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a b s t r a c t 

Background and objective: Dose-finding, aiming at finding the maximum tolerated dose, and pharma- 

cokinetics studies are the first in human studies in the development process of a new pharmacological 

treatment. In the literature, to date only few attempts have been made to combine pharmacokinetics and 

dose-finding and to our knowledge no software implementation is generally available. In previous pa- 

pers, we proposed several Bayesian adaptive pharmacokinetics-based dose-finding designs in small pop- 

ulations. The objective of this work is to implement these dose-finding methods in an R package, called 

dfpk . 
Methods: All methods were developed in a sequential Bayesian setting and Bayesian parameter estima- 

tion is carried out using the rstan package. All available pharmacokinetics and toxicity data are used to 

suggest the dose of the next cohort with a constraint regarding the probability of toxicity. Stopping rules 

are also considered for each method. The ggplot2 package is used to create summary plots of toxicities 

or concentration curves. 

Results: For all implemented methods, dfpk provides a function ( nextDose ) to estimate the probability 

of efficacy and to suggest the dose to give to the next cohort, and a function to run trial simulations to 

design a trial ( nsim ). The sim.data function generates at each dose the toxicity value related to a 

pharmacokinetic measure of exposure, the AUC, with an underlying pharmacokinetic one compartmental 

model with linear absorption. It is included as an example since similar data-frames can be generated 

directly by the user and passed to nsim . 
Conclusion: The developed user-friendly R package dfpk , available on the CRAN repository, supports the 

design of innovative dose-finding studies using PK information. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Dose-finding studies and pharmacokinetics (PK) are carried out

t the first phases of clinical evaluation of a new drug in humans.

rug safety is evaluated in the dose-finding study, which aims at

dentifying the maximum tolerated dose (MTD) [1] . Meanwhile, the
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K data collected during such study provides the description of the

ose-concentration relationships [2] . Nevertheless, these two ap-

roaches are often conducted and reported independently in dif-

erent sections in publications reporting trial results [3] . Identifying

he right dose or set of doses at an early stage is crucial: selecting

oo toxic doses can result in patient overdosing, while selecting

n inefficient dose increases the likelihood that the drug will be

ound to be ineffective in subsequent clinical evaluation [4] . Par-

icularly in the case of small populations, such as rare diseases or

aediatrics, it should be useful to take into account all the infor-
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mation collected during the trial, and to try to utilize the PK mea-

surements within the dose-finding design. Only few attempts have

been described in the literature so far and, usually, the methods

were built for a very specific situation [5–8] . Moreover, no soft-

ware implementations are publicly available. 

In this article we present the new R package dfpk (short for

dose-finding Pharmacokinetics), which provides the Bayesian adap-

tive PK-based dose-finding designs in small populations proposed

by Ursino et al. [8] through the freely available R software [9] . The

six methods detailed in [8] have been implemented in dfpk . For

each of them, two functions are provided: (i) a function to deter-

mine the next recommended dose (during the trial) or the rec-

ommended MTD (at the end of the trial) and (ii) a function to

run simulations of phase I studies to design a new trial. Interac-

tive graphical representations of the dose-concentration curve, of

the dose allocation process in the trial and of the dose-toxicity re-

sponse are also provided by the package. 

The paper is organised as follows. Section 2 introduces the sta-

tistical methods proposed by Ursino et al. [8] , along with the de-

scription of the suggested scenarios to be simulated. Section 3 out-

lines the structure of the package and the main functions of the

paper ( sim.data , nextDose and nsim ) with practical examples.

Section 4 & 5 include conclusion, discussion and recommendations.

2. Computational methods 

The present section briefly reviews the methods proposed by

Ursino et al. [8] to perform dose-finding taking into account PK

measurements. We then describe the scenarios simulated in [8] in

order to evaluate the robustness of the method, which have been

added as examples in the dfpk package. 

2.1. Dose-finding methods 

Let D = { d 1 , . . . , d k } be the set of K possible doses with

d 1 < ��� < d k and d [ i ] ∈ D be the dose administered to the i th subject

( i = 1 , . . . , n, where n denotes the sample size) and y i be a binary

variable which takes value 1 if the i th subject shows a DLT (dose-

limiting toxicity) and 0 otherwise. Moreover, let z i be the logarithm

of the area under the curve (AUC) of the concentrations of drug in

blood plasma against time, for the i th patient. 

All methods share the same fundamental idea for the dose-

escalation rule: the dose chosen for the next cohort enrolled is

the one with probability of toxicity nearest to the target θ se-

lected by the trial investigators. A no-skipping rule is given: if

some doses have not yet been tested, the dose is chosen from

D 

∗ ⊂ D , a subset of D which contains all the doses already evalu-

ated and the first dose level immediately above. The final recom-

mended MTD is given by the dose that would have been admin-

istered for the (n + 1) st subject enrolled in the trial. Finally, we

added in all methods the same stopping rule: if the posterior prob-

ability of toxicity of the first dose is greater of a specified thresh-

old, then no dose is suggested and the trial is stopped. 

Each method is separated from the others. We adopted the con-

vention of starting the subscription of β parameter from 0 for each

method. Therefore, even if the parameters share the same names

across models, they have different interpretations. In the following,

we briefly describe how the probability of toxicity is estimated and

computed in each method. 

2.1.1. PKCOV 

PKCOV is a modification of the method proposed by Piantadosi

and Liu [5] who suggested to use the AUC as a covariate for p T , the

probability of toxicity, through the logit link. Therefore, the dose-

 

oxicity model is 

ogit ( p T ( d k , �z d k , β) ) = −β0 + β1 log ( d k ) + β2 �z d k 

∀ d k ∈ D, (1)

here β = (β1 , β2 ) , β0 is a constant selected through a sensitivity

nalysis or with prior information, �z d k is the difference between

he logarithm of population AUC at dose d k and z , the logarithm of

UC of the subject at the same dose. Independent uniform distri-

utions are selected as prior distributions for β1 and β2 . In detail,

1 ∼ U( max (0 , m 1 − 5) , m 1 + 5) , where m 1 reflects the prior infor-

ation on the parameter and the length of the domain of the dis-

ribution can go up to 10, and β2 ∼ U (0, 5). Both β0 and m 1 should

e selected using prior information, such as from preclinical data,

nd sensitivity analysis should be done. The estimated probabil-

ty of toxicity versus dose is obtained by inverting Eq. (1) , using

1 = 

ˆ β1 , the estimated parameter, and �z d k = 0 . 

.1.2. PKLIM and PKCRM 

PKLIM is a modification of the method proposed by Patterson

t al. [6] and Whitehead et al. [10] . A normal PK-toxicity model is

sed: 

 i | β, ν ∼ N 

(
β0 + β1 log d i , ν

2 
)
, (2)

here β = (β0 , β1 ) are the regression parameters, and ν is the

tandard deviation. A bivariate normal distribution and a beta

istribution are chosen for β and ν , respectively, that is, β ∼
(m , ν2 (g� )) and ν ∼ Beta (1, 1). Therefore, a hierarchical prior dis-

ribution is given to β, where m = (− log Cl pop , 1) and g should be

hosen using prior information. For instance, Cl pop denotes the at-

ended value of the clearance at population level, and g reflects the

recision. The probability of toxicity of each dose is computed as

 (z > L | d k , β = 

ˆ β, ν = ˆ ν) ∀ d k ∈ D, (3)

here L is a threshold set before starting the trial and the hat de-

otes the posterior means of the parameters. Since an assumption

nderlying the model is that DLTs are based on the AUC exceeding

ome threshold, the method could be applicable only when such

 threshold is known. In order to avoid this problem, the PKCRM

ethod was proposed, which is the combination of PKLIM and the

RM [11] using a power working model and normal prior on the

arameter. In PKCRM the dose recommended for the next subject

s the lowest of the doses recommended by the two methods. 

Note that although the same notation has been used for con-

enience, the parameters β0 and β1 are different in the different

odels. 

.1.3. PKLOGIT, PKPOP, PKTOX 

PKLOGIT, inspired by Whitehead et al. [7] , combines two regres-

ions to compute the probability of toxicity versus the dose. The

rst one is the same as Eq. (2) , that is z versus dose. In the second,

 is used as a covariate in a logistic regression model for p T . This

eans that now the probability of toxicity is described in term of

UC and not any more in term of dose. Therefore, we have that 

ogit (p T (z, β)) = −β2 + β3 z, (4)

here β2 and β3 have independent uniform prior distributions,

hat is, β2 ∼ U (0, m 2 ) and β3 ∼ U (0, m 3 ), with m 2 ≥ m 3 , and values

an be chosen using prior information. If no information is avail-

ble, m 2 = 20 and m 3 = 10 are good starting values for a sensitiv-

ty analysis. The probability of toxicity associated with each dose

s obtained by using the estimated parameters of each regression

odel in the following expected value formula: 

 (y = 1 | d k , β = 

ˆ β, ν = ˆ ν) = E 

[
1 

1 + e 
ˆ β2 − ˆ β3 z 

]

= 

∫ 
1 

1 + e 
ˆ β2 − ˆ β3 z 

g(z) dz, (5)
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Fig. 1. Overall presentation of the main R functions nextDose (Fig. 1A) and nsim 
(Fig. 1B) available in the package dfpk, indicating the corresponding inputs and out- 

puts. 
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here g ( z ) represents the distribution of the logarithm of AUC

iven the dose d k obtained from Eq. (2) . 

PKPOP, a variation of PKLOGIT, arises by replacing z with z k, pop 

n Eq. (4) , where z k, pop is the mean value of the logarithm of AUC

t dose d k predicted by Eq. (2) . In other words, we replace the ob-

erved AUC value for the patient with the population mean value.

hen, the probability of toxicity at each dose is computed invert-

ng Eq. (4) , using the estimated parameters ˆ β2 and 

ˆ β3 along with

 k, pop predicted by Eq. (2) . 

PKTOX is essentially the PKLOGIT method with a probit regres-

ion model replacing the logistic regression in Eq. (4) , that is 

p T (z, β) = �( −β2 + β3 z ) , (6)

ith � represents the standard cumulative normal distribution.

s in the previous models, independent uniform distributions are

hosen as prior distributions for the parameters. The probabil-

ty of toxicity versus dose is then computed in the same way of

q. (5) using the probit regression inside the integral. 

.1.4. DTOX 

DTOX follows the usual way of estimating p T versus dose di-

ectly without the PK measurements and is included to check the

ehaviour of this standard method. The dose-toxicity model is: 

p T (d k , β) = �(−β0 + β1 log (d k )) ∀ d k ∈ D. (7)

ndependent uniform bivariate prior distribution is chosen for β in

he same way of Eq. (4) . 

.2. Simulating data for trial design 

The package implements several examples reproducing the sce-

arios proposed in Ursino et al. [8] to evaluate the method perfor-

ance using simulated data. In these settings, toxicity is linked to

 PK measure of exposure, namely to AUC, and we used a simu-

ation setting similar to the one in [12] . A first order absorption,

inear, one compartment PK model was used to simulate PK data.

n this model, the concentration at time t after administration of a

ose d k of the drug at time 0, can be written as a function of k a ,

he absorption rate constant for oral administration, CL, the clear-

nce of elimination, and V, the volume of distribution, as follows:

(t) = 

d k 
V 

k a 

k a − CL/V 

(
e −(CL/V ) t − e −k a t 

)
, (8)

Individual CL and V are sampled from log-normal distributions

ith mean CL pop (Lh −1 ) and V pop ( L ), respectively, and standard de-

iation ω CL = ω V , while k a is fixed in this study as limited infor-

ation concerning the absorption phase was available in the orig-

nal dataset to estimate its inter-individual variability. In order to

ink PK to the toxicity profile of patients, a sensitivity parame-

er α, coming from a log-normal distribution with mean equal to

 and standard deviation ω α , and a threshold τ T are introduced.

e assumed that a patient incurs a dose limiting toxicity (DLT) if

AUC ≥ τ T . Choosing the different parameters leads to several sce-

arios. The probability of toxicity is computed as: 

p T (d k ) = �

( 

log d k − log τT − log CL √ 

ω 

2 
CL 

+ ω 

2 
α

) 

. (9)

. R-functions 

Package dfpk implements all the dose-finding methods de-

cribed in Section 2 . In Fig. 1 , an overall explanation of the main

unctions in the dfpk package is given. The aim of the package

s to assist the design of phase I clinical trials. During the trial,

he patient data already accrued (“Trial data” in Fig. 1 A) can be

sed in the nextDose function in order to determine the next
ecommended dose, or the MTD at the end of trial. Plots are

lso available after the estimation process. When planning a new

rial, datasets containing PK and toxicity measurements can be

imulated directly by the user (“Simulated data”) or through the

im.data function, and used in the nsim function (in Fig. 1 B.),

hich will perform n simulated clinical trials. Also in this case,

lots with graphical representations support the numeric results. 

Bayesian parameter estimation is carried out using the rstan
ackage while the ggplot2 package is used to create plots. Three

4 classes are implemented in the package, “dose” , “dosefinding”

nd “scen”, in order to store the outputs of the main R functions

extDose , nsim and sim.data , respectively. The classes are de-

ailed described in the Appendix B . 

The package dfpk is available on the CRAN archive and can be

asily installed on the fly through the URL https://cran.r-project.

rg/web/packages/dfpk . Once the package is installed, it can be

oaded with the command: 

In the remainder of this section, we present the R functions

vailable in the package along with the required input parameters

nd examples. A more extensive demonstration and documentation

an be accessed from the on-line user manual on the CRAN server

y installing the package or directly within the R console. 

https://cran.r-project.org/web/packages/dfpk
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Table 1 

Arguments for the functions nextDose and the dose-finding models. 

model The dose-finding model chosen between “pktox”, “pkcov”, “pkcrm”, “pklogit”, 

“pkpop” and “dtox”. 

y A binary vector of toxicity outcomes from previous patients. 

AUCs A vector with the computed AUC values of each previous patient for PKTOX, 

PKCRM, PKLOGIT and PKPOP. 

doses A vector with the doses panel. 

x A vector with the dose level assigned to previous patients. 

theta The toxicity target. 

options List with the Stan model’s options. 

prob The threshold of the posterior probability of toxicity for the stopping rule in 

the selected model; defaults to 0.9. 

betapriors A vector with the value for the prior distribution of the regression parameters 

in the selected model. 

thetaL A second threshold of AUC in the PKCRM model only; defaults to theta for 

PKCRM and NULL for the models PKTOX, PKCOV, PKLOGIT, PKPOP & DTOX. 

p 0 The skeleton of CRM for PKCRM; defaults to NULL. 

L The AUC threshold to be set before starting the trial for PKCRM; defaults to 

NULL. 

deltaAUC A vector of the difference between computed individual previous patients’ AUC 

and the AUC of population at the same dose level (defined as an average); 

argument for PKCOV; defaults to NULL. 

CI A logical constant indicating the estimation of the 95% credible intervals (CI) of 

the probability of toxicity at each dose level for the selected model; defaults 

to TRUE. 

Table 2 

Input arguments required by each dose-finding method in the nextDose function. 

Method Required arguments Optional arguments 

pktox y, AUCs, doses, x, theta, prob, options, CI betapriors 

pkcov y, AUCs, doses, x, theta, deltaAUC, prob, options, CI betapriors 

pkcrm y, AUCs, doses, x, theta, p0, L, prob, thetaL, options, CI betapriors 

pklogit y, AUCs, doses, x, theta, prob, options, CI betapriors 

pkpop y, AUCs, doses, x, theta, prob, options, CI betapriors 

dtox y, doses, x, theta, prob, options, CI betapriors 

ion at each step during a dose-finding trial. It gives the recommended 

mated MTD if applied at the end of the trial. It can be used during an 

r in the Section 3.2 . 

e function are provided in Table 1 . The user has to choose the dose- 

Then, he/she should provide the parameters required by the selected 

ally to NULL. Any argument not specified by the user will be set to the 

ions for the Bayesian algorithm can be changed using the appropriate 

 clinical trial is still ongoing and 15 patients have been enrolled so far. 

l. The nextDose function requires the following input arguments: the 

and the options for the Stan model as a list, containing the number of 

. 
3.1. Dose-finding methods ( nextDose ) 

The nextDose function is used to perform parameter estimat

dose to administer to the next cohort of patients, or the final esti

ongoing clinical trial or with a simulated dataset, as described late

The description of the input arguments used in the nextDos
finding method from the available set in the model parameter. 

method, as specified in Table 2 , while the others are set automatic

corresponding default choice [8] . The number of chains and iterat

rstan options. 

3.1.1. Demonstration 

(A) PKTOX model In the following example, we supposed that a

For this case, PKTOX was selected as the dose-finding mode

panel of doses of the drug, the target toxicity probability, θ
chains, the number of iterations and the warm-up iterations
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ls assigned to the patients (as integer vector), that is denoted by x , the 

epted), denoted as y , for each enrolled patient. 

toxicity-AUC regression by adding the parameter betapriors . If it is 
d by default. 

llowing: 

(10) 

ices are Cl pop = 10 , g = 10 0 0 0 , beta2mean = 20 and beta3mean = 10. 

els are available in the user-manual on the CRAN. 

ding on the chosen model, PKTOX, using the following syntax: 

ports part of the results displayed, that is the number of patients who 

the observed dose levels of the drug: 

l is 5, which would be the dose for the next cohort of patients given 

meters are also shown: 

 results. For example, using the generic function plot() on a “dose”

he dose allocation of the currently enrolled patients during the trial or 

t each dose presenting the estimation along with the lines of the 95% 

tudy, and (B) the plot of the posterior distributions given this data of 

OX method (including the mean estimation along with the 95% CI). 

M dose-finding method in the function nextDose . In this way, we can 

is case, in addition to the input arguments that are used in the PKTOX 
Other necessary input arguments are the vector of dose leve

AUCs values and the vector of toxicity outcomes (0/1 are acc

The user can change the prior distribution parameter of the 

not specified, the value suggested by Ursino et al. [8] are use

The default choices of betapriors for PKTOX model are the fo

β| ν ∼ N ( m, ν × g × diag ( 1 , 1 ) ) , 

ν ∼ Beta ( 1 , 1 ) , 

m = 

(
− log 

(
CL pop 

)
, 1 

)
, 

β2 ∼ U ( 0 , beta 2 mean ) , 

β3 ∼ U ( 0 , beta 3 mean ) , 

where Cl pop is the population clearance and the default cho

Details about the default choices of all the dose-finding mod

These arguments are used in the nextDose function depen

omitting all default parameters. 

The results are stored in a “dose” object. The output below re

are currently enrolled, the selected dose-finding model, and 

According to these results, the next recommended dose leve

the data. The estimated toxicity probabilities and model para

The package also provides a graphical representation of the

object, we can select if we want to present graphically: (1) t

(2) the posterior distributions of the probability of toxicity a

credible intervals (CI), as below: 

Fig. 2 presents (A) the data for the first 15 patients in the s

the probability of toxicity at each dose according to the PKT

(B) PKCRM model 

In this section a second illustration is shown using the PKCR

highlight the differences in the required inputs/outputs. In th
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Fig. 2. (A) Plot of the data for the first 15 patients in the study and, (B) the plot of the posterior distributions given this data of the probability of toxicity at each dose 

according to the PKTOX method (including the mean estimation along with the 95% CI). 

ethod requires the skeleton of CRM ( p0 ) and the AUC threshold ( L ), 
e use: 

M model, we call the nextDose function as following: 

ta in order to be used for simulation according to the model described 

responses at all doses for each trial. The function sim.data takes the 

parameters along with the simulated toxicity observations. 
method (i.e. y, AUCs, doses, x, theta, options), the PKCRM m

which must be set before starting the trial. In this example w

After setting all the required arguments for the chosen PKCR

The resulting object displays as follows : 

3.2. Generate data (sim.data) 

The sim.data function generates and stores PK and toxicity da

in Section 2.2 . The initial step consists in generating the patients’ 

trial’s settings and returns a list of data including the subject’s PK 
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CL and V ) from the population distributions defined by the population 

m r the clearance and the volume of distribution ( omegaIIV ). Then, for 

e  toxicity ( preal ), and for all patients ( N ) and simulated data ( TR ), it 

c ints ( timeSampling ). In addition, we add a proportional error drawn 

f tion sigma . According to eq. ( 9 ), the function computes the toxicity 

v patient’s sensitivity parameter omegaAlpha . Finally, a default value of 

t

f PKparameters , nPK , the length of the time points, timeSampling , 
i concentration , the concentration computed at the PK population 

v ors for each patient at each dose, tox , tab , a summary matrix, used 

i  the first row followed by concPred , parameters , the simulated PK 

p  using S4 classes, the user can easily create his/her own datasets. For 

e amed UserData , using the command new in the following way 

a . A more expanded description of the “scen” class and objects can be 

a

3

f the first scenario described by Ursino et al. [8] . In this example, we 

s y value to 10.96, the dose levels to (12.6, 34.655, 44.69, 60.807, 83.689 

a toxicity, 48 evenly spaced sampling time points between 0 and 48 h, a 

s low: 

.scen , which regroups the subject’s PK parameters, the concentration 

m at each dose level. Here, we provide some sim.data results for the 

fi

In particular, it starts by drawing subject’s PK parameters ( k α , 

ean ( PKparameters ) and the inter-individual variability (IIV) fo

ach dose level ( doses ), we computed the desired probability of

omputes the concentration measurements at the specified time po

rom a normal distribution with zero mean and a standard devia

alues for each dose level using the threshold limitTox and the 

he random number generator ( seed ) is set at 190591. 

The results are stored in a list of “scen” objects, which consists o

dtr , N , doses , preal , limitTox , omegaIIV , omegaAlpha , 
alues, concPred , the concentration values with proportional err

n the simulation function, containing the sampling time points at

arameters of each patient, alphaAUC , the αAUCs. Since we are

xample, he/she can create a new object for each simulated trial, n

nd then add it in a list, along with the other simulated datasets

ccessed from Appendix B 2. 

.2.1. Demonstration 

The following illustration shows how to generate the datasets o

et the number of trials to 10 (i.e. TR = 10), the threshold of toxicit

nd 100.371 mg) which are used to obtain the true probabilities of 

ample size of 30 and k a = 2 , CL = 10 and V = 100 as illustrated be

Each trial’s result is stored in a list of the R “scen” object, gen
easurements for all patients and the simulated toxicities values 

rst trial: 
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nd the chosen toxicity threshold τT = 10 . 96 , we observe for all patients 

t each dose level (one dose = one column) as follows: 
Based on the above AUC with the sensitivity parameter values a

(one row = one patient) in the second trial, the toxicity outcomes a
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Fig. 3. Plot of the concentration of the drug vs time for 12.6, 34.65, 44.69, 60.8, 83.69 and 100.37 mg with k a = 2 h 1 , CL = 10 Lh 1 and V = 100 L . 

 simulate α from a log-normal distribution with mean = 1 and standard 

d

bject to the generic plot function plot , the user obtains a plot of the 

d me settings and outputs as above, the plot is implemented as follows: 

n 2 , with the PK parameters k α = 2 h −1 , CL = 10 Lh −1 and V = 100 L for 

t

3

trials. In the simulated trial, the dose is escalated stepwise cohort by 

c  chosen dose-finding method design is applied (two-stage design) as 

s

In this example, we used α = 1 for all patients, but the user can

eviation ω α . Selecting ω α = 0 implies α = 1 as in this example. 

Once again, providing the selected list of the generated “scen” o

rug’s concentration in the plasma against the time t . Under the sa

Fig. 3 presents the PK concentration curves, described in Sectio

he 6 doses (12.6, 34.65, 44.69, 60.8, 83.69 and 100.37 mg). 

.3. Dose-finding simulation ( nsim ) 

The function nsim simulates a single or n prospective clinical 

ohort until the first toxicity response is observed and then the

uggested in Ursino et al. [8] . 
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nction has the following additional arguments: (i) N , the total sample 

er of trials to be simulated, (iv) simulatedData , a list for each trial 

or containing the index of real blood sampling that enables the user to 

of them and (f) AUCmethod , a string number specifying the estimation 

d” (see [8] for details) and 2 for non-compartmental method (defaults 

unction nsim , using only the concentration samples selected by icon . 
ose function, the user needs to choose one of the dose-finding models 

atients (i.e. N = 30) per trial, using the function nsim . At the beginning, 

d data gen.scen generated in the Section 3.2.1 ), representing the true 

ered. The dose levels should be entered in a vector, as follows: 

 the MTD is defined as the dose for which at most 20% of dose limiting 

d is selected and the 95% CI of the probability of toxicity at each dose 

ut argument CI is set to TRUE . Since our simulation uses Stan models, 

he number of chains, how many iterations each chain will use and the 

ntering the corresponding model’s input parameters, we call the nsim 

S4 class “dosefinding”. The output can be divided in three parts. The 

l (PKTOX in this case), the second part the Stan options and finally the 

n and the percentage of the MTD selection. The generated output is as 
In addition to the input arguments of nextDose , the nsim fu

size per trial, (ii) cohort , the cohort size, (iii) TR , the total numb

containing previous simulated datasets as in 3.2.1 , (v) icon , a vect

use all concentration points, previously simulated, or only a subset 

method for AUC; valid choices are 1 for a “compartmental metho

to 2). The estimated AUC for each patient is computed inside the f

By default, all simulated samples are used. Similarly to the nextD
which are available in the package. 

3.3.1. Demonstration 

As an example, 10 trials (i.e. TR = 10) were simulated with 30 p

the simulatedData is defined (in this case, we use the simulate

toxicity probabilities of each trial, where six dose levels are consid

The target toxicity probability theta is set to 0.2, meaning that

toxicity (DLT) responses occur. For this example, the PKTOX metho

is chosen to be estimated and included in the results since the inp

we also need to specify the model’s options, as a list, containing t

number of warm-up iterations. The default choice is: 

After setting the index of real blood sampling (i.e. icon ) and e

function as following: 

The result is saved in the R object, named simResult , of a 

first part shows a data summary of the chosen dose-finding mode

dose-finding results including the percentage of the dose-allocatio

follows: 
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Based on the above example, the next recommended dose level

s 4 mg with a percentage of MTD selection equals to 60%. 

The MTD, toxicity responses as well as the dose escalation for

ach trial can be obtained as follows: 

The generic function plot() can be used in order to illustrate

he dose escalation during the trial or the dose-toxicity response

or each dose level. The main input argument is a “dosefinding”

bject. The simulation output can be shown graphically with the

ommand: 

here TR represents the number of trial (defaults to TR = 1) for

hich we want to plot the graph, CI indicates if the simulation’s

esults include the estimated 95% of the probability of toxicity or

ot (defaults to CI = TRUE ) and ask represents the plot selec-

ion index (defaults to ask = TRUE) showing a selection menu as

bove: the user should enter 1 to see the dose escalation alloca-

ion of the selected trial, 2 to create a boxplot of the sampling

istribution of the probability of toxicity at each dose in the end

f the trial over the total number of trials, and 3 to plot the final

osterior distributions of the probability of toxicity at each dose

the plot includes the estimation along with the lines of the 95%

I for the selected trial). 0 is the command to exit and 2 is the

efault choice for the input ask . Note that, if the simulation’s re-

ults don’t include the 95% CI of probability of toxicity then the

election menu contains only the first two choices. 

Fig. 4 (A) shows the dose allocation plot based on our example,

here the non-toxicity response is represented as a circle and the

oxicity response as a cross. In addition, Fig. 4 (B) and 4 (C) present

he output plot choosing, in the menu, 2 and 3, respectively. In

ig. 4 (C), the 95% CI and prior probabilities of toxicity are repre-

ented as dotted and dashed lines, respectively. The red dot-dash

ine in the last two Figures represents the toxicity threshold which
s used for the selection of the MTD. a  
Note that, since the Bayesian models are implemented in Stan,

unning simulations can take very long time. Moreover, simula-

ions including the estimation of the 95% credible intervals (CI) for

robability of toxicity at each dose level (i.e. CI = TRUE ), can

ake more time than excluding them (i.e. CI = FALSE ). In this

ase, to run the 10 trials including the 95% CI of probability of tox-

city, about 30 min are needed on a single portable computer with

n Intel Core i5. Instead, to simulate only the MTD under the same

ettings, without estimating the 95% CI, about 18 min are required

n the same computer. A more expanded comparison of the nsim
unction and for 1,0 0 0 simulated trials, which is often used for the

imulation studies in the literature of dose-finding methods, are

hown in Appendix A . However, we suggest to run simulations on

 dedicated server. 

. Conclusion 

The dfpk package implements novel methods for dose-finding

hase I clinical trials incorporating PK in the dose-toxicity rela-

ionships [8] . In this package, each method can be used during a

rospective adaptive trial, where the dose for the next cohort of

atients depends on the outcomes of the previous cohorts, in or-

er to estimate the recommended dose for further clinical trials. It

an also be used to perform simulations before the beginning of

rial in order to study the robustness of the method to the differ-

nt parameters setting choices. Running simulations is also useful

o calibrate some parameters, but it takes time, therefore we sug-

est to run simulations on a dedicated server. 

The package is user-friendly and several flexible inputs are al-

owed: for instance the user can generate by her/himself scenarios

simulated datasets) and pass them on to the function nsim , or

hange the hyper-prior parameters of the prior distributions used

n the Bayesian regression. The package will also be updated ac-

ording user suggestions and needs. 

. Discussion 

Designing early phase clinical trials is of crucial importance,

ince all future steps in the clinical development or failures de-

end on these first results. Statistical computer programs, such as

 , facilitate design and the checking of performance through sim-

lations. An example of existing R packages can be found in [13] .

owever, to the best of our knowledge, there are no other soft-

are packages available that implement a formal integration of

ose-finding and pharmacokinetics. Our R package can support in-

erdisciplinary trial teams in implementing innovative dose-finding

esign using PK information in phase I studies. 

Ursino et al. [8] compared a number of dose-finding meth-

ds under several scenarios, in order to verify their behaviour

nd characteristics. The PKCRM method behaves as the CRM alone

hen the L is very high. On the other hand, it gives the same prob-

bility of correct MTD selection (as the CRM) while reducing the

robability of overdosing, when L is appropriately chosen. There-

ore, this design is recommended when in preclinical phases non-

onitorable toxicity has been observed or in some pediatric stud-

es, when L can be easily set from a literature review. The PKLOGIT

nd PKTOX methods are recommended when more precise dose-

esponse curve estimation is required. Compared to the CRM these

ethods are able to better estimate the probability of toxicity as-

ociated with each dose along with accurate MTD selection. In this

ay, a richer knowledge can be transmitted to subsequent phases

f clinical development. The other methods have similar behaviour

o any dose-toxicity regression, and can be used for comparisons

n simulations. 

The choice of the prior distributions is crucial. In this pack-

ge, we set as default the prior distributions suggested in [8] .
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Fig. 4. (A) Plot of the dose escalation (for each patient) in the trial, (B) Boxplot of the sampling distribution of the probability of toxicity at each dose over the total number 

of trials, and (C) Plot of the posterior distributions of the probability of toxicity at each dose (including the estimation along with the lines of the 95% CI), according to the 

PKTOX method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.1 

Simulation’s estimated times running 10 or 1,0 0 0 trials, in minutes and 

hours respectively, using different dose-finding methods under several 

settings for Bayesian algorithm (number of chains and iterations). 

Bayesian settings TR = 10 TR = 1,0 0 0 

Methods Methods 

PKTOX PKCRM PKTOX PKCRM 

chains = 4, iter = 40 0 0 18 min 10 min ≈ 32 h ≈ 17 h 

chains = 4, iter = 60 0 0 26 min 14 min ≈ 45 h ≈ 25 h 

chains = 3, iter = 40 0 0 13 min 7 min ≈ 23 h ≈ 13 h 

chains = 6, iter = 40 0 0 26 min 14.5 min ≈ 44 h ≈ 24 h 

A

 

w  

h  

t  

t  

t

 

s  

s  

n  

t  

n

These prior hyperparameters were chosen after sensitivity analy-

sis to give good performance in most cases. However, we suggest

setting the prior hyperparamenters using preclinical information or

other external pertinent information if this is available. 
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Appendix A. Simulation times 

Simulations based on Bayesian methods can be very tedious

and time consuming. Therefore, for 1,0 0 0 simulated trials, we sug-

gest to use a dedicated server. Moreover, running in parallel all the

scenarios and not sequentially can also reduce the time of the sim-

ulations. 

Table A.1 shows the estimated times for conducting the simu-

lations of 10 and 1 ,0 0 0 trials, excluding the 95% credible intervals,

for the methods PKTOX and PKCRM under several settings (i.e. the

number of chains and iterations for the Bayesian algorithm). 
ppendix B. S4 classes 

One of the big advantages of dfpk package is its flexible frame-

ork based on the S4 classes and methods structure. S4 classes

ave allowed us to construct rich and complicated data represen-

ations that nevertheless seem simple to the end user. The class is

he abstract definition, while every time we actually use it to store

he results for a given data set, we create an object of the class. 

Three S4 classes are available, the dose-class , the

cen-class and the dosefinding-class , in order to store,

how or plot the corresponding results of the main R functions

extDose , sim.data and nsim , respectively. You can click on

he corresponding help pages as background information for the

ext steps. 

https://doi.org/10.13039/501100004963
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Table B.1 

The required slots (i.e. arguments) in the dose class. 

N The total number of enrolled patients. 

y A binary vector of toxicity outcomes from previous patients; 1 indicates a toxicity, 0 otherwise. 

AUCs A vector with the computed AUC values of each patient. 

doses A vector with the doses panel. 

x A vector with the dose levels assigned to the patients in the trial. 

theta The toxicity target. 

options A list of Stan model’s options. 

newDose The next recommended dose (RD) level; equals to 0 if the trial has stopped, according to the stopping rules. 

pstim The estimated mean probabilities of toxicity. 

pstimQ1 The 1st quartile of estimated probability of toxicity. 

pstimQ3 The 3rd quartile of estimated probability of toxicity. 

parameters The Stan model’s estimated parameters. 

model A character string to specify the selected dose-finding model used in the method. 

hown. 

ecommended dose level in an ongoing trial through the R function 

n llows: 

l” and “NULL”. 

s (i.e. arguments) which each one has a specific type. Table B.1 gives a 

b

he above slots. The slots are accessed using @, just as components of a 

l  the slots of an object is given. 

mple, the slots model and y can be obtained as follows: 

w r (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0) was the toxicity outcome for 

e

 computations on objects. In most cases we do not care how the object 

i he tasks. The S4 way of reaching this goal is to use generic functions 

a

he output of the function nextDose in the object nextD . To present 

t s: 

e that is stored in the object nextD . In any case where user wants to 

c tting her/his own show or print method in the class dose . Similarly, 

a accessed through the command: 
In this section, a briefly description of the accessible classes is s

1. dose-class 

The dose-class is created to store and present the next r

extDose . We can look in detail at the structure of the class as fo

where, ClassNewDose is a union of classes “numeric”, “logica

Accordingly to the structure, the dose class consists of 13 slot

rief definition of each corresponding slots in the dose class. 

An object that comes from the dose-class must contain all t

ist that are accessed using $. Here, an illustration of how to access

We suppose that nextD is an object of the dose class. For exa

here, PKTOX was the selected dose-finding model and the vecto

ach patient that are used in the function nextDose . 
Once the classes are defined, we probably want to perform some

s stored internally, the computer should decide how to perform t

nd method dispatch. 

Based on our above example, we hypothesised that we stored t

he results we can use either the method show or print as follow

Both methods give a nice and simple presentation of the outcom

hange how the results are presented, she/he can easily do it by se

 plot generic function is defined for this class and can be easily 
2. scen-class 
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Table B.2 

The required slots (i.e. arguments) in the scen class. 

PKparameters Subject’s pharmacokinetic’s (PK) parameters from the population distributions 

defined by the population mean. 

nPK The length of time points. 

time The sampling time points. 

idtr The id number of the corresponding simulated dataset. 

N The total sample size per trial. 

doses A vector of the doses panel. 

preal The prior toxicity probabilities. 

limitTox The toxicity threshold. 

omegaIIV The inter-individual variability for the clearance and the volume of distribution. 

omegaAlpha The patient’s sensitivity parameter. 

conc The concentration computed at the PK population values. 

concPred The concentration values with proportional errors for each patient at each 

dose. 

tox The toxicity outcome. 

tab A summary matrix containing the sampling time points at the first row 

followed by concPred , parameters and alphaAUC . It used by the 

simulation function nsim . 
parameters The simulated PK parameters of each patient. 

alphaAUC A vector with the computed AUC values of each patient. 

the function sim.data . We can look in detail at the structure of the 

tasets. For example, he/she can create a new object for each simulated 

way using the command new in the following way: 

c functions and methods in this class by exactly the same way as in 

asets using the function sim.data and simulatedData is a scen 

sefinding , which is created to store all the dose-finding results that 
A scen is a S4 class to save and show a dataset simulated by 

class scen as follows: 

Thanks to S4 classes, the user can easily create his/her own da

trial, named UserData, and store it in a scen-class by a similar 

and then add it in a list, along with the other simulated datasets. 

A detailed definition of each slot is presented in the Table B.2 . 

Once again, user can access to the slots and apply the generi

dose-class . Assume that we run 10 (i.e. TR = 10) simulated dat

object then: 

3. dosefinding-class 

Lastly, a third S4 class is available in the package dfpk, called do
are simulated through the R function nsim . 
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Table B.3 

The required slots (i.e. arguments) in the dosefind

pid Patient’s ID provided in the study. 

N The total sample size per trial. 

time The sampling time points. 

doses A vector with the doses panel. 

conc The estimated concentration values 

p0 The skeleton of CRM for PKCRM. 

L The AUC threshold to be set before 

nchains The number of chains for the Stan m

niter The number of iterations for the Sta

nadapt The number of warmup iterations fo

newDose The next maximum tolerated dose (

MTD selection for each dose level

to 0 if the trial has stopped befor

MTD A vector containing the next maxim

(TR); equals to 0 if the trial has s

stopping rules. 

MtD The final next maximum tolerated (

theta The toxicity threshold. 

doseLevels A vector of dose levels assigned to p

toxicity The estimated toxicity outcome. 

AUCs A vector with the computed AUC va

TR The total number of trials to be sim

preal The prior toxicity probabilities. 

pstim The estimated mean probabilities of

pstimQ1 The 1st quartile of the estimated pr

pstimQ3 The 3rd quartile of the estimated pr

model A character string to specify the sel

method. 

seed The seed of the random number ge

each trial. 

w sible

ked  

b

R
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It’s structure is given below: 

here, 21 different slots are available. Table B.3 defines all the pos

Identically with the dose and scen S4 classes, the slots can pic

e applied in the same way. 
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