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GBM=glioblastoma 

OS=overall survival 

PFS=progression-free survival 

G-CIMP=glioma-CpGs island methylator phenotype 

CGI=CpGs island 

MGMT=the O-6-methylguanine-DNA methyltransferase  

RT=radiation 

TMZ=temozolomide  

GSEA=gene set enrichment analysis 
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Abstract 

Aims: We aimed to identify a clinically useful biomarker using DNA methylation-

based information to optimize individual treatment of glioblastoma (GBM) patients.  

Methods: A six-CpGs panel was identified by incorporating genome-wide DNA 

methylation data and clinical information of three distinct discovery sets, and was 

combined using a risk-score model. Different validation sets of GBMs and lower-

grade gliomas and different statistical methods were implemented for prognostic 
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evaluation. An integrative analysis of multi-dimensional TCGA data was performed 

to molecularly characterize different risk tumors. 

Results: The six-CpGs risk score signature robustly predicted overall survival (OS) in 

all discovery and validation cohorts, and in a treatment-independent manner. It also 

predicted progression-free survival (PFS) in available patients. The multi-maker 

epigenetic signature was demonstrated as an independent prognosticator, and had 

better performance than known molecular indicators such as glioma-CpGs island 

methylator phenotype (G-CIMP) and proneural subtype. The defined risk subgroups 

were molecularly distinct; high-risk tumors were biologically more aggressive with 

concordant activation of pro-angiogeneic signaling at multi-molecular levels. 

Accordingly we observed better OS benefits of bevacizumab-contained therapy to 

high-risk patients in independent sets, supporting its implication in guiding usage of 

anti-angiogeneic therapy. Finally the six-CpGs signature refined the risk classification 

based on G-CIMP and MGMT methylation status.   

Conclusions: The novel six-CpGs signature is a robust and independent prognostic 

indicator for GBMs and is of promising value to improve personalized management.  
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Introduction  

Glioblastomas (GBMs) are the most frequent and vicious subtype of all gliomas [1, 2]. 

Molecular and clinical heterogeneity critically hindered better treatment outcomes for 

this deadly disease. The development of clinical informative biomarkers would be 

helpful for improving the current management of GBMs.  

DNA methylation marks have long been the leading candidates for cancer biomarker 

discovery [3]. Human cancers including GBMs were commonly developed with 

global hypomethylation of gene-poor DNA repeats and large hypomethylated blocks 

of gene regions concurrent with relevant CpGs island (CGI) hypermethylation [4]. 

Those epigenetic abnormalities played crucial roles in determining tumor phenotypic 

behaviors via regulating gene expression and chromatin organization [5]. Early 

studies with candidate-gene approaches have identified numerous DNA methylation 

alterations in key genes (e.g., TIMP3, RASSF1A, and p16INK4a) with potential 

clinical values for GBMs [6]. Promoter methylation status of the O-6-methylguanine-

DNA methyltransferase (MGMT), encoding a DNA repair enzyme that confers 

resistance to alkylating agents, represented the most promising one with robust 

predictive ability for temozolomide (TMZ) outcome [7]. Unfortunately, the single-

gene based epigenetic biomarkers including MGMT had limited roles in guiding 

clinical decision, and failed to warrant a change in routine testing [7]. In recent years, 

there have been an increasing number of high-throughput techniques devoted to 

accomplishing genome-wide assessment of cancer epigenomes [4, 5, 8]. The 

application of those latest approaches may be helpful for identifying more powerful 

biomarkers based on multi-marker epigenetic signatures. 

In this study, by integrating genome-wide DNA methylation microarray data and 

clinical information, we reported a novel biologically relevant six-CpGs signature for 
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GBMs. The signature robustly predicted survival of GBM patients in a treatment-

independent manner, and was of promising value to improve current patient 

management. 

Materials and Methods  

Patient cohorts  

Seventy-nine adult patients (aged ≥18 years old) with newly diagnosed GBMs were 

collected between 2004 and 2013 from the Neurosurgery Departments of Rennes and 

Angers University Hospitals (RAUH_450k). Initial histological diagnoses were 

confirmed by a central review panel including at least two neuropathologists. All 

patients were homogenously treated with Stupp regimen [9]. The median follow-up 

period was 53 months, with a range of 8 to 113 months [10]. Snap-frozen samples 

were collected at the time of surgery, following informed consent, in accordance with 

the French regulations and the Helsinki Declaration. DNA was extracted using the 

NucleoSpin TissueKit (Macherey Nagel). The quality of DNA samples was assessed 

by electrophoresis in a 1% agarose gel. DNA methylation profiling was performed by 

the Infinium HumanMethylation450k platform (Illumina Inc.) according to the 

manufacturer’s instructions. Image processing and intensity data extraction were 

performed within Genome Studio (Illumina Inc.).The novel BMIQ (Beta MIxture 

Quantile dilation) algorithm was used for intra-array normalization [11]. Methylation 

level of each CpGslocus is summarized as β value, ranging from 0 (completely 

unmethylated) to 1 (completely methylated). Methylation data have been submitted in 

The ArrayExpress under accession number “E-MTAB-4969”. 

A published cohort of fifty GBMs and three non-tumor brains (NBs) from the 

Neurosurgery Departments of Rennes and Angers University Hospitals was also 
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included (GSE22867; RAUH_27k) [12], with microarray data by Infinium27k 

platform (Illumina Inc.). 

Public GBM datasets with DNA methylation data were obtained from The Cancer 

Genome Atlas (TCGA) including TCGA_27k (GBMs, n=282; NBs, n=4) and 

TCGA_450k (GBMs, n=113) [13]; from Chinese Glioma Genome Atlas (CGGA) 

(CGGA_27k; GBMs, n=30) [14]; and from the Gene Expression Omnibus (GEO) 

repository including GSE50923_27k (GBMs, n=54; NBs, n=24) [15], 

GSE60274_450k (GBMs, n=64; NBs, n=5) [16] and GSE36278_450k (GBMs, n=57; 

tumors harboring mutations in H3F3A and those from TCGA were excluded) [17]. 

Patient characteristics of the included GBM datasets were summarized in Table 1. 

Molecular datasets of lower-grade gliomas (LGG, grade II to III) were also used for 

additional validation, including TCGA-LGG_450k (n=482), CGGA-LGG_27k 

(n=109), and GSE48462_450k (n=117). All NBs were obtained from apparently 

healthy individuals or chronic epilepsy patients without pathological evidence of other 

neurological or psychiatric diseases in each dataset. Among the datasets with gliomas 

of all grades and ages, only those aged ≥ 18 years old, and with a histological 

diagnosis of GBMs, were included in this study, and patients with a follow-up time ≥ 

one month were kept for survival analysis.   

Probe selection and risk-score model construction  

Prior probe selection was performed by removing those not interrogated on both 

platforms, those targeting the sex chromosomes, those containing a single-nucleotide 

polymorphism (SNP) within five base pairs of the probes, and those not annotated 

with any protein-coding or non-protein-coding genes. Finally 21248 CpGs were kept 

for analysis. Differentially methylated CpGs were computed by two-sample wilcoxon 

sum rank test (samr R package). GBM-specific CpGs were defined as those having a 
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median β difference ≥ 0.2 between tumors and controls, and a false discovery rate 

(FDR) q-value ≤ 0.05. Correlation of DNA methylation with OS was evaluated by 

univariate Cox regression analysis with permutation test by Biometric Research 

Branch (BRB)-Array Tools. Prognostic CpGs were those with a permutation p value 

≤ 0.05. Batch effects between each platform and dataset were adjusted by M-value 

transformation and the empirical Bayes approach (ber R package) [18, 19]. Missing β 

values were imputed by impute R package. The discovery-validation approach was 

employed to develop a risk-score model which is the sum of the methylation levels of 

each CpGs weighted by their univariate Cox coefficients (Figure 1a). The discovery 

phase was performed in TCGA_27k, RAUH_27k and GSE50923_27k. Cox 

coefficients were calculated from RAUH_27k; optimal cutoff for stratifying low-risk 

and high-risk tumors was determined by maxstat R package from all the discovery 

sets [20]. The validation phase was performed in five GBM cohorts and two LGG 

cohorts. The risk-score signature was also assessed with PFS outcome.  

Indirect validation based on differential gene expression prediction  

To add another layer of prognostic validation, we used the Support Vector Machines 

(SVM) model based on the differential expressed genes (4201 genes) between each 

risk subgroups from TCGA_27k, to predict the risk classification of our 6-CpGs 

signature. The prediction accuracy rate of the SVM model was 87% in TCGA_27k. 

Public gene expression datasets of GBMs were downloaded for indirect validation, 

including REMBRANDT (the Repository of Molecular Brain Neoplasia Data, n=181) 

[21], and GSE16011 (n=147) [22].  

Bioinformatic analysis  

To gain biologically insightful view of the risk-score signature, an integrative analysis 

of multi-dimensional molecular data was performed within TCGA samples; 1) level 3 
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gene expression data from the Agilent G4502A Microarray (n=386) were analyzed by 

gene set enrichment analysis (GSEA) to evaluate the functional profiles between the 

risk subgroups on the gene sets of Gene Ontology Biological Processes and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) from The Molecular Signatures 

Database (MSigDB) [23]; 2) level 3 copy number data from Affymetrix Genome-

Wide Human SNP6.0 Array (n=382) were analyzed by GISTIC2.0 with amplitude 

threshold being ± 0.2 [24]; 3) level 2 somatic mutation data from Whole Exome 

sequencing (n=245) were analyzed by MutSigCV to identify significantly mutated 

genes, with a FDR q-value ≤ 0.05 being significant; and 4) level 3 microRNA data 

from Agilent 8x15K Human miRNA-specific Microarray (n=386) and level 3 protein 

data from Reverse Phase Protein Array (n=171) were both computed by two-sample t 

test to identify differentially expressed targets, with confidence level of FDR 

assessment = 80% and maximum allowed proportion of false-positive genes = 0.1. 

The DNA methylation clusters were determined by k-means (k=3) clustering on the 

1503 probes reported by Noushmehr et al [25]. The gene expression subtypes were 

predicted using the Binary tree classification on expression data of the 840 classifiers 

reported by Verhaak et al [26]. MGMT promoter methylation status was determined 

using a logistic regression model based on two probes, i.e., cg12434587 and 

cg12981137 [27].  

Statistical analysis  

Hierarchical clustering analysis was performed within GenePattern. The distribution 

of molecular features with respect to each risk subgroup was tested by Fisher’s exact 

test or Chi-square test. Overall survival (OS) was defined as the interval from the date 

of diagnosis to the date of death or last follow-up; progression-free survival (PFS) 

was the interval to the date of progression according to clinical and imaging criteria 
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[28], or to the date of death or last follow-up without progression. Survival data were 

estimated by the Kaplan-Meier Method, and compared by log-rank test. Univariate 

and multivariate Cox regression models were used to evaluate the correlation and 

independence of potential prognosticators. Meta-analysis was done by the inverse-

variance method where application of either fixed- or random effect models was 

based on the statistical heterogeneity, with p-value for Chi-square test ≤ 0.05 for 

significance. The prognostic performance was evaluated by time-dependent receiver 

operating characteristic (ROC) curve (survcomp R package) [29]. Interaction analysis 

was conducted between the risk subgroups and paired treatments. All the calculations 

were done within SPSS Statistics and R software and P values ≤ 0.05 for significance 

were used.  

Results 

Identification of a novel GBM-specific six-CpGs panel for risk-score modeling  

GBM-specific CpGs were respectively calculated from RAUH_27k, TCGA_27k, and 

GSE50923_27k (Figure 1a and Supplementary Table 1). Given the limitations in 

computing differential methylation for GBMs in each dataset (e.g., a few number of 

NB samples, non-matched controls, and inability for adjusting age and brain location), 

we used the overlap of 508 CpGs from all discovery sets to generate a representative 

list. Hierarchical clustering on the 508-CpGs signature accurately distinguished 

GBMs from NBs in two discovery sets and an independent validation cohort with 

only five tumors (1.8% of 168) being misclassified into the NB group, supporting the 

robustness of the list as differential methylation for GBMs (Figure 1b). Then by 

correlating methylation levels with OS, we identified an overlap of seven CpGs with 

high prognostic value (permutation p ≤ 0.05) from the discovery sets. A panel of six 

CpGs with highly variable methylation patterns across tumors (standard deviation of β 
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value ≥ 0.15) was used for risk-score modeling (Figure 1c). Among the panel, two 

CpGs were from CGIs and hypermethyated while the others were outside CGI and 

hypomethylated in GBMs. The two CGI CpGs were regarded as risky for prognosis as 

their DNA methylation levels showed inverse correlation with OS; the four open sea 

CpGs were all protective with a positive correlation (Figure 1c). Moreover, four 

locus-related genes were associated with epigenetic silencing (TRIM58 and ADRA2C) 

or re-expression (TRIM38 and MS4A7) in GBMs (Figure 1d). In addition, despite not 

associating with differential expression status in GBMs (HPD and SPNS3), two open 

sea CpGs were essential for optimal prognostication as indicated by additional 

analyses (Supplementary Figure 1 and Table 2). Collectively the risk-score formula 

was constructed as follows: risk score = (2.333 × β value of cg07533148) + (1.508 × β 

value of cg10235817) + (-2.483 × β value of cg22502502) + (-2.573 × β value of 

cg02506908) + (-2.580 × β value of cg18343292) + (-3.031 × β value of cg18750756), 

with the optimal cutoff of -2.485 (around the 20th percentile risk value from the 

discovery cohorts) for stratifying low-risk and high-risk patients (Figure 1a).  

The prognostic value of the six-CpGs signature in the discovery and independent 

validation cohorts 

Patients were divided to low-risk groups (with lower risk scores) and high-risk groups 

(with higher risk scores) in the discovery cohorts, where low-risk patients were 

consistently associated with longer OS than high-risk ones (Figure 2a). The epigenetic 

signature had been further validated in five independent validation cohorts of 

heterogeneous population; it accurately predicted OS not only for patients with 

combined radiation (RT) and TMZ but also for those with heterogeneous or unknown 

treatments (Figure 2b). Moreover, risk classification on differential gene expression 

profiles yielded significant OS difference between the predicted low-risk and high-
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risk subgroups in REMBRANDT and GSE16011 (Supplementary Figure 2).  Finally, 

the six-CpG signature was successfully validated in different datasets of LGGs and in 

particular the subtype with wide-type IDH and intact chromosome 1p/19q, which is 

reported be molecularly resembled with GBMs (Supplementary Figure 3) [30]. The 

six-CpG signature also predicted PFS in available GBM cohorts (Supplementary 

Figure 4).  

The six-CpGs signature was an independent and superior prognostic factor for 

GBMs  

Within all RAUH samples (27k and 450k collectively), univariate Cox regression 

model revealed that age, MGMT promoter methylation status, and the six-CpG 

signature were significantly correlated with OS (Table 2). Multivariate Cox model 

further demonstrated that the six-CpGs signature was an independent prognostic 

indicator (Table 2). Cox regression analyses yielded similar results with all TCGA 

patients (Table 2). The consistent prognostic value in stratified cohorts by different 

treatments supported that the six-CpGs signature was not a predictive indicator for 

specific treatment, but a prognostic factor for GBMs, which provides information on 

the likely outcome of cancer diseases independent of treatment (Supplementary 

Figure 5).   

Time-dependent ROC analysis reported that the six-CpGs signature was associated 

with larger area under the curve (AUC) values than G-CIMP+ and proneural subtype 

at each time point, suggesting its superiority in survival prediction (Supplementary 

Figure 6). In addition, among patients treated with RT/TMZ, the six-CpGs signature 

and MGMT methylation status showed similar integrated AUC values, but had distinct 

evolution with respect to time; MGMT status and the six-CpGs signature respectively 

had larger AUC values at earlier and later time points (Supplementary Figure 6). This 
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finding suggested a possibility of the combination of the two indicators for optimal 

prognostication.   

Molecular characterization of the six-CpGs signature using TCGA data 

Correlation with established molecular subgroups showed that the low-risk group 

included all C-GIMP+ tumors and was enriched with proneural subtypes whilst the 

high-risk group was enriched with DNA methylation cluster#2 tumors described by 

Noushmehr et al. [25] and classical and mesenchymal subtypes (Figure 3a). 

Secondary GBMs were enriched in the low-risk group (Figure 3a). The risk subgroups 

were also associated with different ages even after excluding patients with C-GIMP+ 

tumors, which were known for younger ages at diagnosis (mean ages for G-CIMP- 

low-risk vs. high-risk tumors: 54.0 vs. 61.6 years old, P<0.0001). Somatic copy 

number variation (SCNV) analysis showed that the risk subgroups were associated 

with distinct chromosomal alterations: gain of Chr.7, Chr.19 and Chr.20 and loss of 

Chr.7 were more frequently seen in high-risk tumors (Figure 3a and Supplementary 

Figure 7). We also found that high-risk tumors harbored more significantly regional 

SCNVs (Supplementary Figure 7). Accordingly, at gene level, high-risk tumors were 

associated with more SCNVs in known cancer genes such as EGFR, PDGFA, PTEN 

and CDNK2A/B (Figure 3a). Somatic mutation analysis showed that the significantly 

mutated genes were much more in high-risk vs. low-risk tumors (227 vs. 11; 

Supplementary Table 3), among which mutations in EGFR, COL6A3, PFAS, and 

WDR92 were more frequently seen in high-risk tumors whilst mutations in TP53, 

ATRX, and IDH1 were enriched in low-risk tumors (Figure 3a). Of note, despite that 

some of the observed features (e.g., secondary cases, SCNVs in chr20, and mutations 

in TP53, ATRX and IDH1) were exclusively attributed to the enrichment of G-CIMP+ 
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tumors in the low-risk group, the majority remained significant in the comparison of 

G-CIMP- low-risk and high-risk cases (Figure 3a).   

As for functional profiles, GSEA on transcriptome data showed that low-risk tumors 

were enriched in signatures relating to normal brain function and developmental 

process whilst high-risk tumors were enriched with cancer-promoting signatures 

relating to immune response, NF-κB activation, apoptosis and angiogenesis (Figure 

3b and Supplementary Table 4). Consistent with transcriptome data, the risk 

subgroups were also associated with distinct functional profiles at microRNAs and 

protein levels, among which high-risk tumors was mostly featured by elevation of 

pro-angiogeneic signaling (Supplementary Figure 8). 

Potential links to differential outcomes of bevacizumab therapy  

The multi-platform molecular profiling revealed concordant activation of pro-

angiogenic signaling in high-risk tumors, and thus suggested possible better outcomes 

for anti-angiogneic therapy in this subgroup. We observed that, among TCGA 

patients who were treated with combined RT/TMZ, the utility of bevacizumab (either 

first-line or at progression; a humanized monoclonal antibody against VEGFA [31, 

32]) did confer a clear OS benefit to high-risk patients, but was associated with 

similar outcome in the low-risk group (Figure 3b). Similar benefits were also 

observed in two independent sets on bevaicuzmab at progression (Figure 3b). Meta-

analysis confirmed the significant differential outcomes by bevacizumab-contained 

therapy within each risk subgroup (test for subgroup differences, P=0.03; Figure 3d). 

Gehan-Breslow-Wilcoxon test further indicated that bevacizumab-contained therapy 

may be more useful for improving shorter-term survival for high-risk patients (Figure 

3a).  

The six-CpGs signature in stratified cohorts by known epigenetic markers  
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We also tested the prognostic interrelationship of the six-CpGs signature with known 

epigenetic indicators. Despite the enrichment of favorable G-CIMP+ tumors in the 

low-risk groups, the six-CpGs signature still showed great discriminating value for 

prognosis in the majority of GBMs without G-CIMP (Figure 4a and Supplementary 

Figure 9a).  

As encouraged by time-dependent ROC analysis, we also employed the combination 

of the six-CpGs signature and MGMT methylation status to stratify patients who were 

treated with RT and TMZ, which yielded four distinct subgroups; patients with low-

risk and MGMT methylated tumors had the best OS, followed by two subgroups with 

only one favorable mark, whilst those with high-risk and unmethylated tumors had the 

worst survival (Figure 4b and Supplementary Figure 9b). 

Finally, time-dependent ROC analysis confirmed the refined risk classification with 

the addition of our signature (Supplementary Figure 6). 

Discussion  

Clinically informative biomarkers played crucial roles in precision oncology [33]. 

Historically, RNA- or protein-based information had been the mainstream for 

biomarker discovery, and indeed brought clinical benefits to cancer patients [3]. 

However, the expression-based biomarkers had critical drawbacks for clinical utility – 

the information provided was unstable and sometimes misleading due to the highly 

dynamic nature of RNAs and proteins in cancer biology and the vulnerable physic-

chemical nature in biological specimens [3]. In this respect, DNA methylation-based 

information was much reliable because cancer-linked DNA methylation patterns were 

relatively stable over time and DNA was considerably more stable than RNAs or 

proteins in archived materials [3]. The epigenetic marks also has advantages over the 

stable genetic alterations (e.g., somatic mutations, SCNVs, and SNPs) such as 
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tolerance of non-tumor cell contamination of samples, hints of tumor cells of origin, 

and allowance of a quantitative test [34]. Moreover, aberrant DNA methylation 

changes usually preceded genetic defects and abnormal expression, and represented 

very early events during carcinogenesis [35, 36]. The assessment of DNA methylation 

could render a more timely and accurate molecular profiling of a given tumor. Finally, 

the availability of drugs that reverse epigenetic modifications (e.g., DNA 

methyltransferase inhibitors, histone deacetylase inhibitors) makes DNA methylation 

analysis more therapeutically useful [3, 34]. Collectively all those advantages had 

made more appealing the development of a powerful DNA methylation signature for 

GBM prognostication.  

In this study, by focusing on differential DNA methylation in GBMs, we developed a 

novel six-CpGs panel for prognostication. The six-CpGs signature had been 

demonstrated to be a robust and independent prognostic factor for GBMs, and was 

better than other molecular indicators such as G-CIMP status and proneural subtype. 

Another major advantage of the epigenetic signature is its biological implications. 

Among the locus-specific genes, ADRA2C and TRIM58 were epigenetically silenced, 

and TRIM38 and MS4A7 were upregulated in GBMs. ADRA2C is a subtype of alpha-

2-adrenergic receptors and has critical roles in normal brains function [37]. The 

dramatic decrease in ADRA2C expression indicated the disruption of normal brain 

function in GBMs. Interestingly; the other three transcriptionally altered genes were 

all related to immune system. TRIM38 and TRIM58 belong to the E3 ubiquitin ligase 

superfamily [37]. TRIM38 was reported to be a negative regulator of innate immunity 

and inflammatory response [38-40]. TRIM58 was involved in the regulation of 

pathogen-recognition and innate response [41]. MS4A7 was associated with mature 

cellular function in the monocytic lineage [37]. Previous studies showed that 
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epigenetic modulation of immune-related genes is often taken advantage by neoplastic 

cells to promote immune escape by impairing their immunogenicity and immune 

recognition, and establishing immunosuppressive microenvironments [42]. In this 

study, we found that the defined risk subgroups were highly associated with 

differential enrichments in immune-relevant gene sets. Therefore, we proposed that 

the epigenetic panel may have implications in regulating GBM-specific immune 

response. Of note, two hypomethylated CpGs were not associated with apparent 

expression alteration in GBMs, but were essential for optimal prognostication. Recent 

studies suggested that, instead of a direct linkage to altered expression, cancer-

specific DNA hypomethylation may also have functional impacts via contributing to 

disrupted heterochromatin, leading to loss of both epigenetic and transcriptional 

regulation, and resulting in hyper-variability of expression, and even have interactions 

with important genetic domains in cancers [36].  

Bevacizumab has been the most promising anti-angiogenic agents for treating GBMs 

and especially recurrent cases [2]. Unfortunately two recent Phase III trials failed to 

yield clear OS benefits with the addition of bevacizumab to Stupp regimen in newly 

diagnosed GBMs, making more necessary the search of powerful predictive indicator 

for bevacizumab outcomes. [31, 32] Intriguingly, in this study, we observed the 

differential anigiogeneic profiles and survival outcomes of anti-angiogeneic therapy 

within each risk subgroup; high-risk patients seemed to benefit more from 

bevacizumab-contained therapy than low-risk ones. Therefore, the six-CpGs signature 

may have potential value to guide the usage of bevacizumab especially for high-risk 

patients, and thus be helpful for sparing low-risk ones who are molecularly unlikely to 

benefit from the aggressive therapy of higher cost and potential toxicity. Of note, the 

finding was encouraging but should be conservatively interpreted due to study 
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limitations (e.g., incomplete drug data, second-line bevacizumab in most cases, and 

retrospective design). Prospective validation in randomized trials of first-line 

bevacizumab will be needed for definitive conclusion.   

The epigenetic signature also had potential to improve the current risk classification. 

The six-CpGs signature showed no discriminating value in the small subgroup of 

GBMs with G-CIMP (about 10%), characterized by mutations in IDH and favorable 

OS [25], as all G-CIMP+ tumors were low-risk. However, it was useful for 

identifying patients with different prognoses among the majority of GBMs without G-

CIMP. The six-CpGs signature also showed great discriminating value in stratified 

RT/TMZ cohorts with each MGMT methylation status. MGMT methylation status had 

been by far the most informative biomarker for GBMs. However, its clinical value 

was much compromised due to lack of a direct linkage between MGMT testing and 

TMZ usage especially in unmethylated tumors [7]. Our six-CpGs signature could 

refine the MGMT-based risk classification, and be helpful for improving current 

clinical choice on TMZ for GBMs.  

There have been fewer multi-maker epigenetic biomarkers for GBM prognostication. 

Shukla et al reported a nine-CpGs prognostic signature with implications of abnormal 

activation of NF-kB signaling [43]. Lai et al. reported a hypermethylated signature of 

human embryonic stem cell (hESC)-associated genes [15]. The signatures both had 

greatly expanded our knowledge of the epigenetic features for GBMs. Unfortunately 

they had limitations as clinically useful biomarkers in some crucial respects such as 

the employment of single discovery set with small sample size, the inclusion of CpGs 

associating SNPs, and the insufficient external validation. Our six-CpGs signature had 

been carefully developed with a particular focus on those issues. However limitations 

still existed in this study. First, the selection of prognostic CpGs was mainly focused 
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on CpGs that were differentially methylated in GBMs, which may result in the 

exclusion of other probes with high informative value. Second, our six-CpGs 

signature was more useful to identify a relatively small subset of clinically favorable 

patients, but showed limited capacity to provide information on the rest block of cases 

that are in the middle of the clinical spectrum. Third, despite that the six-CpGs 

signature showed robust prognostic value in G-CIMP- tumors, the model was not 

developed for that purpose. More powerful prognostic signatures for that tumor subset 

are still much needed and should be developed with exclusion of G-CIMP+ tumors. 

Finally lack of functional and mechanism studies hindered better application of the 

epigenetic biomarker.  

Collectively our six-CpGs signature represented a promising tool for prognostication, 

and was of promising value for optimizing personalized management towards GBMs.    
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Legends for Figures 

Figure 1: The development of the six-CpGs prognostic signature; (a) The study 

workflow for the risk-score signature construction; (b) Hierarchical clustering on the 

508 CpGs that were commonly identified in all the three discovery sets accurately 

distinguished GBMs from non-tumor brain tissues in two discovery sets (RAUH_27k 

and GSE50923_27k) and an independent validation set (GSE60274_450k), with the 

similarity metric “Euclidean distance” and the clustering method “Centroid linkage”; 

TCGA_27k was not tested due to too few non-tumor controls (n=4) relative to the 

large number of GBMs (n=282); (c) the characteristics of the six-CpGs panel; open 

sea loci refer to CpGs that are more than 4000 bp away from CpGs island; (d) the 

DNA methylation of the six CpGs and the expression levels of the relevant genes 

between GBMs (n=279) and non-tumor brain tissues (n=10) from TCGA_27k; P 

values for wilcoxon sum rank test and standard t test were respectively indicated for 

DNA methylation and expression data.  

Figure 2: The prognostic performance of the six-CpGs signature on overall survival 

(a) in the pooled discovery cohorts (left) and each discovery set (right); and (b) in the 

pooled validation cohorts (left) and each validation set (right); p-values from log-rank 

test and meta-analysis were indicated ; RT=radiation, TMZ=temozolomide  

Figure 3: Molecular characterization of the six-CpGs signature using the multi-

dimensional TCGA data; (a) heat maps of methylation levels of the six CpGs; each 

row represents a CpGs; each column represents a sample which is ordered by the 

assigned risk scores; patient age, clinical features, molecular subgroups, copy number 

variations and mutational status are indicated for each sample (n=395); regarding 

distribution, p-values for chi-square or fisher’s exact tests were indicated; * indicated 
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significant distribution features event after excluding G-CIMP+ tumors; (b) GSEA 

enrichment plots of representative gene sets for low-risk and high-risk tumors;  (c) the 

potential links of the defined risk subgroups to differential outcomes of bevacizumab 

in patients with combination of RT and TMZ; the usage of bevacizumab conferred a 

clear benefit in OS and especially short-term survival to high-risk patients, but 

appeared to be associated with similar OS in low-risk ones in TCGA_27k/450k (either 

first-line or at progression; upper panel), GSE50923_27k (at progression; middle 

panel) and RAUH_27k/450k (at progression; bottom panel); secondary, recurrent and 

treated samples from TCGA were excluded for this analysis; (d) meta-analysis of each 

cohort confirmed the differential bevacizumab outcomes with respect to each risk 

subgroup by yielding a significant result for subgroup difference test (P=0.03); 

Bev=bevacizumab     

Figure 4: The prognostic performance of the six-CpGs signature in stratified cohorts 

by known epigenetic biomarkers; (a) risk classification of the six-CpGs signature and 

G-CIMP status in a pooled survival analysis of all available patients; p-values from 

meta-analysis <0.01 for each pair-wise comparison; (b) risk classification of the six-

CpGs signature and G-CIMP status in a pooled survival analysis of all available 

patients with combination of RT and TMZ; p-values from meta-analysis <0.01 for 

each pair-wise comparison, except for the comparison of low-risk and MGMT 

unmethylated tumors vs. high-risk and unmethylated ones (p=0.540)  
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