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Background and objective: Dose-finding, aiming at finding the maximum tolerated dose, and pharma-
cokinetics studies are the first in human studies in the development process of a new pharmacological
treatment. In the literature, to date only few attempts have been made to combine pharmacokinetics and
dose-finding and to our knowledge no software implementation is generally available. In previous pa-
pers, we proposed several Bayesian adaptive pharmacokinetics-based dose-finding designs in small pop-
ulations. The objective of this work is to implement these dose-finding methods in an R package, called
dfpk.

Methods: All methods were developed in a sequential Bayesian setting and Bayesian parameter estima-
tion is carried out using the rstan package. All available pharmacokinetics and toxicity data are used to
suggest the dose of the next cohort with a constraint regarding the probability of toxicity. Stopping rules
are also considered for each method. The ggplot2 package is used to create summary plots of toxicities
or concentration curves.

Results: For all implemented methods, dfpk provides a function (nextDose) to estimate the probability
of efficacy and to suggest the dose to give to the next cohort, and a function to run trial simulations to
design a trial (nsim). The sim.data function generates at each dose the toxicity value related to a
pharmacokinetic measure of exposure, the AUC, with an underlying pharmacokinetic one compartmental
model with linear absorption. It is included as an example since similar data-frames can be generated
directly by the user and passed to nsim.

Conclusion: The developed user-friendly R package dfpk, available on the CRAN repository, supports the
design of innovative dose-finding studies using PK information.

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Dose-finding studies and pharmacokinetics (PK) are carried out
at the first phases of clinical evaluation of a new drug in humans.
Drug safety is evaluated in the dose-finding study, which aims at
identifying the maximum tolerated dose (MTD) [1]. Meanwhile, the
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PK data collected during such study provides the description of the
dose-concentration relationships [2]. Nevertheless, these two ap-
proaches are often conducted and reported independently in dif-
ferent sections in publications reporting trial results [3]. Identifying
the right dose or set of doses at an early stage is crucial: selecting
too toxic doses can result in patient overdosing, while selecting
an inefficient dose increases the likelihood that the drug will be
found to be ineffective in subsequent clinical evaluation [4]. Par-
ticularly in the case of small populations, such as rare diseases or
paediatrics, it should be useful to take into account all the infor-
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mation collected during the trial, and to try to utilize the PK mea-
surements within the dose-finding design. Only few attempts have
been described in the literature so far and, usually, the methods
were built for a very specific situation [5-8]. Moreover, no soft-
ware implementations are publicly available.

In this article we present the new R package dfpk (short for
dose-finding Pharmacokinetics), which provides the Bayesian adap-
tive PK-based dose-finding designs in small populations proposed
by Ursino et al. [8] through the freely available R software [9]. The
six methods detailed in [8] have been implemented in dfpk. For
each of them, two functions are provided: (i) a function to deter-
mine the next recommended dose (during the trial) or the rec-
ommended MTD (at the end of the trial) and (ii) a function to
run simulations of phase I studies to design a new trial. Interac-
tive graphical representations of the dose-concentration curve, of
the dose allocation process in the trial and of the dose-toxicity re-
sponse are also provided by the package.

The paper is organised as follows. Section 2 introduces the sta-
tistical methods proposed by Ursino et al. [8], along with the de-
scription of the suggested scenarios to be simulated. Section 3 out-
lines the structure of the package and the main functions of the
paper (sim.data, nextDose and nsim) with practical examples.
Section 4 & 5 include conclusion, discussion and recommendations.

2. Computational methods

The present section briefly reviews the methods proposed by
Ursino et al. [8] to perform dose-finding taking into account PK
measurements. We then describe the scenarios simulated in [8] in
order to evaluate the robustness of the method, which have been
added as examples in the dfpk package.

2.1. Dose-finding methods

Let D={d;,...,d,} be the set of K possible doses with
dy <--- <dy and dj; € D be the dose administered to the ith subject
(i=1,...,n, where n denotes the sample size) and y; be a binary
variable which takes value 1 if the ith subject shows a DLT (dose-
limiting toxicity) and O otherwise. Moreover, let z; be the logarithm
of the area under the curve (AUC) of the concentrations of drug in
blood plasma against time, for the ith patient.

All methods share the same fundamental idea for the dose-
escalation rule: the dose chosen for the next cohort enrolled is
the one with probability of toxicity nearest to the target 0 se-
lected by the trial investigators. A no-skipping rule is given: if
some doses have not yet been tested, the dose is chosen from
D* c D, a subset of D which contains all the doses already evalu-
ated and the first dose level immediately above. The final recom-
mended MTD is given by the dose that would have been admin-
istered for the (n+ 1)st subject enrolled in the trial. Finally, we
added in all methods the same stopping rule: if the posterior prob-
ability of toxicity of the first dose is greater of a specified thresh-
old, then no dose is suggested and the trial is stopped.

Each method is separated from the others. We adopted the con-
vention of starting the subscription of 8 parameter from 0 for each
method. Therefore, even if the parameters share the same names
across models, they have different interpretations. In the following,
we briefly describe how the probability of toxicity is estimated and
computed in each method.

2.11. PKCOV

PKCOV is a modification of the method proposed by Piantadosi
and Liu [5] who suggested to use the AUC as a covariate for pr, the
probability of toxicity, through the logit link. Therefore, the dose-

toxicity model is

logit(pr (di, Azgy. B)) = —Bo + B1log (di) + B2 Azgy
Vd, € D. 1)

where 8 = (B1, B2), Bo is a constant selected through a sensitivity
analysis or with prior information, Az, is the difference between
the logarithm of population AUC at dose d; and z, the logarithm of
AUC of the subject at the same dose. Independent uniform distri-
butions are selected as prior distributions for 8 and f5,. In detail,
B1 ~ U(max(0, my —5), my +5), where m; reflects the prior infor-
mation on the parameter and the length of the domain of the dis-
tribution can go up to 10, and 8, ~ U(0, 5). Both B¢ and m; should
be selected using prior information, such as from preclinical data,
and sensitivity analysis should be done. The estimated probabil-
ity of toxicity versus dose is obtained by inverting Eq. (1), using
B1 = ,31, the estimated parameter, and Az, = 0.

2.1.2. PKLIM and PKCRM

PKLIM is a modification of the method proposed by Patterson
et al. [6] and Whitehead et al. [10]. A normal PK-toxicity model is
used:

z|B. v ~N(Bo + Bi logd;, v?), (2)

where B = (B, B1) are the regression parameters, and v is the
standard deviation. A bivariate normal distribution and a beta
distribution are chosen for B and v, respectively, that is, §~
N(m, v2(g¥)) and v ~ Beta(1, 1). Therefore, a hierarchical prior dis-
tribution is given to 8, where m = (—1logClysp, 1) and g should be
chosen using prior information. For instance, Cl,o, denotes the at-
tended value of the clearance at population level, and g reflects the
precision. The probability of toxicity of each dose is computed as

Pz>L|d.B=B,v=">) Vd,eD, 3)

where L is a threshold set before starting the trial and the hat de-
notes the posterior means of the parameters. Since an assumption
underlying the model is that DLTs are based on the AUC exceeding
some threshold, the method could be applicable only when such
a threshold is known. In order to avoid this problem, the PKCRM
method was proposed, which is the combination of PKLIM and the
CRM [11] using a power working model and normal prior on the
parameter. In PKCRM the dose recommended for the next subject
is the lowest of the doses recommended by the two methods.

Note that although the same notation has been used for con-
venience, the parameters B8 and f; are different in the different
models.

2.1.3. PKLOGIT, PKPOP, PKTOX

PKLOGIT, inspired by Whitehead et al. [7], combines two regres-
sions to compute the probability of toxicity versus the dose. The
first one is the same as Eq. (2), that is z versus dose. In the second,
z is used as a covariate in a logistic regression model for pr. This
means that now the probability of toxicity is described in term of
AUC and not any more in term of dose. Therefore, we have that

logit(pr(z, B)) = —p2 + Bsz, (4)

where B, and B3 have independent uniform prior distributions,
that is, B, ~U(0, my) and B3~ U(0, m3), with m, > ms, and values
can be chosen using prior information. If no information is avail-
able, my =20 and m3 = 10 are good starting values for a sensitiv-
ity analysis. The probability of toxicity associated with each dose
is obtained by using the estimated parameters of each regression
model in the following expected value formula:

P(y=1| dk,ﬂzfi,v=ﬁ):E[{A}
]+eﬁ2*/532

(2) dz. (5)

1
/ 1+ eBngzg
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where g(z) represents the distribution of the logarithm of AUC
given the dose d; obtained from Eq. (2).

PKPOP, a variation of PKLOGIT, arises by replacing z with zy
in Eq. (4), where z; p,p is the mean value of the logarithm of AUC
at dose d, predicted by Eq. (2). In other words, we replace the ob-
served AUC value for the patient with the population mean value.
Then, the probability of toxicity at each dose is computed invert-
ing Eq. (4), using the estimated parameters B, and B3 along with
Zy, pop Dredicted by Eq. (2).

PKTOX is essentially the PKLOGIT method with a probit regres-
sion model replacing the logistic regression in Eq. (4), that is

pr(z. B) = ®(—B2 + B32). (6)

with & represents the standard cumulative normal distribution.
As in the previous models, independent uniform distributions are
chosen as prior distributions for the parameters. The probabil-
ity of toxicity versus dose is then computed in the same way of
Eq. (5) using the probit regression inside the integral.

2.14. DTOX

DTOX follows the usual way of estimating pr versus dose di-
rectly without the PK measurements and is included to check the
behaviour of this standard method. The dose-toxicity model is:

pr(dy. B) = ©(—Bo + B1log(dy)) Vdy eD. (7)

Independent uniform bivariate prior distribution is chosen for 8 in
the same way of Eq. (4).

2.2. Simulating data for trial design

The package implements several examples reproducing the sce-
narios proposed in Ursino et al. [8] to evaluate the method perfor-
mance using simulated data. In these settings, toxicity is linked to
a PK measure of exposure, namely to AUC, and we used a simu-
lation setting similar to the one in [12]. A first order absorption,
linear, one compartment PK model was used to simulate PK data.
In this model, the concentration at time t after administration of a
dose d, of the drug at time 0, can be written as a function of kg,
the absorption rate constant for oral administration, CL, the clear-
ance of elimination, and V, the volume of distribution, as follows:

dy  ka vy —kut)
V ke —CLV (e er) (8)
Individual CL and V are sampled from log-normal distributions
with mean CLpop(Lh~1) and Vpop(L), respectively, and standard de-
viation w¢; = wy, while k, is fixed in this study as limited infor-
mation concerning the absorption phase was available in the orig-
inal dataset to estimate its inter-individual variability. In order to
link PK to the toxicity profile of patients, a sensitivity parame-
ter o, coming from a log-normal distribution with mean equal to
1 and standard deviation w,, and a threshold t; are introduced.
We assumed that a patient incurs a dose limiting toxicity (DLT) if
«AUC > t7. Choosing the different parameters leads to several sce-
narios. The probability of toxicity is computed as:

c(t) =

logd, — log Tt — logCL

/2 2
a)CL-i-a)a

pr(dy) =@ (9)

3. R-functions

Package dfpk implements all the dose-finding methods de-
scribed in Section 2. In Fig. 1, an overall explanation of the main
functions in the dfpk package is given. The aim of the package
is to assist the design of phase I clinical trials. During the trial,
the patient data already accrued (“Trial data” in Fig. 1A) can be
used in the nextDose function in order to determine the next

A i Input Data

! - PK measurements for each dose level
' - Toxicity data for each dose level ;
: (for example Trial data or simulated dataset):

Function’s arguments

- Toxicity threshold

- Dose levels

- Dose finding model
- Prior distributions

| - NextRD or the estimated MTD :
! - Estimated probability of toxicity i
1 - Estimated model's parameters !
! - Dose-allocation plot :
: Posterior dose-response plot with 95% Cl !

B ¢ Input Data
i - PKmeasurements for each dose level
- Toxicity data for each dose level
(for example, simulated data (output of
sim.data))

\ nsim

Function’s arguments

L - Toxicity threshold
""""""" - Dose levels
- Dose finding model
- Prior distributions

- Estimated MTD or the selected % MTD
Estimated probability of toxicity

Dose-allocation plot :
Posterior dose-response plots with 95% Cl i
Boxplot of sampling distribution of dose-response i

Fig. 1. Overall presentation of the main R functions nextDose (Fig. 1A) and nsim
(Fig. 1B) available in the package dfpk, indicating the corresponding inputs and out-
puts.

recommended dose, or the MTD at the end of trial. Plots are
also available after the estimation process. When planning a new
trial, datasets containing PK and toxicity measurements can be
simulated directly by the user (“Simulated data”) or through the
sim.data function, and used in the nsim function (in Fig. 1B.),
which will perform n simulated clinical trials. Also in this case,
plots with graphical representations support the numeric results.

Bayesian parameter estimation is carried out using the rstan
package while the ggplot2 package is used to create plots. Three
S4 classes are implemented in the package, “dose” , “dosefinding”
and “scen”, in order to store the outputs of the main R functions
nextDose, nsim and sim.data, respectively. The classes are de-
tailed described in the Appendix B.

The package dfpk is available on the CRAN archive and can be
easily installed on the fly through the URL https://cran.r-project.
org/web/packages/dfpk. Once the package is installed, it can be
loaded with the command:

> library (dfpk)

In the remainder of this section, we present the R functions
available in the package along with the required input parameters
and examples. A more extensive demonstration and documentation
can be accessed from the on-line user manual on the CRAN server
by installing the package or directly within the R console.


https://cran.r-project.org/web/packages/dfpk
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Table 1
Arguments for the functions nextDose and the dose-finding models.
model The dose-finding model chosen between “pktox”, “pkcov”, “pkcrm”, “pklogit”,
“pkpop” and “dtox”.
y A binary vector of toxicity outcomes from previous patients.
AUCs A vector with the computed AUC values of each previous patient for PKTOX,
PKCRM, PKLOGIT and PKPOP.
doses A vector with the doses panel.
X A vector with the dose level assigned to previous patients.
theta The toxicity target.
options List with the Stan model’s options.
prob The threshold of the posterior probability of toxicity for the stopping rule in

the selected model; defaults to 0.9.
betapriors A vector with the value for the prior distribution of the regression parameters
in the selected model.

thetal A second threshold of AUC in the PKCRM model only; defaults to theta for
PKCRM and NULL for the models PKTOX, PKCOV, PKLOGIT, PKPOP & DTOX.

p0 The skeleton of CRM for PKCRM; defaults to NULL.

L The AUC threshold to be set before starting the trial for PKCRM; defaults to
NULL.

deltaAUC A vector of the difference between computed individual previous patients’ AUC
and the AUC of population at the same dose level (defined as an average);
argument for PKCOV; defaults to NULL.

Cl A logical constant indicating the estimation of the 95% credible intervals (CI) of
the probability of toxicity at each dose level for the selected model; defaults
to TRUE.

Table 2

Input arguments required by each dose-finding method in the nextDose function.

Method  Required arguments Optional arguments
pktox y, AUCs, doses, X, theta, prob, options, CI betapriors
pkcov y, AUCs, doses, X, theta, deltaAUC, prob, options, CI betapriors
pkcrm y, AUCs, doses, X, theta, p0, L, prob, thetaL, options, CI  betapriors
pklogit y, AUCs, doses, X, theta, prob, options, CI betapriors
pkpop y, AUCs, doses, X, theta, prob, options, CI betapriors
dtox y, doses, X, theta, prob, options, CI betapriors

3.1. Dose-finding methods (nextDose)

The nextDose function is used to perform parameter estimation at each step during a dose-finding trial. It gives the recommended
dose to administer to the next cohort of patients, or the final estimated MTD if applied at the end of the trial. It can be used during an
ongoing clinical trial or with a simulated dataset, as described later in the Section 3.2.

> nextDose (model, y, AUCs, doses, x, theta, options, prob = 0.9, betapriors = NULL,

thetall = NULL, p0 = NULL, L = NULL, deltaAUC = NULL, CI = TRUE)

The description of the input arguments used in the nextDose function are provided in Table 1. The user has to choose the dose-
finding method from the available set in the model parameter. Then, he/she should provide the parameters required by the selected
method, as specified in Table 2, while the others are set automatically to NULL. Any argument not specified by the user will be set to the
corresponding default choice [8]. The number of chains and iterations for the Bayesian algorithm can be changed using the appropriate
rstan options.

3.1.1. Demonstration
(A) PKTOX model In the following example, we supposed that a clinical trial is still ongoing and 15 patients have been enrolled so far.
For this case, PKTOX was selected as the dose-finding model. The nextDose function requires the following input arguments: the
panel of doses of the drug, the target toxicity probability, & and the options for the Stan model as a list, containing the number of
chains, the number of iterations and the warm-up iterations.

> doses <- ¢(12.59972,34.65492,44.69007,60.80685,83.68946,100.37111)
> theta <- 0.2

> options <- list (nchains = 4, niter = 4000, nadapt = 0.9)
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Other necessary input arguments are the vector of dose levels assigned to the patients (as integer vector), that is denoted by x, the
AUCs values and the vector of toxicity outcomes (0/1 are accepted), denoted as y, for each enrolled patient.

> AUCs <- ¢(1.208339, 5.506040, 6.879835, 3.307928, 3.642430,
10.271291, 3.885522, 3.086622, 2.537158, 5.525917,
8.522176, 4.642741, 11.048531, 10.246976, 5.226807)

> x <- e(1, 2, 3, 4, 5, 6, 4, 4, 4, 5, 5, 4, 4, 5, 5)

>y <- e(0, 0, 0, 0, 0, 1, 0, O, O, O, 1, 0O, O, O, 0)

The user can change the prior distribution parameter of the toxicity-AUC regression by adding the parameter betapriors. If it is
not specified, the value suggested by Ursino et al. [8] are used by default.
The default choices of betapriors for PKTOX model are the following:

Blv ~ N(m,v x g x diag(1, 1)),
v ~ Beta(1, 1),
m = (—10g (CLpop). 1).
B2 ~ U(0, beta2mean),
B3 ~ U(0, beta3mean), (10)

where Clyop is the population clearance and the default choices are Clyop = 10, g = 10000, beta2mean = 20 and beta3mean = 10.
Details about the default choices of all the dose-finding models are available in the user-manual on the CRAN.
These arguments are used in the nextDose function depending on the chosen model, PKTOX, using the following syntax:
> nextD <- nextDose (model = "pktox", y=y, AUCs=AUCs, doses=doses,
x=x, theta=theta, options=options)
omitting all default parameters.

The results are stored in a “dose” object. The output below reports part of the results displayed, that is the number of patients who
are currently enrolled, the selected dose-finding model, and the observed dose levels of the drug:

Results of an ongoing clinical trial

Model: pktox

Total number of enrolled patients in the trial: 15

Levels of doses: 12.59972 34.65492 44.69007 60.80685 83.68946 100.3711

According to these results, the next recommended dose level is 5, which would be the dose for the next cohort of patients given
the data. The estimated toxicity probabilities and model parameters are also shown:

The Next Recommended Dose:

(11 5

Estimated probability of toxicity:

[1] 0.0004 0.0225 0.0473 0.1026 0.1984 0.2714

Estimated model’s parameters:
betal betal nu beta2 beta3

-1.5590477 0.7709732 0.5266802 -9.0637545 3.8542888

The package also provides a graphical representation of the results. For example, using the generic function plot() on a “dose”
object, we can select if we want to present graphically: (1) the dose allocation of the currently enrolled patients during the trial or
(2) the posterior distributions of the probability of toxicity at each dose presenting the estimation along with the lines of the 95%
credible intervals (CI), as below:

> plot (nextD)

Fig. 2 presents (A) the data for the first 15 patients in the study, and (B) the plot of the posterior distributions given this data of
the probability of toxicity at each dose according to the PKTOX method (including the mean estimation along with the 95% CI).
PKCRM model

In this section a second illustration is shown using the PKCRM dose-finding method in the function nextDose. In this way, we can
highlight the differences in the required inputs/outputs. In this case, in addition to the input arguments that are used in the PKTOX
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Each point represents a patient

A ' o o o B Updated (solid) dose-toxicity curves with the
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Fig. 2. (A) Plot of the data for the first 15 patients in the study and, (B) the plot of the posterior distributions given this data of the probability of toxicity at each dose
according to the PKTOX method (including the mean estimation along with the 95% CI).

3.2.

method (i.e. y, AUCs, doses, X, theta, options), the PKCRM method requires the skeleton of CRM (p0O) and the AUC threshold (L),
which must be set before starting the trial. In this example we use:

> p0 < e(.01,.05,.1,.2,.35,0.45)

> L <= log(15.09)

After setting all the required arguments for the chosen PKCRM model, we call the nextDose function as following:
> nextDose (model = "pkcrm", y=y, AUCs=AUCs,

doses=doses, x=x, theta=theta,
options=options, pO0 = pO0, L = L)
The resulting object displays as follows:
Results of an ongoing clinical trial
Model: pkcrm
Total number of enrolled patients in the trial: 15

Levels of doses: 12.59972 34.65492 44.69007 60.80685 83.68946 100.3711
The Next Recommended Dose:

[1] 5

Estimated probability of toxicity:

[1] 0.0008 0.0178 0.0329 0.0640 0.1166 0.1576

Estimated model’s parameters:
betal betal nu

-1.4750896 0.7504786 0.5286834

Generate data (sim.data)

The sim.data function generates and stores PK and toxicity data in order to be used for simulation according to the model described
in Section 2.2. The initial step consists in generating the patients’ responses at all doses for each trial. The function sim.data takes the
trial’s settings and returns a list of data including the subject’s PK parameters along with the simulated toxicity observations.
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> sim.data (PKparameters, omegallV, omegaAlpha,

sigma, doses, limitTox,

timeSampling, N, TR, seed=190591)

In particular, it starts by drawing subject’s PK parameters (k,, CL and V) from the population distributions defined by the population
mean (PKparameters) and the inter-individual variability (IIV) for the clearance and the volume of distribution (omegaIIV). Then, for
each dose level (doses), we computed the desired probability of toxicity (preal), and for all patients (N) and simulated data (TR), it
computes the concentration measurements at the specified time points (timeSampling). In addition, we add a proportional error drawn
from a normal distribution with zero mean and a standard deviation sigma. According to eq. (9), the function computes the toxicity
values for each dose level using the threshold 1imitTox and the patient’s sensitivity parameter omegaAlpha. Finally, a default value of
the random number generator (seed) is set at 190591.

The results are stored in a list of “scen” objects, which consists of PKparameters, nPX, the length of the time points, timeSampling,
idtr, N, doses, preal, 1imitTox,omegallV, omegaAlpha, concentration, the concentration computed at the PK population
values, concPred, the concentration values with proportional errors for each patient at each dose, tox, tab, a summary matrix, used
in the simulation function, containing the sampling time points at the first row followed by concPred, parameters, the simulated PK
parameters of each patient, alphaAUC, the «AUCs. Since we are using S4 classes, the user can easily create his/her own datasets. For
example, he/she can create a new object for each simulated trial, named UserData, using the command new in the following way

> UserData <- new("scen", PKparameters, nPK,
timeSampling, idtr, N, doses, preal,
limitTox, omegallV, omegaAlpha,
concentration, concPred, tox, tab,

parameters, alphaAUC)

and then add it in a list, along with the other simulated datasets. A more expanded description of the “scen” class and objects can be
accessed from Appendix B2.

3.2.1. Demonstration

The following illustration shows how to generate the datasets of the first scenario described by Ursino et al. [8]. In this example, we
set the number of trials to 10 (i.e. TR=10), the threshold of toxicity value to 10.96, the dose levels to (12.6, 34.655, 44.69, 60.807, 83.689
and 100.371 mg) which are used to obtain the true probabilities of toxicity, 48 evenly spaced sampling time points between 0 and 48 h, a
sample size of 30 and kg = 2, CL = 10 and V = 100 as illustrated below:

> limitTox <- 10.96

> doses <- ¢(12.6 34.655 44.69 60.807 83.689 100.371 )

> timeSampling <- seq(0,24,length.out=48)

> sigma <- rep(0.2,length(timeSampling))

> gen.scen <- sim.data (PKparameters=c(2,10,100),omegalIV=0.7,omegaAlpha=0,
sigma,doses, limitTox, timeSampling,N=30, TR = 10)

Each trial’s result is stored in a list of the R “scen” object, gen.scen, which regroups the subject’s PK parameters, the concentration
measurements for all patients and the simulated toxicities values at each dose level. Here, we provide some sim.data results for the
first trial:
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Scenarios Settings (TR: 1)

Total number of patients in the trial: 30
The subject’s PK parameters (ka, CL, V): 2 10 100
with a standard deviation of CL and V equals to: 0.7
The doses of the drug: 12.6 34.655 44.69 60.807 83.689 100.371
The real probabilities of toxicity: 0.001 0.05 0.1 0.2 0.35 0.45
Time after the drug administration (hours):
0 0.511 1.021 1.532 2.043 2.553 3.064 3.574 4.085 4.596 5.106 5.617 6.128 6.638 7.149
7.66 8.17 8.681 9.191 9.702 10.213 10.723 11.234 11.745 12.255 12.766 13.277 13.787
14.298 14.809 15.319 15.83 16.34 16.851 17.362 17.872 18.383 18.894 19.404 19.915
20.426 20.936 21.447 21.957 22.468 22.979 23.489 24
Threshold on the toxicity: 10.96
AUC with the sensitivity parameter
[1] 0.985 2.710 3.495 4.756 6.546 7.850
[7] 0.730 2.009 2.591 3.525 4.852 5.819

[13] 1.453 3.996 5.153 7.012 9.650 11.574

[175] 0.806 2.216 2.858 3.889 5.352 6.419

Based on the above AUC with the sensitivity parameter values and the chosen toxicity threshold 7y = 10.96, we observe for all patients
(one row=one patient) in the second trial, the toxicity outcomes at each dose level (one dose=one column) as follows:

Toxicity (0 indicates no toxicity and 1 toxicity)

dose 1 dose 2 dose 3 dose 4 dose 5 dose 6

pid 1 0 0 0 0 0 0
pid 2 0 0 0 0 0 0
pid 3 0 0 0 0 0 1
pid 4 0 0 0 0 1 1
pid 5 0 0 0 0 0 0

dose 1 dose 2 dose 3 dose 4 dose 5 dose 6

pid 25 0 0 0 0 1 1
pid 26 0 0 0 0 1 1
pid 27 0 0 1 1 1 1
pid 28 0 0 0 0 0 0
pid 29 0 0 0 0 0 0
pid 30 0 0 0 0 0 0

The PK parameter’s estimations for each patient are:
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Pharmacokinetics: Concentration vs Time
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Fig. 3. Plot of the concentration of the drug vs time for 12.6, 34.65, 44.69, 60.8, 83.69 and 100.37 mg with k, = 2h', CL = 10Lh' and V = 100L.

ka CL \% ka CL v
pid 1 2 12.786 132.892 pid 16 2 15.655 93.047
pid 2 2 17.250 116.496 pid 17 2 9.101 131.441
pid 3 2 8.672 91.615 pid 18 2 6.373 27.317
pid 4 2 6.118 43.867 pid 19 2 9.106 102.490
pid 5 2 48.252 77.178 pid 20 2 11.275 186.811
pid 6 2 11.469 112.203 pid 21 2 10.829 171.712
pid 7 2 17.396 166.911 pid 22 2 5.623 65.968
pid 8 2 6.657 64.930 pid 23 2 360 727.193
pid 9 2 10.248 156.345 pid 24 2 4.526 95.767
pid 10 2 6.214 49.496 pid 25 2 6.854 55.886
pid 11 2 16.706 155.188 pid 26 2 5.699 116.239
pid 12 2 8.394 46.786 pid 27 2 3.736 113.431
pid 13 2 11.494 42.735 pid 28 2 12.682 249.079
pid 14 2 12.282 182.821 pid 29 2 48.888 78.613
pid 15 2 9.857 86.489 pid 30 2 15.636 93.866

> plot (gen.scen[[2]], lwd=2)
> legend(x=17, y=0.9, c("12.6 mg", "34.65 mg",

"44.69 mg", "60.8 mg", "83.69 mg",
"100.37 mg"),lty=c(1,2,3,4,5,6), lwd=2,
bty = "n", col=rainbow(6))

In this example, we used o = 1 for all patients, but the user can simulate « from a log-normal distribution with mean=1 and standard
deviation wy,. Selecting w, = 0 implies o« = 1 as in this example.

Once again, providing the selected list of the generated “scen” object to the generic plot function plot, the user obtains a plot of the
drug’s concentration in the plasma against the time t. Under the same settings and outputs as above, the plot is implemented as follows:

Fig. 3 presents the PK concentration curves, described in Section 2, with the PK parameters k, = 2h~!, CL = 10Lh~! and V = 100L for
the 6 doses (12.6, 34.65, 44.69, 60.8, 83.69 and 100.37 mg).

3.3. Dose-finding simulation (nstm)
The function nsim simulates a single or n prospective clinical trials. In the simulated trial, the dose is escalated stepwise cohort by

cohort until the first toxicity response is observed and then the chosen dose-finding method design is applied (two-stage design) as
suggested in Ursino et al. [8].
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> nsim(doses, N, cohort, icon, theta, model, simulatedData, TR, prob = 0.9,
AUCmethod = 2, options = list (nchains = 4, niter = 4000, nadapt = 0.8),

betapriors = NULL, thetal = NULL, p0O = 0, L = 0, CI = FALSE, seed = 190591)

In addition to the input arguments of nextDose, the nsim function has the following additional arguments: (i) N, the total sample
size per trial, (ii) cohort, the cohort size, (iii) TR, the total number of trials to be simulated, (iv) simulatedData, a list for each trial
containing previous simulated datasets as in 3.2.1, (v) icon, a vector containing the index of real blood sampling that enables the user to
use all concentration points, previously simulated, or only a subset of them and (f) AUCmethod, a string number specifying the estimation
method for AUC; valid choices are 1 for a “compartmental method” (see [8] for details) and 2 for non-compartmental method (defaults
to 2). The estimated AUC for each patient is computed inside the function nsim, using only the concentration samples selected by icon.
By default, all simulated samples are used. Similarly to the nextDose function, the user needs to choose one of the dose-finding models
which are available in the package.

3.3.1. Demonstration

As an example, 10 trials (i.e. TR=10) were simulated with 30 patients (i.e. N=30) per trial, using the function nsim. At the beginning,
the simulatedData is defined (in this case, we use the simulated data gen.scen generated in the Section 3.2.1), representing the true
toxicity probabilities of each trial, where six dose levels are considered. The dose levels should be entered in a vector, as follows:

> doses <- ¢(12.59972, 34.65492, 44.69007,
60.80685, 83.68946, 100.37111)

The target toxicity probability theta is set to 0.2, meaning that the MTD is defined as the dose for which at most 20% of dose limiting
toxicity (DLT) responses occur. For this example, the PKTOX method is selected and the 95% CI of the probability of toxicity at each dose
is chosen to be estimated and included in the results since the input argument CI is set to TRUE. Since our simulation uses Stan models,
we also need to specify the model’s options, as a list, containing the number of chains, how many iterations each chain will use and the
number of warm-up iterations. The default choice is:

> options <- 1list (nchains = 4, niter = 4000, nadapt = 0.8)

After setting the index of real blood sampling (i.e. icon) and entering the corresponding model’s input parameters, we call the nsim
function as following:

> icon <- e¢(2, 3, 4, 5, 6, 9, 19, 28, 38, 48)

> simResult <- nsim(doses, N=30, cohort=1, icon, theta=0.2, model="pktox",
simulatedData=gen.scen, TR=10, options=options, AUCmethod=1,
CI = TRUE)

The result is saved in the R object, named simResult, of a S4 class “dosefinding”. The output can be divided in three parts. The
first part shows a data summary of the chosen dose-finding model (PKTOX in this case), the second part the Stan options and finally the
dose-finding results including the percentage of the dose-allocation and the percentage of the MTD selection. The generated output is as
follows:

A. Data Summary (pktox model)
Number of simulations: 10
Total number of patients in the trial: 30
The time sampling: 0.511 1.021 1.532 2.043 2.553 4.085 9.191 13.787 18.894 24
Levels of Doses: 12.6 34.655 44.69 60.807 83.689 100.371
Concentration of the drug: 0.675 0.747 0.834 1.026 1.031 0.761 0.568 0.396 0.285 0.268

B. STAN Model’s Options
The Stan model runs with 4 MCMC chains which each chain has 4000 iterations

and 0.8 warmup iterations



A. Toumazi et al./ Computer Methods and Programs in Biomedicine 157 (2018) 163-177 173

Based on the above example, the next recommended dose level
is 4mg with a percentage of MTD selection equals to 60%.

C. Dose-Finding Results:

Dose STOP 1 2 3 4 5 6

Truth Probabilities NA 0.001 0.05 0.10 0.20 0.35 0.45

Dose-Allocation (%) NA 0.150 0.05 0.14 0.38 0.21 0.07

Selected % MTD 0.00 0.100 0.00 0.10 0.60 0.20 0.00

Recommendation is based on a target
toxicity probability of: 0.2

The MTD, toxicity responses as well as the dose escalation for
each trial can be obtained as follows:

> MTID <- simResult(@MTD
[11 4 4551344144
> Toxicity <- simResult@toxicity

> Doselevels simResult@doselLevels

The generic function plot () can be used in order to illustrate
the dose escalation during the trial or the dose-toxicity response
for each dose level. The main input argument is a “dosefinding”
object. The simulation output can be shown graphically with the
command:

> plot (simResult, TR=6, ask = TRUE, CI = TRUE)

Make a plot selection (or 0 to exit):

1: Plot trial summary
2: Boxplot sampling dose response

3: Plot posterior dose response with 95% CI

Selection:

where TR represents the number of trial (defaults to TR = 1) for
which we want to plot the graph, CI indicates if the simulation’s
results include the estimated 95% of the probability of toxicity or
not (defaults to CI = TRUE) and ask represents the plot selec-
tion index (defaults to ask = TRUE) showing a selection menu as
above: the user should enter 1 to see the dose escalation alloca-
tion of the selected trial, 2 to create a boxplot of the sampling
distribution of the probability of toxicity at each dose in the end
of the trial over the total number of trials, and 3 to plot the final
posterior distributions of the probability of toxicity at each dose
(the plot includes the estimation along with the lines of the 95%
CI for the selected trial). 0 is the command to exit and 2 is the
default choice for the input ask. Note that, if the simulation’s re-
sults don’t include the 95% CI of probability of toxicity then the
selection menu contains only the first two choices.

Fig. 4(A) shows the dose allocation plot based on our example,
where the non-toxicity response is represented as a circle and the
toxicity response as a cross. In addition, Fig. 4(B) and 4(C) present
the output plot choosing, in the menu, 2 and 3, respectively. In
Fig. 4(C), the 95% CI and prior probabilities of toxicity are repre-
sented as dotted and dashed lines, respectively. The red dot-dash
line in the last two Figures represents the toxicity threshold which
is used for the selection of the MTD.

Note that, since the Bayesian models are implemented in Stan,
running simulations can take very long time. Moreover, simula-
tions including the estimation of the 95% credible intervals (CI) for
probability of toxicity at each dose level (i.e. CI = TRUE), can
take more time than excluding them (i.e. CI = FALSE). In this
case, to run the 10 trials including the 95% CI of probability of tox-
icity, about 30 min are needed on a single portable computer with
an Intel Core i5. Instead, to simulate only the MTD under the same
settings, without estimating the 95% CI, about 18 min are required
on the same computer. A more expanded comparison of the nsim
function and for 1,000 simulated trials, which is often used for the
simulation studies in the literature of dose-finding methods, are
shown in Appendix A. However, we suggest to run simulations on
a dedicated server.

4. Conclusion

The dfpk package implements novel methods for dose-finding
phase I clinical trials incorporating PK in the dose-toxicity rela-
tionships[8]. In this package, each method can be used during a
prospective adaptive trial, where the dose for the next cohort of
patients depends on the outcomes of the previous cohorts, in or-
der to estimate the recommended dose for further clinical trials. It
can also be used to perform simulations before the beginning of
trial in order to study the robustness of the method to the differ-
ent parameters setting choices. Running simulations is also useful
to calibrate some parameters, but it takes time, therefore we sug-
gest to run simulations on a dedicated server.

The package is user-friendly and several flexible inputs are al-
lowed: for instance the user can generate by her/himself scenarios
(simulated datasets) and pass them on to the function nsim, or
change the hyper-prior parameters of the prior distributions used
in the Bayesian regression. The package will also be updated ac-
cording user suggestions and needs.

5. Discussion

Designing early phase clinical trials is of crucial importance,
since all future steps in the clinical development or failures de-
pend on these first results. Statistical computer programs, such as
R, facilitate design and the checking of performance through sim-
ulations. An example of existing R packages can be found in [13].
However, to the best of our knowledge, there are no other soft-
ware packages available that implement a formal integration of
dose-finding and pharmacokinetics. Our R package can support in-
terdisciplinary trial teams in implementing innovative dose-finding
design using PK information in phase I studies.

Ursino et al. [8] compared a number of dose-finding meth-
ods under several scenarios, in order to verify their behaviour
and characteristics. The PKCRM method behaves as the CRM alone
when the L is very high. On the other hand, it gives the same prob-
ability of correct MTD selection (as the CRM) while reducing the
probability of overdosing, when L is appropriately chosen. There-
fore, this design is recommended when in preclinical phases non-
monitorable toxicity has been observed or in some pediatric stud-
ies, when L can be easily set from a literature review. The PKLOGIT
and PKTOX methods are recommended when more precise dose-
response curve estimation is required. Compared to the CRM these
methods are able to better estimate the probability of toxicity as-
sociated with each dose along with accurate MTD selection. In this
way, a richer knowledge can be transmitted to subsequent phases
of clinical development. The other methods have similar behaviour
to any dose-toxicity regression, and can be used for comparisons
in simulations.

The choice of the prior distributions is crucial. In this pack-
age, we set as default the prior distributions suggested in [8].
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Fig. 4. (A) Plot of the dose escalation (for each patient) in the trial, (B) Boxplot of the sampling distribution of the probability of toxicity at each dose over the total number
of trials, and (C) Plot of the posterior distributions of the probability of toxicity at each dose (including the estimation along with the lines of the 95% CI), according to the

PKTOX method.

These prior hyperparameters were chosen after sensitivity analy-
sis to give good performance in most cases. However, we suggest
setting the prior hyperparamenters using preclinical information or
other external pertinent information if this is available.
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Appendix A. Simulation times

Simulations based on Bayesian methods can be very tedious
and time consuming. Therefore, for 1,000 simulated trials, we sug-
gest to use a dedicated server. Moreover, running in parallel all the
scenarios and not sequentially can also reduce the time of the sim-
ulations.

Table A.1 shows the estimated times for conducting the simu-
lations of 10 and 1,000 trials, excluding the 95% credible intervals,
for the methods PKTOX and PKCRM under several settings (i.e. the
number of chains and iterations for the Bayesian algorithm).

Table A1

Simulation’s estimated times running 10 or 1,000 trials, in minutes and
hours respectively, using different dose-finding methods under several
settings for Bayesian algorithm (number of chains and iterations).

Bayesian settings TR =10 TR = 1,000
Methods Methods
PKTOX PKCRM PKTOX PKCRM
chains = 4, iter = 4000 18 min 10 min ~ 32h ~ 17h
chains = 4, iter = 6000 26 min 14 min ~ 45h ~ 25h
chains = 3, iter = 4000 13 min 7 min ~ 23h ~ 13h
chains = 6, iter = 4000 26 min 14.5 min ~ 44h ~ 24h

Appendix B. S4 classes

One of the big advantages of df pk package is its flexible frame-
work based on the S4 classes and methods structure. S4 classes
have allowed us to construct rich and complicated data represen-
tations that nevertheless seem simple to the end user. The class is
the abstract definition, while every time we actually use it to store
the results for a given data set, we create an object of the class.

Three S4 classes are available, the dose-class, the
scen-class and the dosefinding-class, in order to store,
show or plot the corresponding results of the main R functions
nextDose, sim.data and nsim, respectively. You can click on
the corresponding help pages as background information for the
next steps.
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Table B.1
The required slots (i.e. arguments) in the dose class.
N The total number of enrolled patients.
y A binary vector of toxicity outcomes from previous patients; 1 indicates a toxicity, 0 otherwise.
AUCs A vector with the computed AUC values of each patient.
doses A vector with the doses panel.
X A vector with the dose levels assigned to the patients in the trial.
theta The toxicity target.
options A list of Stan model’s options.
newDose The next recommended dose (RD) level; equals to O if the trial has stopped, according to the stopping rules.
pstim The estimated mean probabilities of toxicity.
pstimQ1 The 1st quartile of estimated probability of toxicity.
pstimQ3 The 3rd quartile of estimated probability of toxicity.
parameters  The Stan model’s estimated parameters.
model A character string to specify the selected dose-finding model used in the method.

In this section, a briefly description of the accessible classes is shown.

1. dose-class

The dose-class is created to store and present the next recommended dose level in an ongoing trial through the R function
nextDose. We can look in detail at the structure of the class as follows:

> setClass ("dose", slots = 1list (N = "numeric", y = "numeric", AUCs = "numeric",
doses ="numeric", x = "numeric", theta = "numeric", options = "list",
newDose="ClassNewDose", pstim="numeric", pstimQl="ClassNewDose",
pstimQ3="ClassNewDose", parameters="numeric", model = "character"))

where, ClassNewDose is a union of classes “numeric”, “logical” and “NULL".

Accordingly to the structure, the dose class consists of 13 slots (i.e. arguments) which each one has a specific type. Table B.1 gives a
brief definition of each corresponding slots in the dose class.

An object that comes from the dose—class must contain all the above slots. The slots are accessed using @, just as components of a
list that are accessed using $. Here, an illustration of how to access the slots of an object is given.

We suppose that nextD is an object of the dose class. For example, the slots model and y can be obtained as follows:

> nextD@model
[1] "pktox"
> nextD@y

[I11 00O 000100001000 O

where, PKTOX was the selected dose-finding model and the vector (0, 0, 0, 0,0, 1,0, 0, 0, 0, 1, 0, 0, 0, 0) was the toxicity outcome for
each patient that are used in the function nextDose.

Once the classes are defined, we probably want to perform some computations on objects. In most cases we do not care how the object
is stored internally, the computer should decide how to perform the tasks. The S4 way of reaching this goal is to use generic functions
and method dispatch.

Based on our above example, we hypothesised that we stored the output of the function nextDose in the object nextD. To present
the results we can use either the method show or print as follows:

> print (nextD)

> show (nextD)

Both methods give a nice and simple presentation of the outcome that is stored in the object nextD. In any case where user wants to
change how the results are presented, she/he can easily do it by setting her/his own show or print method in the class dose. Similarly,
a plot generic function is defined for this class and can be easily accessed through the command:

plot (nextD)

2. scen-class



176 A. Toumazi et al./ Computer Methods and Programs in Biomedicine 157 (2018) 163-177

Table B.2
The required slots (i.e. arguments) in the scen class.

PKparameters  Subject’s pharmacokinetic’s (PK) parameters from the population distributions
defined by the population mean.

nPK The length of time points.

time The sampling time points.

idtr The id number of the corresponding simulated dataset.

N The total sample size per trial.

doses A vector of the doses panel.

preal The prior toxicity probabilities.

limitTox The toxicity threshold.

omegallV The inter-individual variability for the clearance and the volume of distribution.

omegaAlpha The patient’s sensitivity parameter.

conc The concentration computed at the PK population values.

concPred The concentration values with proportional errors for each patient at each
dose.

tox The toxicity outcome.

tab A summary matrix containing the sampling time points at the first row

followed by concPred, parameters and alphaAUC. It used by the
simulation function nsim.

parameters The simulated PK parameters of each patient.

alphaAUC A vector with the computed AUC values of each patient.

A scen is a S4 class to save and show a dataset simulated by the function sim.data. We can look in detail at the structure of the
class scen as follows:

> setClass ("scen", slots = list (PKparameters="numeric", nPK="numeric",
time="numeric", idtr = "numeric", N = "numeric", doses="numeric",
preal = "numeric", limitTox="numeric", omegallV="numeric",

omegaAlpha="numeric", conc="matrix", concPred="numeric",
tox="matrix", tab="matrix", parameters="matrix", alphaAUC="numeric"))

Thanks to S4 classes, the user can easily create his/her own datasets. For example, he/she can create a new object for each simulated
trial, named UserData, and store it in a scen—-class by a similar way using the command new in the following way:

> UserData <- new("scen", PKparameters, nPK, time, idtr, N, doses, preal,
limitTox, omegallV, omegaAlpha, conc, concPred, tox, tab,
parameters, alphaAUC)
and then add it in a list, along with the other simulated datasets.
A detailed definition of each slot is presented in the Table B.2.
Once again, user can access to the slots and apply the generic functions and methods in this class by exactly the same way as in

dose-class. Assume that we run 10 (i.e. TR=10) simulated datasets using the function sim.data and simulatedData is a scen
object then:

> idtr = 2 # for example select the second simulated dataset
> simulatedDatal[[idtr]]@PKparameters
> show (simulatedDatal[ [idtr]])

> plot (simulatedDatal [idtr]])

3. dosefinding-class

Lastly, a third S4 class is available in the package dfpk, called dosefinding, which is created to store all the dose-finding results that
are simulated through the R function nsim.
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Table B.3
The required slots (i.e. arguments) in the dosefinding class.

pid Patient’s ID provided in the study.

N The total sample size per trial.

time The sampling time points.

doses A vector with the doses panel.

conc The estimated concentration values for each patient at each dose.

po The skeleton of CRM for PKCRM.

L The AUC threshold to be set before starting the trial for PKCRM.

nchains The number of chains for the Stan model.

niter The number of iterations for the Stan model.

nadapt The number of warmup iterations for the Stan model.

newDose The next maximum tolerated dose (MTD) if TR=1 otherwise the percentage of

MTD selection for each dose level after all trials starting from dose 0; equals

to 0 if the trial has stopped before the end, according to the stopping rules.
MTD A vector containing the next maximum tolerated doses (MTD) of each trial
(TR); equals to O if the trial has stopped before the end, according to the

stopping rules.

MtD The final next maximum tolerated (MTD) dose after all the trials.
theta The toxicity threshold.
doseLevels A vector of dose levels assigned to patients in the trial.
toxicity The estimated toxicity outcome.
AUCs A vector with the computed AUC values of each patient.
TR The total number of trials to be simulated.
preal The prior toxicity probabilities.
pstim The estimated mean probabilities of toxicity.
pstimQ1 The 1st quartile of the estimated probability of toxicity.
pstimQ3 The 3rd quartile of the estimated probability of toxicity.
model A character string to specify the selected dose-finding model used in the
method.
seed The seed of the random number generator that is used at the beginning of
each trial.
It’s structure is given below:
> setClass ("dosefinding", slots = list (pid="numeric", N ="numeric",
time="numeric", doses = "numeric", conc="numeric",
p0 = "numeric", L = "numeric", nchains = "numeric",
niter = "numeric", nadapt ="numeric", newDose = "ClassNewDose",
MTD = "ClassNewDose", MtD = "numeric", theta = "numeric",

doselevels="matrix", toxicity= "matrix",

AUCs="matrix", TR="numeric",

preal = "numeric", pstim = "list", pstimQl = "list", pstimQ3 = "list",

model = "character", seed= "matrix"))

where, 21 different slots are available. Table B.3 defines all the possible slots.

Identically with the dose and scen S4 classes, the slots can picked
be applied in the same way.
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