

Impact of Vascular Calcifications on Long Femoropopliteal Stenting Outcomes

A. Kaladji, P.-A. Vent, A. Danvin, Philippe Chaillou, A. Costargent, B. Guyomarch, T. Quillard, Y. Gouëffic

▶ To cite this version:

A. Kaladji, P.-A. Vent, A. Danvin, Philippe Chaillou, A. Costargent, et al.. Impact of Vascular Calcifications on Long Femoropopliteal Stenting Outcomes. Annals of Vascular Surgery, 2018, 47, pp.170-178. 10.1016/j.avsg.2017.08.043. hal-01713545

HAL Id: hal-01713545 https://univ-rennes.hal.science/hal-01713545v1

Submitted on 28 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Original article
- 2 Impact of vascular calcifications on long femoropopliteal stenting
- 3 outcomes
- 4 Adrien Kaladji^{1,2,3}, Pierre-Alexandre Vent⁴, Aurore Danvin^{4,5}, Philippe Chaillou⁴, Alain
- 5 Costargent⁴, Béatrice Guyomarch^{6,7,8}, Thibaut Quillard⁵, Yann Gouëffic^{4,5,8}
- 6 1. Rennes University Hospital, Centre of Cardiothoracic and Vascular Surgery, F-35033
- 7 Rennes, France
- 8 2. INSERM, U1099, F-35000 Rennes, France
- 9 3. University Rennes 1, Signal and Image Processing Laboratory (LTSI), F-35000
- 10 Rennes, France
- 4. Nantes University Hospital, Thorax Institute, Vascular Surgery Department, Nantes,
- 12 F-44093 France
- 13 5. Laboratory of Pathophysiology of Bone Resorption, UMR-957, Nantes, F-44000
- 14 France
- 15 6. Inserm UMR1087, Thorax Institute, Nantes, F-44000 France
- 16 7. CNRS, UMR 6291, Nantes, F-44000 France
- 17 8. University of Nantes, Nantes, F-44000 France
- 18 Corresponding author:
- 19 Adrien Kaladji, Centre of Cardiothoracic and Vascular Surgery, Rennes University Hospital,
- F-35033 Rennes, France
- 21 kaladrien@hotmail.fr

22

23 Word count : **2651**

25	ABSTRACT (word count: 391)
26	
27	Objective: Vascular calcifications (VCs) may be a prognostic factor for outcome after
28	endovascular treatment of peripheral arterial disease (PAD). Semi-quantitative analysis with
29	X-ray imaging is the main limiting factor for assessing VCs. The aim of the present study was
30	to find a correlation between the amount of VC with a CT scan quantification and mid-term
31	results of endovascular treatment of TASC C/D femoropopliteal (FP) lesions.
32	
33	Methods: Patients belonging to two previously published registries (STELLA and STELLA
34	PTX) and who underwent a preoperative CT scan were retrospectively included in the study.
35	VC quantification was performed with a dedicated workstation (EndoSize, Therenva) on the
36	basis of Hounsfield units (HU). The VC percentage was calculated as the ratio between VC
37	volume and the volume of the region of interest. For the analysis, patients were divided into
38	three groups according to VC percentage, from lowest to highest: group 1 (G1) included the
39	1st quartile of VCs, group 2 (G2) included the 2nd and 3rd quartiles and group 3 (G3)
40	included the 4th quartile. Risk of in-stent thrombosis was analysed using a multivariate
41	model.
42	
43	Results : Thirty-nine patients were included (10 in G1, 19 in G2, 10 in G3) and mean follow-
44	up duration was 24±14.6 months. Patients in G1 and G3 had, respectively, a VC rate of <1%
45	(no VC) and >20% (severe VC). In G2, VC was considered to be intermediate. There was no
46	statistical difference in the cardiovascular risk factors and preoperative medication. A
47	significant difference was found for the healthy FP diameter between G1 (4.6±0.8 mm) and
48	G3 (6.8±0.8 mm, p<0.0001) and between G2 (5.2±1 mm) and G3 (p<0.0001). The rate of

drug-eluting stents was similar in all groups. There was no difference between groups

50	concerning the rate of in-stent restenosis, target lesion revascularisation and target extremity
51	revascularisation. There was a higher rate of in-stent thrombosis for G1 vs. G2 ($p=0.037$) and
52	no difference was noted between G1 vs. G3 (p=0.86) or G2 vs. G3 (p=0.12). G3 was
53	associated with early stent thrombosis (<1 month), while G1 was associated with late stent
54	thrombosis (6-24 months). On multivariate analysis, only one predictive factor for stent
55	thrombosis was found: patients with intermediate VC seemed to be protected against in-stent
56	thrombosis (OR=0.27, 95% CI: 0.1-0.77; p=0.014).
57	
58	Conclusion: The study showed that VC quantification with CT imaging is feasible and useful
59	for comparing outcomes following PAD endovascular revascularisation. Below a certain
60	threshold, the presence of VC might be necessary for plaque stability and may protect against
61	in-stent thrombosis.
62	
63	Key words: Vascular calcification, quantification, CT scan, peripheral arterial disease, in-
64	stent thrombosis
65	

Introduction

The most common cause of peripheral arterial disease is atherosclerosis. Despite being
exposed to similar risk factors, peripheral arteries develop heterogeneous atherosclerotic
lesions. Our previous work showed that carotid arteries develop predominantly lipid-rich
lesions and microcalcifications, while femoral arteries develop fibrotic lesions, with extensive
vascular calcification (VC) and frequent presence of osteoid tissue (1-4). These differences
may have major clinical implications. Firstly, VC may destabilise atheromatous plaques and
contribute to plaque rupture (5-7). Moreover, advanced and extensive VC contributes to
arterial stiffness and hypertension, an important risk factor for plaque rupture (8, 9).
Secondly, the presence of VC may influence the technical success rate and outcomes of
peripheral endovascular procedures (10). It is noteworthy that severe VC is often considered
an exclusion criterion in femoropopliteal clinical study protocols. Moreover, balloon
angioplasty of severe calcified lesions is limited by early elastic recoil and poor acute and
long-term outcomes (11). Although nitinol stents are designed to prevent elastic recoil and
constrictive remodelling, severe VC may prevent stent expansion, resulting in poorer
outcomes when compared to fully expanded stents (12). Also, it seems that VC may influence
the efficacy of drug-eluting balloons during revascularisation of femoropopliteal lesions,
mainly in cases of circumferential distribution (13).
Nevertheless, few data are available to determine the influence of VC on femoropopliteal
endovascular treatment outcomes. In the present study, we sought to determine the
perioperative and mid-term outcomes following long femoropopliteal stenting according to
preoperative VC burden.

89	Patients and Methods	
90	Population	
91	Patients included in this study belong to two published prospective registries (14, 15). Briefly,	
92	the patients presented with femoropopliteal lesions \geq 15 cm (TASC II C and D) and were	
93	enrolled as soon as the guide crossed the lesion. The first patient cohort (STELLA study) was	
94	treated with a LifeStent® bare metal stent (Bard Peripheral Vascular, Tempe, AZ, USA) and	
95	was enrolled between November 2008 and October 2009. The second patient cohort was	
96	treated with a Zilver® PTX® paclitaxel-eluting stent (STELLA PTX study) (16) (16) (16)	
97	(16) (16) (Cook Peripheral Vascular, USA) and was enrolled between March 2011 and	
98	April 2012. The inclusion/exclusion criteria and the endovascular procedures were identical	
99	for both groups and have already been reported in the STELLA and STELLA PTX studies.	
100	Protocols were approved by local ethics committees and all patients gave their informed	
101	consent.	
102		
103	CTA analysis and quantification of VC	
104	All computed tomography angiograms (CTAs) were analysed with a dedicated workstation	
105	(17-20) (EndoSize®, Therenva, France) by one investigator blinded to outcomes. Centrelines	
106	from the common femoral artery to the end of the popliteal artery (Fig. 1A) were manually	
107	extracted for femoropopliteal occlusions, otherwise automatic extraction was used (in case of	
108	stenosis). A region of interest (ROI) was determined as a cylinder centred around centrelines	
109	(Fig. 1B) whose diameter was manually adjusted to ensure all VC was included. Within the	
110	ROI, a dedicated program allowed segmentation of both arterial lumen (ALu) and VC	
111	(Fig. 1C-D) with a thresholding tool. The difference between ALu and VC was based on HU	
112	density (21-23): voxels in the range 400-3000 HU were considered VC (and quantified in	
113	mm ³) whereas voxels in the range 100-400 HU were considered ALu (Fig. 1C-D). Volume of	

114	VC and ALu were calculated for the entire femoropopliteal artery but also at the level of the
115	treated segment. The percentage of VC and ALu at the level of the treated segment was
116	determined by the ratio between the volume of VC and ALu and the volume of the ROI. The
117	other CTA parameters analysed were the length of lesions and the diameter of the healthy
118	superficial femoral artery.
119	
120	Definition of groups
121	In order to compare pre-, peri- and post-operative data according to the amount of VC, 3
122	groups were established. The overall population was divided according to the rate of VC,
123	from the lowest to the highest percentage of VC: group 1 (G1) included the 1st quartile of
124	VC, G2 included the 2nd and 3rd quartiles and G3 included the 4th quartile.
125	
126	Follow-up
127	Follow-up consisted of a clinical examination, measurement of ankle-brachial index (ABI)
128	and a duplex scan at 1, 3, 6, 9, 12, 18 months then annually thereafter. An X-ray of the thighs
129	with two separate incidences of at least 45° was taken after 12 months in order to test for stent
130	fracture. All of the data were entered in a prospective follow-up register.
131	
132	Endpoints
133	The primary endpoint compared between groups was in-stent thrombosis during follow-up.
134	Secondary endpoints were target lesion revascularisation (TLR), target extremity
135	revascularisation (TER) and in-stent restenosis (ISR). Endpoint definitions have already been
136	described in articles reporting on the respective results recorded for both cohorts, and comply
137	with international definitions.

139	Statistical	analysis
	~	

Continuous variables were presented as mean \pm SD and categorical variables as count and
percentages. Pearson's chi-square test was used for comparisons of continuous variables, and
one-way factorial ANOVA for categorical data after testing the normality of the data, and
then differences among means were analysed using post-hoc Tukey-HSD or Games-Howell
multiple comparison tests depending on the results of the assumption of homogeneity of
variances (Levene test). A correlation between SFA diameter and amount of VC was
calculated by use of the Pearson correlation coefficient. Postoperative outcomes were
compared between groups using the log-rank test. A predictive model was developed to
demonstrate any correlation between pre/perioperative factors and stent thrombosis. Inclusion
of variables in the model with p<0.1 (or forced-in) were based on the Pearson's chi-square
test for categorical variables and ANOVA for continuous variables. A multivariate analysis
implemented using a Cox model with a stepwise descending procedure was fitted. A p value
< 0.05 was considered statistically significant. Data were analysed using SPSS software
(SPSS Inc., Chicago, IL, USA).

156	Results
157	Demographic data
158	Of the 103 patients of both registries, only those with preoperative computed tomography
159	angiography (CTA) were included. Patients with only a duplex scan (n=29), magnetic
160	resonance angiography (n=25) or without a CTA (n=10) were excluded from the study.
161	Thirty-nine patients were therefore included for analysis. Every patient in group 1 had a VC
162	rate in the lesion area of <1%; this group was therefore considered the non-calcified group
163	(n=10). Patients in group 3 had a VC rate >20%; this group was considered the heavily
164	calcified group (n=10). Group 2 consisted of patients with a VC rate in the range 1-20% and
165	was considered as the intermediate calcification group (n=19).
166	As shown in Table 1, there was no difference in demographic characteristics between groups,
167	except a significantly higher rate of hyperlipidaemia in group 3 (p=0.008). Statin therapy rates
168	were not different.
169	Lesions and intraoperative data (Table 2)
170	With regard to anatomical characteristics of the femoropopliteal segment, it was noted that the
171	diameter was different between groups with the ANOVA test, and post-hoc tests revealed that
172	this difference was significant between group 1 and 3 (p<0.0001) and between group 2 and 3
173	(p=0.0002). There was no difference between group 1 and 2 (p=0.217). A significant
174	correlation was found between femoropopliteal segment diameter and the amount of VC
175	(Fig. 2). Given the fact that groups were determined according to VC rate, a significant
176	difference was found between them for Ca and ALu volume in the lesion area and for the
177	overall femoropopliteal segment. With regard to endovascular treatment, no difference was
178	observed for characteristics of implanted stents nor for use of X-ray and contrast load.
179	
180	Perioperative results

181	During follow-up, 10 (25.6%) stent thromboses occurred (Table 3): 4 (40%) in group 1, 2
182	(10.5%) in group 2 and 4 (40%) in group 3. According to the log rank test, this rate was
183	statistically different between group 1 vs. 2 but not between group 2 vs. 3 and group 1 vs. 3.
184	When the date of occurrence of stent thrombosis was analysed (Fig. 3), a trend was shown:
185	heavy Ca was associated with early stent thrombosis, while no Ca was associated with late
186	stent thrombosis. More precisely, heavy Ca presented a stent thrombosis at 1 month while
187	every patient with no Ca presented a stent thrombosis between the 6th and the 24th months.
188	All patients with intermediate Ca presented a stent thrombosis after the 48th month. Rates of
189	in-stent restenosis, TLR and TER are provided in Table 3 and were not statistically different
190	between groups.
191	
192	Risk factor for in-stent thrombosis
193	Results of the univariate/multivariate analysis are provided in Tables 4 and 5. On univariate
194	analysis, the femoropopliteal diameter was higher in the in-stent thrombosis population (6.1±
195	1.3 mm vs. 5.2 ± 1.1 , p=0.05) but on multivariate analysis it did not appear to be significant,
196	although a trend towards a protective effect of the femoropopliteal diameter on in-stent
197	thrombosis was noted (Table 5). The other variables included in the multivariate analysis
198	were sex, hypercholesterolaemia and calcification (according to groups). Only VC appeared
199	to significantly influence in-stent thrombosis. Patients belonging to group 2, i.e. with an
200	intermediate calcification rate, seemed to be protected from in-stent thrombosis with an odds
201	ratio of 0.27 (95% confidence interval: 0.1-0.77; p=0.014).

Discussion

In this study, we report that the rate of VC has a high impact on endovascular treatment outcomes after long femoropopliteal stenting. Given that a high amount of VC is frequently an exclusion criterion, few data are available concerning results of endovascular therapies in calcified arteries because it is assumed that outcomes are poor with this specific arterial feature. In this paper, we sought to determine the role of VC after stent implantation. It seems that, as assumed, a high rate of VC is at risk of technical failure and poor outcomes but also arteries with no calcification. An intermediate rate of VCs may protect against in-stent thrombosis.

Classification

Currently, neither quantitative nor qualitative preoperative VC assessment is available in routine practice. Indeed, current VC quantitative grading is based on subjective, semi-quantitative, angiographic- and fluoroscopic-based assessments. Furthermore, VC nature and composition cannot be determined by current non-invasive methods. Among non-invasive preoperative imaging methods, CTAs are still more available and cheaper than magnetic resonance angiographies and are widely used in current practice. Two previously published grading systems are often used in studies to assess VC but the quantification is based on angiographic images and remains subjective (24, 25). In 2014, Rocha-Singh *et al.* (25) proposed a peripheral arterial calcium scoring system (PACSS) and a method for its clinical validation. In this classification, the scoring system takes into account the pathological location of calcification (intima, media, combined) along with the location and length of the affected segment and is based on angiographic assessment. Correlation of this grading system with procedure and patient outcomes is currently under evaluation. Dattilo *et al.* reported an angiographic calcium score and used fluoroscopic images to quantify VC but the circumference of VC was determined by an anteroposterior view, raising the question of the

accuracy of this quantification. In cardiology literature, optical coherence tomography (OCT)
has been reported to assess VC and stent expansion. In this particular study, a high rate of VC
was found to be a factor for stent underexpansion (26). Although algorithms for segmenting
VC on CT images have existed for decades, they have only been reported in clinical papers
since Ohana et al. (23). They proposed an alternative to the Trans-Atlantic Inter-Society
Consensus Document II on Management of Peripheral Arterial Disease classification (TASC
II)(27) based on the mean occluded diameter and percentage of calcifications. Calcification
volume determined by a colour-coded map provided an accurate estimate but no correlation
with clinical or morphological outcomes was given. Our assessment method was similar to
that of Ohana et al. but, in both cases, CTA did not allow intimal and medial calcifications to
be distinguished. Medial calcifications, known as Mönckeberg's medial calcinosis, are
associated with type II diabetes and chronic kidney disease and represent a specific pattern of
VC with a distinct pathological type of calcification that may contribute to arterial stiffness
(28).

Lesions and intraoperative data

With regard to lesions and intraoperative data, we observed that VCs were associated with a larger femoropopliteal diameter. Enlargement of femoropopliteal arteries was probably linked to positive vessel remodelling. Indeed, during the atherosclerotic process, femoral arteries may locally develop compensatory enlargement to compensate for lumen narrowing by plaque formation (29). Consequently, we can assume that positive femoropopliteal remodelling could be associated with a greater amount of VCs.

Severe VC is associated with perioperative in-stent thrombosis

Occurrence of in-stent thrombosis at 1 month is significantly higher in most calcified groups. Vascular calcifications are known to represent a technical challenge for interventionalists as they may make artery recanalisation difficult and may promote technical failure leading to a perioperative in-stent thrombosis. Different types of technical failure were observed during long femoropopliteal recanalisation such as non-expansion of self-expandable stents, stent malapposition or plaque fracture leading to local thrombosis. It is noteworthy that severe VC is often considered an exclusion criterion for femoropopliteal clinical trials (30, 31) but, so far, few data have been available to state that severe VCs are a predictive factor for poor morphological success at 1 month.

Mid-term in-stent thrombosis and restenosis with soft plaques

The multivariate analysis concluded that patients with intermediate VCs are less likely to present an in-stent thrombosis during follow-up in comparison to others. Indeed, patients with severe VC presented in-stent thrombosis during the perioperative period and patients with soft plaques were at risk of in-stent thrombosis at mid-term. Analysis of in-stent thrombosis timing suggests that the in-stent thrombosis mechanism may be different. Technical failure, as described above, may be the main cause of perioperative in-stent thrombosis. However, for a longer follow-up, a biological factor may explain in-stent thrombosis. Therefore, this observation may suggest that lesions with a low amount of VC are an entity at risk of complications following endovascular revascularisation. This hypothesis derives from fundamental research where it was recently found that osteoprotegerin (OPG) and osteoid metaplasia (OM) were associated with carotid plaque stability (1). In this study, a significantly higher presence of OM, OPG and pericytes was noted in asymptomatic compared to symptomatic plaques. Without femoropopliteal plaque analysis, these results cannot be transposed and a plaque accident is not similar to a stent thrombosis but it can be

assumed that femoropopliteal VC could have the same behaviour on the stented plaque as the carotid plaque. An interesting study on coronary arteries failed to show that severely calcified arteries have a lower rate of in-stent restenosis whereas the working assumption was based on previous histological findings (32). The authors noted that restenosis is composed of neointimal hyperplasia derived from smooth muscle cells and fibroblasts migrating from the vessel wall. Since normal components of calcific arterial walls are largely replaced by calcium deposits and fibrosis, the authors suggested that stented calcific arteries would restenose less than non-calcified arteries. Finally, despite the potential role played by calcifications, it has been shown also in coronary artery disease that a pathophysiological process characterized by impaired endothelial coverage, persistent fibrin deposition, and ongoing vessel wall inflammation contribute to late in stent thrombosis(33).

Limitations

The main limitation of this study is obviously the number of patients enrolled. Although statistical tests designed for small samples were used, a greater number of patients would probably have highlighted other differences between the groups. For that reason, the results of the multivariate analysis should be interpreted with caution. It is probably more appropriate to conclude that we found a trend more than there is clearly a significant difference between groups. Moreover, the rate of stent thrombosis is especially high in this study but does not reflect the rate found in both registries. As a reminder, the rate if in-stent thrombosis at one year was 11.3% and 14.6% in STELLA and STELLA PTX registries respectively. But in the paper of Bosier et al(34), this rate was 24% at one year, almost similar to our study (25.6%). Grouping of both registries may also be interpreted as a bias because bare metal stent (BMS) and drug-eluting stent (DES) outcomes have been mixed. However, it can be observed that the DES rate was similar in all groups and recently, we have shown with a propensity score-

matched analysis that, according to both registries, paclitaxel-eluting stents do not seem to provide benefits in terms of clinical and morphological outcomes for TASC C/D lesions compared to bare metal stent(35). Moreover, there is an heterogeneity in the dual antiplatelet therapy (DAPT) prescription in the present cohort and even though there is no high level of evidence for DAPT after peripheral endovascular stenting, coronary studies recommended DAPT systematically for a minimum duration of 6 months to prevent in stent thrombosis(36). Our working hypothesis needed to focus on two different lesions in terms of plaque composition: these were no VC and severe VC. The rate of VC according to median values ultimately showed that group composition was appropriate to our objective to compare essentially no Ca and severe Ca. The intermediate VC group including the 2nd and 3rd quartiles of the entire population corresponds to the "moderate" group in many studies using a 3-grade VC classification. We do not support that four grades of VC classification would be relevant since our hypothesis was that no and severe VC groups are of interest and leads to different outcomes with different mechanisms.

Conclusion

This study showed that an accurate quantification of VC is interesting to assess endovascular outcomes after stenting of FP lesions. It seems that both absence and heavily calcifications are at risk of in-stent thrombosis. Calcification of a certain quantity and quality may be necessary for plaque stability. Additional data with a larger population are mandatory to confirm these results.

326 Conflict of inter

327 Yann Gouëffic: Boston Scientific, Cook, Hexacath, Medtronic, Perouse.

328

329

331 Funding

332 None

	ACCEPTED MANUSCRIPT
334	Acknowledgements
335	The authors are indebted to the INSERM 1414 Clinical Investigation Centre, Innovative
336	Technology (Rennes, F-35000, France) for its support in the processing of the imaging data
337	We thank Carine Montagne and Manon Pondjikli for their excellent technical support.
338	
339	

1	-	\sim
~	71	11

341 References

- 343 1. Davaine JM, Quillard T, Brion R, Laperine O, Guyomarch B, Merlini T, et al.
- 344 Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid
- 345 plaque stability. PLoS One 2014;9:e107642.
- Davaine JM, Quillard T, Chatelais M, Guilbaud F, Brion R, Guyomarch B, et al. Bone
- 347 Like Arterial Calcification in Femoral Atherosclerotic Lesions: Prevalence and Role of
- Osteoprotegerin and Pericytes. Eur J Vasc Endovasc Surg 2016;51:259-67.
- 349 3. Goueffic Y, Davaine JM, Merlini T, Rimbert A, Herisson F, Heymann MF, et al.
- 350 [Arterial heterogeneity]. Rev Med Interne 2013;34:61-5.
- 4. Herisson F, Heymann MF, Chetiveaux M, Charrier C, Battaglia S, Pilet P, et al.
- 352 Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis
- 353 2011;216:348-54.
- 5. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S.
- Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
- 356 Proc Natl Acad Sci U S A 2013;110:10741-6.
- 357 6. Maldonado N, Kelly-Arnold A, Cardoso L, Weinbaum S. The explosive growth of
- small voids in vulnerable cap rupture; cavitation and interfacial debonding. J Biomech
- 359 2013;46:396-401.
- 360 7. Maldonado N, Kelly-Arnold A, Vengrenyuk Y, Laudier D, Fallon JT, Virmani R, et
- al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability:
- potential implications for plaque rupture. Am J Physiol Heart Circ Physiol 2012;303:H619-
- 363 28.

- 364 8. Joly L, Mandry D, Verger A, Labat C, Watfa G, Roux V, et al. Influence of Thoracic
- 365 Aortic Inflammation and Calcifications on Arterial Stiffness and Cardiac Function in Older
- 366 Subjects. J Nutr Health Aging 2016;20:347-54.
- 9. Pikilidou M, Yavropoulou M, Antoniou M, Yovos J. The Contribution of
- Osteoprogenitor Cells to Arterial Stiffness and Hypertension. J Vasc Res 2015;52:32-40.
- 369 10. Shin SH, Baril D, Chaer R, Rhee R, Makaroun M, Marone L. Limitations of the
- 370 Outback LTD re-entry device in femoropopliteal chronic total occlusions. J Vasc Surg
- 371 2011;53:1260-4.
- 372 11. Capek P, McLean GK, Berkowitz HD. Femoropopliteal angioplasty. Factors
- influencing long-term success. Circulation 1991;83:I70-80.
- 374 12. Bausback Y, Botsios S, Flux J, Werner M, Schuster J, Aithal J, et al. Outback catheter
- 375 for femoropopliteal occlusions: immediate and long-term results. J Endovasc Ther
- 376 2011;18:13-21.
- 377 13. Fanelli F, Cannavale A, Gazzetti M, Lucatelli P, Wlderk A, Cirelli C, et al. Calcium
- burden assessment and impact on drug-eluting balloons in peripheral arterial disease.
- 379 Cardiovasc Intervent Radiol 2014;37:898-907.
- 380 14. Davaine JM, Azema L, Guyomarch B, Chaillou P, Costargent A, Patra P, et al. One-
- year clinical outcome after primary stenting for Trans-Atlantic Inter-Society Consensus
- 382 (TASC) C and D femoropopliteal lesions (the STELLA "STEnting Long de L'Artere femorale
- superficielle" cohort). Eur J Vasc Endovasc Surg 2012;44:432-41.
- 384 15. Davaine JM, Querat J, Kaladji A, Guyomarch B, Chaillou P, Costargent A, et al.
- 385 Treatment of TASC C and D Femoropoliteal Lesions with Paclitaxel eluting Stents: 12 month
- 386 Results of the STELLA-PTX Registry. Eur J Vasc Endovasc Surg 2015;50:631-7.
- 387 16. Davaine JM, Querat J, Kaladji A, Guyomarch B, Chaillou P, Costargent A, et al.
- 388 Treatment of TASC C and D Femoropoliteal Lesions with Paclitaxel eluting Stents: 12 month

- 389 Results of the STELLA-PTX Registry. European journal of vascular and endovascular
- surgery: the official journal of the European Society for Vascular Surgery 2015;50:631-7.
- 391 17. Kaladji A, Lucas A, Kervio G, Haigron P, Cardon A. Sizing for endovascular
- aneurysm repair: clinical evaluation of a new automated three-dimensional software. Ann
- 393 Vasc Surg 2010;24:912-20.
- 394 18. Boufi M, Aouini F, Guivier-Curien C, Dona B, Loundou AD, Deplano V, et al.
- 395 Examination of factors in type I endoleak development after thoracic endovascular repair. J
- 396 Vasc Surg 2015;61:317-23.
- 397 19. Zerwes S, Nurzai Z, Leissner G, Kroencke T, Bruijnen HK, Jakob R, et al. Early
- 398 experience with the new endovascular aneurysm sealing system Nellix: First clinical results
- 399 after 50 implantations. Vascular 2016;24:339-47.
- 400 20. Zhang Y, Tang H, Zhou J, Liu Z, Liu C, Qiao T, et al. The imaging assessment and
- 401 specific endograft design for the endovascular repair of ascending aortic dissection. Clin
- 402 Interv Aging 2016;11:933-40.
- 403 21. Komatsu S, Hirayama A, Omori Y, Ueda Y, Mizote I, Fujisawa Y, et al. Detection of
- 404 coronary plaque by computed tomography with a novel plaque analysis system, 'Plaque Map',
- and comparison with intravascular ultrasound and angioscopy. Circ J 2005;69:72-7.
- 406 22. Obaid DR, Calvert PA, Gopalan D, Parker RA, West NE, Goddard M, et al. Dual-
- 407 energy computed tomography imaging to determine atherosclerotic plaque composition: a
- prospective study with tissue validation. J Cardiovasc Comput Tomogr 2014;8:230-7.
- 409 23. Ohana M, El Ghannudi S, Girsowicz E, Lejay A, Georg Y, Thaveau F, et al. Detailed
- 410 cross-sectional study of 60 superficial femoral artery occlusions: morphological quantitative
- analysis can lead to a new classification. Cardiovasc Diagn Ther 2014;4:71-9.
- 412 24. Dattilo R, Himmelstein SI, Cuff RF. The COMPLIANCE 360 degrees Trial: a
- 413 randomized, prospective, multicenter, pilot study comparing acute and long-term results of

- orbital atherectomy to balloon angioplasty for calcified femoropopliteal disease. J Invasive
- 415 Cardiol 2014;26:355-60.
- 416 25. Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence,
- 417 mechanism, detection, and clinical implications. Catheter Cardiovasc Interv 2014;83:E212-
- 418 20.
- 419 26. Kobayashi Y, Okura H, Kume T, Yamada R, Kobayashi Y, Fukuhara K, et al. Impact
- of target lesion coronary calcification on stent expansion. Circ J 2014;78:2209-14.
- 421 27. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-
- 422 Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc
- 423 Endovasc Surg 2007;33 Suppl 1:S1-75.
- 424 28. Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, et al. Medial vascular
- 425 calcification revisited: review and perspectives. Eur Heart J 2014;35:1515-25.
- 426 29. Pasterkamp G, Borst C, Gussenhoven EJ, Mali WP, Post MJ, The SH, et al.
- 427 Remodeling of De Novo atherosclerotic lesions in femoral arteries: impact on mechanism of
- balloon angioplasty. J Am Coll Cardiol 1995;26:422-8.
- 429 30. Rosenfield K, Jaff MR, White CJ, Rocha-Singh K, Mena-Hurtado C, Metzger DC, et
- 430 *al.* Trial of a Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease. N Engl J Med
- 431 2015;373:145-53.
- 432 31. Schroeder H, Meyer DR, Lux B, Ruecker F, Martorana M, Duda S. Two-year results
- of a low-dose drug-coated balloon for revascularization of the femoropopliteal artery:
- outcomes from the ILLUMENATE first-in-human study. Catheter Cardiovasc Interv
- 435 2015;86:278-86.
- 436 32. Mosseri M, Satler LF, Pichard AD, Waksman R. Impact of vessel calcification on
- outcomes after coronary stenting. Cardiovasc Revasc Med 2005;6:147-53.

- 438 33. Finn AV, Nakazawa G, Joner M, Kolodgie FD, Mont EK, Gold HK, et al. Vascular
- responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc
- 440 Biol 2007;27:1500-10.
- 34. Bosiers M, Torsello G, Gissler HM, Ruef J, Muller-Hulsbeck S, Jahnke T, et al.
- Nitinol stent implantation in long superficial femoral artery lesions: 12-month results of the
- DURABILITY I study. J Endovasc Ther 2009;16:261-9.
- 444 35. Vent PA, Kaladji A, Davaine JM, Guyomarch B, Chaillou P, Costargent A, et al. Bare
- 445 Metal Versus Paclitaxel-Eluting Stents for Long Femoropopliteal Lesions: Prospective
- Cohorts Comparison Using a Propensity Score-Matched Analysis. Ann Vasc Surg 2017.
- 36. Byrne RA, Joner M, Kastrati A. Stent thrombosis and restenosis: what have we
- learned and where are we going? The Andreas Gruntzig Lecture ESC 2014. Eur Heart J
- 449 2015;36:3320-31.

Table 1. Demographic data

	Total Population (n=39)	Non calcified group (n=10)	Intermediate calcifications group (n=19)	Heavily calcified group (n=10)	P value
Age (mean ± SD)	71 ± 12	70.5 ± 11.2	71 ± 12.8	71.4 ± 12.7	0.96
Gender (male, n, %)	24 (61.5%)	4 (40%)	12 (63.2%)	8 (80%)	0.181
Body Mass index (mean \pm SD)	24.2 ± 5	24.1 ± 4.3	23.2 ± 5.4	26.6 ± 4.5	0.25
Active smoking (n, %)	12 (30.8%)	5 (50%)	6 (31.6%)	1 (10%)	0.152
Hypertension (n, %)	25 (64.1%)	6 (60%)	14 (73.7%)	5 (50%)	0.428
Diabetes mellitus (n, %)	8 (20.5%)	0	5 (26.3%)	3 (30%)	0.198
Renal failure* (yes, n, %)	5 (12.8%)	1 (10%)	2 (10.5%)	2 (20%)	0.733
Hyperlipidemia (n, %)	21 (53.8%)	3 (30%)	10 (52.6%)	8 (80%)	0.080
Double antiplatelet therapy (n, %)	13 (33.3%)	4 (40%)	7 (36.8%)	2 (20%)	0.759
Anti-vitamin K therapy (n, %)	1 (2.6%)	0	1 (5.3%)	0	0.583
Statin therapy (n, %)	30 (76.9%)	8 (80%)	13 (68.4%)	9 (90%)	0.409
ACE inhibitor or ATA II * (n, %)	64.1 (25%)	6 (60%)	11 (57.9%)	8 (80%)	0.475
Rutherford stages					
3 (n, %)	14 (35.9%)	4 (40%)	6 (31.6%)	4 (40%)	
4 (n, %)	16 (41%)	4 (40%)	10 (52.6%)	2 (20%)	0.461
5 (n, %)	9 (23.1%)	2 (20%)	3 (15.8%)	4 (40%)	

^{*} defined as an estimated glomerular filtration rate 30<ml/>l/min/1.73m⁻² according to MDRD formula

^{*} ACE: Angiotensin-converting-enzyme ARA II : angiotensin II receptor antagonist

Table 2. Anatomical and intraoperative data

	Total Population (n=39)	Non calcified group (n=10)	Intermediate calcifications group (n=19)	Heavily calcified group (n=10)	P value
SFA diameter (mm, mean±SD)	5.4 ± 1.2	4.6 ± 0.8	5.2 ± 1	6.8 ± 0.8	< 0.0001
Lesion length (mm, mean±SD)	202.1 ± 103.2	176.9 ± 79	217.4 ±108.1	201.1 ± 120.8	0.616
SFA occlusion (yes, n, %)	28 (71.8%)	7 (70%)	13 (68.4%)	8 (80%)	0.796
Ca volume lesion (mm³, mean±SD)	1076 ± 1322	5.5 ± 7.4	870 ± 701	2702 ± 1571	< 0.0001
ALu volume lesion (mm³, mean±SD)	1996 ± 1553	1194 ± 1027	1584 ± 772	3786 ± 1895	< 0.0001
Ca volume SFA (mm³, mean±SD)	1348 ± 1428	24.6 ± 44.1	1196 ± 854	3141 ± 1392	< 0.0001
ALu volume SFA (mm³, mean±SD)	5735 ± 3041	4651 ± 2425	4870 ± 2836	8769 ± 2107	0.001
Drug eluting stent (yes, n, %)	19 (48.7%)	3 (30%)	12 (63.2%)	4 (40%)	0.193
Stented length (mm, mean±SD)	250 ± 104	233 ± 90	267 ± 108	233 ± 116	0.611
Number of stents (mean±SD)	2.5 ± 1.3	2.4 ± 1	2.8 ± 1.2	2 ± 1	0.22
Stent diameter (mm, mean±SD)	6 ± 0.6	5.8 ± 0.8	6.1 ± 0.5	5.9 ± 0.6	0.391
Fluoroscopic time (min, mean±SD)	18.5 ± 12	11.1 ± 3.9	18.2 ± 8.2	27.3 ± 17.6	0.009
Surface-dose product (mGy.m ² , mean±SD)	2.91 ± 3.91	1.25 ± 0.61	3.55 ± 3.99	3.39 ± 3.06	0.3
Contrast load (mL, mean±SD)	69.1 ± 31.5	51.8 ± 22.3	72.4 ± 30.7	81.6 ± 37.4	0.097

^{*} SFA: superficial femoral artery, Ca: calcifications, ALu: arterial lumen

Table. 3 Influence of calcification on postoperative outcomes during follow-up according to groups (log-rank test)

	Occurrence (n,%)	Group 1	Group 2	Group 3	
Stent thrombosis (in global population)	10 (25.6%)	P va	P value of pair comparison		
Group 1 (No Ca group)	4 (40%)		0.037	0.861	
Group 2 (Intermediate Ca group)	2 (10.5%)	0.037		0.121	
Group 3 (Heavy Ca group)	4 (40%)	0.861	0.121		
In-stent restenosis	9 (23.1%)	P va	lue of pair comp	arison	
Group 1	4 (40%)		0.358	0.741	
Group 2	4 (21.1%)	0.358		0.520	
Group 3	1 (10%)	0.741	0.520		
Target lesion revascularization	17 (43.6%)	P value of pair comparison		parison	
Group 1	19 (65.5%)		0.113	0.735	
Group 2	5 (26.2%)	0.113		0.380	
Group 3	5 (50%)	0.735	0.380		
Target extremity revascularization	18 (46.2%)	P va	lue of pair comp	oarison	
Group 1	6 (60%)		0.113	0.735	
Group 2	6 (31.6%)	0.113		0.380	
Group 3	6 (60%)	0.735	0.380		

Table. 4 : Factors associated with stent thrombosis by \log rank test.

	No stent thrombosis (n=29)	Stent thrombosis (n=10)	P value
Age (years, mean±SD)	72.5 ± 11.1	65.9 ± 13.6	0.213
Body mass index	23.9 ± 5.2	25.2 ± 4	0.468
Gender (male, n, %))	16 (55.2%)	8 (80%)	0.155
Active smoking (n, %)	10 (34.5%)	2 (20%)	0.332
Hypertension (n, %)	18 (62 .1%)	7 (70%)	0.48
Diabetes mellitus (n, %)	5 (17.2%)	3 (30%)	0.601
Renal failure* (yes, n, %)	4 (13.8%)	1 (10%)	0.619
Hyperlipidemia (n, %)	13 (44.8%)	8 (80%)	0.058
Double antiplatelet therapy (n, %)	11 (37.9%)	2 (20%)	0.473
Anti-vitamin K therapy (n, %)	1 (3.4%)	0	0.744
Statin therapy (n, %)	22 (75.9%)	8 (80%)	0.581
ACE inhibitor or ATA II * (n, %)	18 (62.1%)	7 (70%)	0.480
Rutherford stages 3/4/5	9(31%)/13(44.8%)/7(24.1%)	5(50%)/3(30%)/2(20%)	0.549
Lesion Ca			
No Ca (group 1)	6 (60%)	4 (40%)	
Intermediate Ca (group 2)	17 (89.5%)	2 (10.5%)	0.109
Heavy Ca (group 3)	6 (60%)	4 (40%)	
SFA diameter (mm, mean±SD)	5.2 ± 1.1	6.1± 1.3	0.05
Lesion length (mm, mean±SD)	205 .6± 107.7	183.9 ± 93	0.575
SFA occlusion (yes, n, %)	7 (70%)	13 (68.4%)	0.796
Drug eluting stent (yes, n, %)	3 (30%)	12 (63.2%)	0.193
Stented length (mm, mean±SD)	250.3 ± 109.3	240 ± 91	0.790
Number of stents (mean±SD)	2.5 ± 1.2	2,60± 1.1	0.75
Stent diameter (mm, mean±SD)	6 ± 0.6	6 ± 0.7	0.885

Table 5. Results of the multivariate analysis

	coeff	Wald χ ²	df*	Probability $> \chi^2$	Odds ratio (95% CI)
Intermediate Ca	-1.315	6.025	1	0.014	0.27 (0.1 - 0.77)
Sex (male)	0.256	0.311	1	0.577	1.29 (0.53 - 3.17)
Hyperlipidemia	0.412	0.828	1	0.363	1.51 (0.62 - 3.67)
SFA diameter	-0.492	3.819	1	0.051	0.61 (0.373 – 1.001)

^{*} CI = confidence interval, df=degree of freedom

Fig. 1. CT-images processing: after centerlines extraction (A), a region of interest (purple cylinder, B) is determined and centered around the centerlines. A threshold tool is applied to segment vascular Ca (blue, C-D) and arterial lumen (red, C-D).

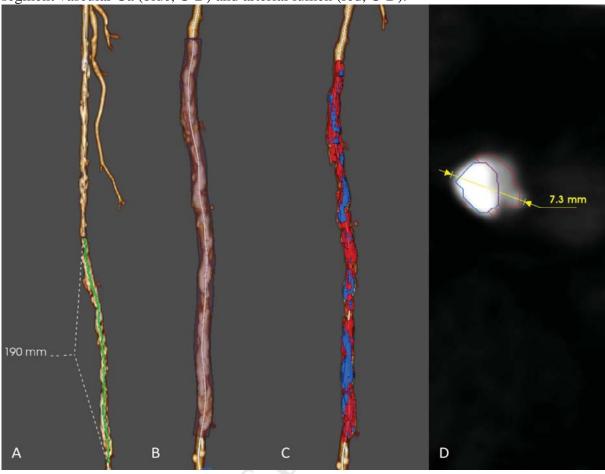


Fig. 2. Correlation between SFA diameter and percentage of Ca

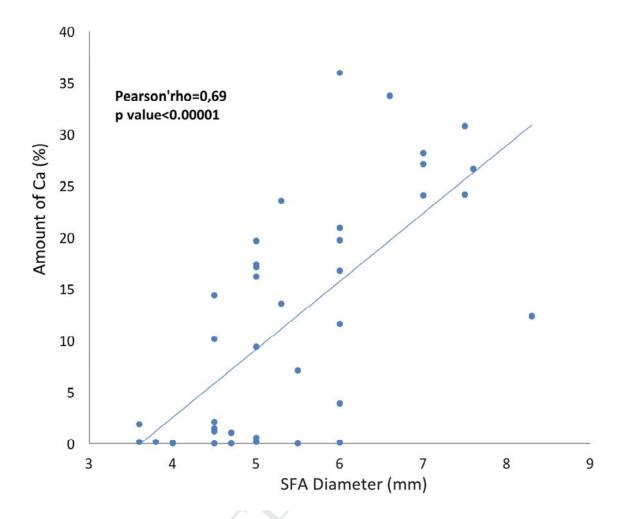
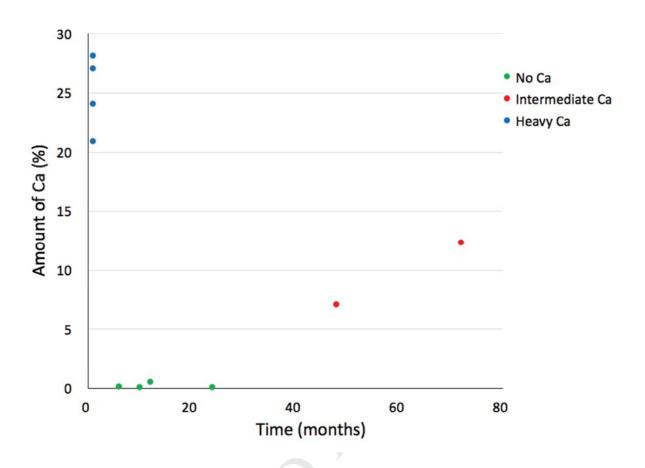



Fig. 3. Analysis of date of thrombosis according to Ca rate.

