 

obvious fact that the absolute DFT values do not perfectly match the experimental values (ca. 

0.22 eV average error compared to the λPL maxima in solution), we note that the theoretical 4 

< 2< 1 < 3 ranking does match the experimental trend. More importantly, in the triplet state, 

DFT predicts that conformer b is always the most stable, even for 4. This suggests that, after 

intersystem crossing, which is generally very efficient in Ir-complexes, 4 might change 

conformation before phosphorescence takes place, which would obviously be detrimental for 

the photoluminescence quantum yield. In turn, this might explain why 4 is the poorest emitter 

of the series. 

 

Complexes 1-4 all exhibit a three-component decay in the sub-microsecond regime (cf. 

Table 4). The weighted average lifetimes, τPL, for 1-4 are 124, 275, 71 and 235 ns, respectively, 

and are shorter compared to their reference complexes (τPL = 275, 386, 81, 852 ns for R1-R315,24 

and R4, respectively). From these values, radiative and non-radiative rate constants in MeCN 

can be estimated. The radiative rate constants, kr, for 1 (2.41 × 105 s-1) and 2 (2.91 × 105 s-1) are 

similar and much larger than that for 4 with kr = 0.21 × 105 s-1. These complexes (1, 2 and 4) all 

possess much smaller kr than their reference complexes (R1, R2 and R4). Complex 3 shows the 

highest radiative rate constant with kr = 4.2 × 105 s-1, which is also higher than R3 (kr = 2.12 × 

105 s-1). However, complex 3 also shows the highest non-radiative rate constant knr value 

(135.95 × 105 s-1), and which is slightly higher than the value of R3 (knr = 121.33 × 105 s-1). 
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Complex 1 (knr = 77.97 × 105 s-1) shows a higher knr than 2 (33.49 × 105 s-1), which can be 

explained in part by the red-shifted emission of 1 compared to that of 2. Compared to their 

reference complexes, both 1 and 2 show much higher knr values (knr = 33 × 105 s-1 for R1 and 

knr = 19 × 105 s-1 for R2). The poorly emissive complex 4 possesses a knr of 42.43 × 105 s-1, 

which is much higher than the value for R4 (3.99 × 105 s-1). 

 

The emission energies in PMMA-doped films (5 wt% of complex in PMMA) are not 

significantly changed compared from those in MeCN. The emission maxima in 1-3 remain 

essentially unchanged whereas complex 4 shows a modest blue shift of 15 nm (458 cm-1) in the 

film. The photoluminescence quantum yields of the films (ΦPL, PMMA) are expectedly 

significantly increased compared to the solution-state measurements and range from 1% (for 4) 

to 7% (for 3) to 15% (1) to 21% (2). The increase in ΦPL in the doped films is attributed mainly 

to a reduction in knr due to the expected limitations of the conformational motion of the C^N 

ligands. Each of 1-4 in doped films exhibit a three-component emission decay in the sub-

microsecond regime. The weighted average lifetimes for 1-4 are 404, 509, 323 and 1196 ns, 

respectively, which are on average longer than in those measured in solution-state. 
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Figure 8. a) Photoluminescence spectra of complexes 1-4 recorded in MeCN (dotted lines) and 

PMMA doped films (5 wt% of complex in PMMA) in solid lines (λexc = 420 nm for 1-3 and 

λexc = 400 nm for 4). b) Photoluminescence spectra of complexes 1-4 recorded in 2-MeTHF at 

77 K. λexc = 420 nm for complexes 1-3 and λexc = 380 nm for 4. 
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The low-intensity emission spectra at 77 K in 2-MeTHF glasses of 1-4 are noisy. Figure 

8b shows the smoothed emission profiles. A significant hypsochromic shift is observed 

compared to the measurements at 298 K, both in MeCN and as doped films. For instance, the 

profile for complex 1 shows an emission maximum at 544 nm and a shoulder at 572 nm resulting 

in a blue shift of 58 nm (900 cm-1) for the E0,0 peak compared to the spectrum in MeCN at 298 

K with almost no shift compared to the emission of R1 in the 2-MeTHF glass (λPL = 542 nm). 

The blue shift is less pronounced for 2 (33 nm, 1022 cm-1), with peaks at 528, 552 and 536 (λmax 

= 552 nm). However, compared to R2 the highest intensity emission peak of complex 2 shows 

a significant red shift of 79 nm (3026 cm-1). For complex 3 the normalized profile is centered 

at 604 nm (blue shift of 51 nm, 1289 cm-1 compared to the spectrum in MeCN). Complex 4 

(λexc = 380 nm) is also very poorly emissive and the profile shows two moderately intense bands 

at 428 nm and 484 nm (and a shoulder at 534 nm) and the λPL located at 458 nm shows 

significant blue shift compared to the spectrum in MeCN (122 nm, 4593 cm-1). The 

monoexponential emission lifetimes at 77 K in the microsecond regime are significantly longer 

compared to both sets of room-temperature measurements and range from 2088 ns (1), to 2120 

ns (2), to 2363 ns (3) and 4423 ns (4). Compared to the reported emission lifetimes at 77 K of 

R1 (4770 ns) and R2 (4550 ns),15 1 and 2 show significantly shorter lifetimes.  

  



 24

Table 4. Photophysical properties of 1-4 and R1-R4 

 MeCNa Filmb Glassc 
 

 

 
λPL

d
 

/ nm 

ΦPL
e 

 / % 

τPL
f  

/ ns 

λPL
d

 

/ nm 

ΦPL
g 

 / % 

τPL
f  

/ ns 

λPL
d

 

/ nm 

τPL
f 

/ ns 

kr
h 

 × 10-5 / s-1 

knr
i   

× 10-5 / s-1 

1 602 3 

26 (25%) 

110 (60%) 

346 (15%) 

Average 

124 

600 15 

124 (11%) 

316 (56%) 

646 (33%) 

Average 

404 

544,  
572 (sh) 

2088 2.41 77.97  

2 585 8 

52 (29%) 

215 (58%) 

1038 (13%) 

Average  

275 

584 21 

99 (4%) 

318 (43%) 

695 (53%) 

Average 

509 

528, 
536,  

552 

2120 2.91 33.49  

3 655 3 

54 (79%) 

95 (19%) 

532 (2%) 

Average 

71 

655 7 

93 (16%) 

254 (57%) 

605 (27%) 

Average 

323 

604 2363 4.20 135.95  

4  580j  0.5 

17 (3%) 

131 (60%) 

420 (37%)  

Average 

235 

 565j  1 

 49 (2%) 

361 (23%) 

1482 (75%) 

Average 

1196 

428, 
458, 
484,  
534 
(sh)k 

4423 0.21  42.43 

R1l 602 9 275   - 542 4770m 3.4  33  

R2l 591 27 386   - 473 4550m 7.0  19  
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R3n 658 2 81   - - - 2.12  121.33  

R4 

489,  

512 
(sh) 

66 

361 (27%) 

720 (51%) 

1761 (22%)  

Average  

852 

  - - - 7.75 3.99 

a In deaerated MeCN at 298 K; b at 298 K, spin-coated from a 2-methoxyethanol solution of 5 
wt% of the complex in PMMA on a pristine quartz substrate; c in 2-MeTHF at 77 K, if not 
specified differently; d λexc = 420 nm, if not specified differently; e [Ru(bpy)3](PF6)2 in MeCN 
as reference (ΦPL = 1.8% in aerated MeCN at 298 K)35; f λexc = 378 nm, average weighted 
lifetimes were determined according to equation τPL,avg= ΣAiτi (Ai = pre-exponential factor of 
the ith lifetime τi); g Measured using an integrating sphere; h kr = ΦPL,MeCN / τPL; i knr = [(1 - ΦPL, 

MeCN)/ τPL]; j λexc = 400 nm; k λexc =  380 nm; l from ref 15; m Measured in 1/1 MeOH/EtOH glass 
state at 77 K; n from ref 24. 

 

 

Conclusions 

A new series of four cationic Ir(III) complexes bearing nonconjugated C^N ligands, 

using the bnpy ligand for the first time in luminescent Ir(III) complexes, have been synthesized 

and fully characterized. Comparative studies with the related series of ppy-based complexes 

show the impact of the methylene spacer present within the cyclometalated ligand on the 

electrochemical and photophysical properties. Analysis of the X-ray crystal structures for three 

of the complexes clearly illustrates the existence of two possible conformations. Depending on 

the nature of the ancillary ligand, phosphorescence ranging from yellow to deep red is observed 

in MeCN as well as in 5 wt% PMMA doped films. Variable-temperature 1H and 2D ROESY-

NMR studies show the presence of two conformers for complex 3 as a result of the fluxional 

behavior of the bridging methylene group of the cyclometalated bnpy ligand, which is 

consistent with DFT calculations yielding a small free energy difference but a rather large 

barrier to interconversion between the two conformers. DFT calculations suggest that the 
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transition from one conformation to the other is a concerted process in which the two ligands 

simultaneously change their conformation. A similar behavior is observed 4, but for this 

complex the major conformer is the opposite to the one observed for 3. Under the same 

conditions, however, complexes 1 and 2 only show one conformer in the 1H NMR at room 

temperature. All four complexes show quasi-reversible oxidation waves. Complexes 1-3 show 

quasi-reversible reduction waves while no reduction wave was detected within the solvent 

window for 4. Compared to their reference complexes R1-R4, 1-4 emit at similar energies but 

show much lower photoluminescence quantum yields and shorter emission lifetimes. DFT 

calculations predict that conformer b is the most stable in the triplet state for 1-4. Breaking the 

conjugation of the C^N ligands did not change the triplet energy of the complexes despite 

reducing the electrochemical gap. This detailed joint theoretical and experimental study 

provides a better understanding of the role of the methylene spacer in the 2-benzylpyridinato 

cyclometalating ligands within this new series of Ir(III) complexes.  

Experimental Section 

General Synthetic Procedures 

Commercial chemicals were used as supplied. All reactions were performed using standard 

Schlenk techniques under inert (N2) atmosphere with reagent-grade solvents. Flash column 

chromatography was performed using silica gel (Silia-P from Silicycle, 60 Å, 40-63 µm). 

Analytical thin layer chromatography (TLC) was performed with silica plates with aluminum 

backings (250 µm with indicator F-254). Compounds were visualized under UV light. 1H, 13C 

and 31P solution-phase NMR spectra were recorded on a Bruker Avance spectrometer operating 

at 11.7 T (Larmor frequencies of 500, 400, 126 and 162 MHz, respectively). The following 

abbreviations have been used for multiplicity assignments: “s” for singlet, “d” for doublet, “t” 

for triplet and “m” for multiplet. 1H and 13C NMR spectra were referenced to the solvent peak. 

Melting points (Mps) were recorded using open-ended capillaries on an electrothermal melting 
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point apparatus and are uncorrected. High-resolution mass spectra were recorded at the EPSRC 

UK National Mass Spectrometry Facility at Swansea University on a quadrupole time-of-flight 

(ESI-Q-TOF), model ABSciex 5600 Triple TOF in positive electrospray ionization mode and 

spectra were recorded using sodium formate solution as the calibrant. Elemental analyses were 

performed by Mr. Stephen Boyer, London Metropolitan University. 

General procedure for the Synthesis of target Complexes 1-4 

N

IrCl3.6H2O
2-Ethoxyethanol/H2O (3:1)
125 °C, 24 h

Cl

Cl80%
CH2Cl2/MeOH,
reflux, 18 h

N

S

N

S

N NN N

N^N

N^N =

Complexes: 1 
(78%)

2 
(91%)

3 
(85%)

Ir

N

PF6

N

N

N

N

H
N

N

H
N

4 
(80%)

Ir

N

N

Ir

N

N

 

The IrCl3
.6H2O (2.0 equiv.) and 2-benzylpyridine (5.0 equiv.) were suspended in a mixture 

of 2-ethoxyethanol/water (3:1). The mixture was heated and kept at 125 °C under stirring. After 

24 h the mixture was allowed to cool to r.t. and distilled water was added. A precipitate was 

observed. It was washed with Et2O, H2O and dried under vacuum to give the intermediate bis(µ-

Cl) dimer complex. A suspension of this dimer (1.0 equiv.), the corresponding ancillary ligand 

(2.2 equiv.) in a mixture of CH2Cl2/methanol (1:1) was degassed for 15 min and then heated 

and kept at reflux for 18 h under stirring. The solvent was then evaporated leaving a residue, 

which was purified over silica with dichloromethane and increasing percentages of methanol 

(0% - 8%). The desired fractions were collected and reduced till dryness, giving a solid that 

was then dissolved in methanol. An aqueous NH4PF6 solution was added dropwise resulting in 

a precipitate. The suspension was stirred vigorously for 2 h and subsequently filtered. The solid 
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was dissolved in CH2Cl2 and washed with water. The layers were separated, and the organic 

layer was reduced till dryness leaving a solid, which was recrystallized through vapor diffusion 

using CH2Cl2 as solvent and Et2O as precipitant. After filtration, the target complexes were 

obtained as solids. 

Complex 1 

 

Red solid. Yield: 78%. Mp.: 244 – 248 °C. 1H NMR (500 MHz, CDCl3) δ (ppm): 9.01 (d, J 

= 8.2 Hz, 2H), 8.32 (d, J = 5.4 Hz, 2H), 8.25 (td, J = 7.9, 1.6 Hz, 2H), 7.64 (s, 4H), 7.38 (t, J = 

6.6 Hz, 2H), 7.32 (s, 2H), 7.00 (s, 4H), 6.92 (t, J = 6.5 Hz, 2H), 6.87 (t, J = 6.6 Hz, 2H), 6.61 

(d, J = 7.6 Hz, 2H), 3.93 (d, J = 15.6 Hz, 2H), 3.56 (d, J = 15.7 Hz, 2H). 13C NMR (126 MHz, 

CDCl3) δ (ppm): 163.39, 155.98, 150.88, 150.64, 139.77, 139.26, 138.32, 136.54, 135.87, 

127.33, 127.07, 127.02, 126.90, 126.11, 123.88, 123.31, 49.18. 31P NMR (162 MHz, CDCl3) 

δ (ppm): -144.34. HR-MS (FTMS+): [M]+ Calculated: (C34H28IrN4): 685.1939; Found: 

685.1936. CHN: Calcd for (C34H28F6IrN4P): C, 49.21; H, 3.40; N, 6.75 Found: C, 49.06; H, 

3.28; N, 6.68. 

Complex 2 
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Yellow solid. Yield: 91%. Mp.: 252-257 °C. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.84 – 

8.75 (m, 2H), 8.15 (d, J = 5.9 Hz, 2H), 7.71 (d, J = 7.0 Hz, 2H), 7.57 (td, J = 7.6, 1.4 Hz, 2H), 

7.31 (dd, J = 5.9, 1.7 Hz, 2H), 7.25 (m, 2H), 7.03 – 6.89 (m, 6H), 6.82 (td, J = 7.6, 2.9 Hz, 2H), 

6.61 (d, J = 7.3 Hz, 2H), 3.92 (d, J = 15.5 Hz, 2H), 3.51 (d, J = 15.5 Hz, 2H), 1.48 (s, 18H). 13C 

NMR (126 MHz, CDCl3) δ (ppm): 163.98, 163.19, 156.06, 151.28, 150.02, 139.45, 138.09, 

137.40, 136.02, 126.81, 126.58, 125.89, 124.70, 123.93, 123.66, 122.96, 49.29, 35.88, 30.30. 

31P NMR (162 MHz, CDCl3) δ (ppm): -142.42. HR-MS (FTMS+): [M]+ Calculated: 

(C42H44IrN4): 797.3192; Found: 797.3188. CHN: Calcd. for C42H44F6IrN4P. ½ CH2Cl2: C, 

51.85; H, 4.61; N, 5.96. Found: C, 51.89; H 4.28; N 5.51. 

Complex 3 

 

Deep red solid. Yield: 85%. Mp.: 235 °C (decomp.). 1H NMR (500 MHz, CDCl3) δ (ppm): 

8.14 (d, J = 3.3 Hz, 2H), 8.05 (d, J = 3.3 Hz, 2H), 7.99 (d, J = 5.4 Hz, 2H), 7.86 (d, J = 3.3 Hz, 

2H), 7.65 – 7.57 (m, 6H), 7.55 (d, J = 6.0 Hz, 2H), 7.38 (d, J = 7.3 Hz, 2H), 7.28 (d, J = 7.4 Hz, 

2H), 7.22 (d, J = 7.4 Hz, 2H), 7.02 (t, J = 6.2 Hz, 2H), 6.99 – 6.88 (m, 6H), 6.81 (dt, J = 14.1, 

7.2 Hz, 4H), 6.59 (d, J = 7.4 Hz, 2H), 6.53 (t, J = 7.1 Hz, 2H), 5.39 (d, J = 7.7 Hz, 2H), 4.51 

(d, J = 16.2 Hz, 2H), 4.13 (d, J = 16.3 Hz, 2H), 3.87 (d, J = 15.4 Hz, 2H), 3.52 (d, J = 15.5 Hz, 

2H). 13C NMR (126 MHz, CDCl3) δ (ppm): 163.55, 163.49, 162.51, 161.39, 155.44, 150.43, 

143.21, 142.68, 140.36, 139.31, 138.67, 138.35, 136.86, 136.63, 135.41, 132.69, 126.86, 

126.71, 126.58, 126.45, 126.28, 126.03, 125.99, 125.04, 123.98, 123.46, 123.41, 53.59, 49.11, 

48.41.31P NMR (162 MHz, CDCl3) δ (ppm): -144.41. HR-MS (FTMS+): [M]+ Calculated: 
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(C30H24IrN4S2): 697.1067; Found: 697.1049. CHN: Calcd. for C30H24F6IrN4PS2: C, 42.80; H, 

2.87; N, 6.66. Found: C, 42.43; H 2.82; N 6.55. The NMR data correspond to the mixture of 

3a and 3b at 298 K.  

Complex 4 

 

Beige solid. Yield: 80%. Mp.: 259 °C (decomp.). 1H NMR (400 MHz, CDCl3) δ (ppm):  8.13 

(d, J = 6.9 Hz, 2H), 7.59 (td, J = 7.6, 1.5 Hz, 2H), 7.36 – 7.32 (m, 3H), 7.24 (s, 2H), 7.17 (d, J 

= 7.7 Hz, 2H), 6.95 – 6.84 (m, 3H), 6.80 – 6.74 (m, 2H), 6.53 (t, J = 7.4 Hz, 2H), 5.43 (d, J = 

8.7 Hz, 2H), 4.73 (d, J = 16.3 Hz, 2H), 4.04 (d, J = 16.0 Hz, 2H). 13C NMR (126 MHz, CDCl3) 

δ (ppm): 162.82, 156.23, 141.86, 140.51, 138.47, 137.85, 137.74, 128.59, 126.13, 125.84, 

124.40, 122.88, 122.50, 120.15, 48.54. 31P NMR (162 MHz, CDCl3) δ (ppm): -143.81. HR-

MS (FTMS+): [M]+ Calculated: (C30H26IrN6) 663.1844; Found: 663.1834. The NMR data 

correspond only to the major conformer 4a.  

Complex R4 

 

Complex R4 was obtained according the general procedure using 2-phenylpyridine instead of 

2-benzylpyridine. Beige solid. Yield: 80%. Mp.: 259 °C (decomp.). 1H NMR (400 MHz, 

CDCl3) δ (ppm):  12.01 (s, 2H), 8.01 (d, J = 8.1 Hz, 2H), 7.84 – 7.78 (m, 2H), 7.78 – 7.68 (m, 
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4H), 7.25 (d, J = 1.5 Hz, 2H), 7.07 (ddd, J = 7.4, 5.8, 1.4 Hz, 2H), 6.99 – 6.93 (m, 2H), 6.83 (td, 

J = 7.4, 1.4 Hz, 2H), 6.47 (d, J = 1.5 Hz, 2H), 6.33 (dd, J = 7.6, 1.2 Hz, 2H). 13C NMR (126 

MHz, CDCl3) δ (ppm): 168.73, 150.44, 149.61, 145.52, 141.34, 138.78, 132.72, 130.45, 

127.88, 125.18, 123.98, 122.59, 121.60, 120.00.HR-MS (FTMS+): [M]+ Calculated: 

(C30H26IrN6) 635.1531; Found: 653.1517. CHN: Calcd. for C28H22F6IrN6P: C, 43.13; H, 2.84; 

N, 10.78. Found: C, 43.16; H 2.91; N 10.83. The crystal structure obtained is of the chloride 

salt, denoted as R4.Cl. 
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Synopsis. A new series of cationic iridium(III) complexes with nonconjugated 

benzylpyridinato as cyclometalating ligands has been prepared. The methylene spacer in the 

C^N ligand provides conformational flexibility leading to the formation of two conformers. 

NMR studies and detailed density functional theory (DFT) studies show how the fluxional 

behavior is influenced by the choice of the ancillary ligand. 


